Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
H NH2 R CO2H R = sidechain !- Amino Acid 20 common amino acids 19 are 1°-amines, 1 (proline) is a 2°-amine 19 amino acids are “chiral” 1 (glycine) is achiral (R=H) The configuration of the “natural” amino acids is L 1 H CHO OH CH2OH D-glyceraldehyde HO H H CHO H OH OH CH2OH D-arabinose HO CHO H CH2OH H2N CHO OH H H CH2OH L-arabinose H2N CO2H H R L-alanine L-glyceraldehyde H HO HO CO2H H CH3 H2N H CO2H H OH CH3 L-theronine (2S,3R) H2N H3C CO2H H H CH2CH3 L-isoleucine (2S,3S) 2 1 Dipolar Structure Zwitterion: H2N H3O+ + R _ H3N CO2 H R CO2H H HO pKa2 R + R H3N CO2H H pKa1 low pH _ _ CO2 H2N H high pH Isoelectric point (pI): pH at which the amino acid exists in a neutral, zwitterionic form (influenced by the nature of the sidechain) 3 Amino acids are classified according to their sidechains 1. Hydrophobic: +NH3 (S)-(+)-Alanine (Ala, A) COO– COO– COO– COO– +NH3 (2S,3S)-(+)-Isoleucine (Ile, I) +NH3 (S)-(+)-Valine (Val, V) +NH3 (S)-(–)-Leucine (Leu, L) COO– – N+ COO H H (S)-(–)-Proline (Pro, P) COO– COO– S +NH3 (S)-(–)-Methionine (Met, M) +NH3 (S)-(–)-Phenylalanine (Phe, F) +NH3 N H (S)-(–)-Tryptophan (Trp, W) 2. Uncharged polar groups –OOC COO– +NH3 +NH3 Glycine (Gly, G) (S)-(–)-Serine (Ser, S) +NH3 (2S,3R)-(–)-Threonine (Thr, T) pKa ~ 13 HS COO– +NH3 (R)-(–)-Cysteine (Cys, C) COO– OH COO– HO O (S)-(–)-Tyrosine (Tyr, Y) pKa ~ 13 +NH3 (S)-(–)-Asparagine (Asn, N) pKa ~ 10.5 O COO– H2N HO +NH3 H2N COO– +NH3 (S)-(+)-Glutamine (Gln, Q) pKa ~ 8.3 4 2 3. Acidic O -O COO– O COO– -O +NH3 +NH3 (S)-(+)-Glutamic Acid (Glu, E) (S)-(+)-Aspartic Acid (Asp, D) pKa ~ 4.1 pKa ~ 3.9 4. Basic +NH3 N H COO– + N H +NH3 (S)-(+)-Lysine (Lys, K) COO– +NH3 (S)-(–)-Histidine (His, H) N+ H NH2 +NH3 (S)-(+)-Arginine (Arg, R) pKa ~ 6.0 pKa ~ 10.5 COO– HN H pKa ~ 12.5 5 Amino Acid Synthesis: New unnatural amino acids with altered properties new therapeutics (lead compounds) mechanistic probes CO2H HO HO NH2 L-DOPA 6 3 Traditional Amino Acid Syntheses: R-CH2-CO2H Br2, PBr3 Br O R C CO2H H N K NaN3 O NH3 Ph3P N3 R CH CO2H KOH, H2O H2N -orH2, Pd/C O R C CO2H H O N R C CO2H H 7 Strecker Synthesis C NC CN O R H R OH H cyanohydrin NH4Cl O R C H CN NH2 KCN R C NC R H NH2 C HO2C H3O H R NH2 C H Amidomalonate Synthesis AcHN CO2Et C H EtO CO2Et AcHN Na RCH2 RCH2X CO2Et C CO2Et H3O - CO2 HO2C RCH2 NH2 C H Reductive Amination NH4Cl O R C CO2H H2, Pd/C NH2 R C CO2H HO2C R NH2 C H 8 4 Azlactone Synthesis O O O Ac2O (excess) O EtO O HN NH3 N O Na O azlactone O O RCH2X O N RCH2 N RCH2 OH O EtO N Na O H H3O O H NHAc C RCH2 CO2H NH2 C CO2H O O -H2O R R RCHO O N O N azlactone H3O R CO2H H 1) H2, Pd/C NHAc RCH2 2) H3O NH2 C CO2H 9 These are racemic syntheses!! Resolution: separation of enantiomers H RCH2 NH2 C CO2H H N N H (-)-sparteine (chiral base) H RCH2 H NH2 C H H CO2 + N H H2N N N RCH2 N H C CO2 H H Diasteromeric salts (separate) H3O H RCH2 NH3 C CO2 H3O H3N RCH2 H C CO2 10 5 Asymmetric Synthesis of Amino Acids H R H H H S H H NHAc CO2H pro-chiral 2 HO2C CO2H R NHAc 1 NHAc H 3 R R 3 H pro S-face H H H R R 2 CO2H 1 AcHN pro R-face CO2H NHAc H H H2, Pd/C - heterogeneous catalysis H2, (Ph3P)3RhCl (Wilkinson’s catalyst)- homogeneous catalysis CO2H Ph HN P OMe MeO *P PPh2 PPh2 P Rh (I) L*, H2 HN (95% ee) O S CO2H Ph Ph Ph O Rh P S * CO2Me CO2H NHAc O BINAP HO O DIPAMP NH2 OH L-DOPA 11 O Br Br2, PBr3 RCH R-CH2-CO2H Br R C CO2H H Br Br H R H S H Br Br H Br CO2H O R Br Br Br H R R H R Br C R CO2H NaN3 SN2 N3 H R C S CO2H CO2H Br H H H2N R H C S CO2H 12 6 Chiral Auxiliaries O HN H2N O OH Ph Ph O HN H2N O OH Ph Ph H O O N R S H Br H H Br CO2R* O R O H N O H X O X Br N R R CO2R* Br H H O 13 Li O R R Cl + N N O R LDA O N R N N3- R N O 1) LiOH 2) H2, Pd/C O N3 Br N O SO2N3 Ph O O LDA, THF OH D- amino acids O O O R NH2 Ph Ph ~ 95 : 5 R O O O O O Ph Ph Ph NBS O O O O O R N O N3 Ph 14 7 Peptides - H2O + H2N H2N CO2H CO2H H N H2N O N-terminus Val Ala CO2H C-terminus Ala - Val (A - V) - H2O H N H2N N-terminus By convention, peptide sequences are written left to right from the N-terminus to the C-terminus CO2H O C-terminus Val - Ala (V - A) O H N _ R2 N H R1 H N O H N O R1 + N H R2 C=N double bond character due to this resonance structure H N O restricts rotations resistant to hydrolysis amide bond 15 Peptide Coupling: need for protecting groups Pn N H OH peptide coupling + OPc H2N O O - H2O N H H N H2N O H N OPc O Ala - Val (A - V) Val Ala selectively remove Pn Pn O peptide coupling (-H2O) OPc O Ala - Val (A - V) Pn Ph H N Ph Pn N H O N H H N O OPc O OH O Phe (F) Phe - Ala - Val (F - A - V) Repeat peptide synthesis 16 8 C-protecting groups (Lloyd-Williams et al., p. 11) O R O O Ph R benzyl (bn) Ph O O Ph R removed with mild acid O t-butyl benzhydryl O R O insoluble solid support (resin) linker N-protecting groups (Lloyd-Williams et al., p. 10) O O O Ph NH O O NH O R R NH R O O tert-butylcarbamoyl (t-BOC) O benzyloxycarbamoyl (cBz) fluorenylmethylcarbamoyl (FMOC) O O O O O C O C O Ph O O Cl removed with mild acid or by hydrogenolysis removed with mild acid Cl removed with mild base (piperidine) 17 Solid-Phase Peptide Synthesis (SPPS) (Lloyd-Williams et al., Chapter 2, pp. 19-92) • peptides up to ~ 100 amino acids can be synthesized in a laboratory • laboratory synthesis is from the C-terminus to the N-terminus • nature synthesizes peptides from N to C. O linker O NH2 + O H N HO R1 O coupling reagent linker FMOC O R1 R2 R2 H N O O purify: wash & filter remove FMOC O R1 N H O linker R2 H N O R1 deprotect sidechains H N O linker O cleave from solid support O N H H N FMOC R2 NH2 purify: wash & filter O purify: wash & filter N H H N HO FMOC FMOC R3 coupling reagent remove FMOC Repeat Cycle R3 final purification N H 18 9 Mechanism of Peptide Coupling (Lloyd-Williams et al., p. 48) 19 Mechanism of stereochemical scrambling Additives can suppress the scrambling (Lloyd-Williams et al., pp. 120-121) Peptide coupling reagent (one-pot): N-protected carboxylic acid, C-protected amine DCC, HOBT 20 10 Newer coupling reagents: (Lloyd-Williams et al., p. 53-55) uronium salts: (salts of urea, not uranium) phosphonium salts PF6 N PF6 N N N O N(CH3)2 P N(CH3)2 (CH3)2N (H3C)2N N N P N O N N N N(CH3)2 N N(CH3)2 BOP N(CH3)2 N N O PF6 N N PyBOP O HATU actual structure 21 Why not N to C peptide synthesis? (Lloyd-Williams et al. pp. 116-119) R1 linker N H O H N O R3 N H R2 linker N H linker O R1 O R2 N H O H N O R2 R3 N H X O O O H N R1 activation OH + N H R3 H VERY acidic easily racemized (scrambled) 22 11 Importance of maintaining stereochemical integrity during the coupling step: O O O NH2 + O H N HO R1 coupling reagent FMOC H N O R2 R1 FMOC O R2 R1 O H N HO FMOC H N O R3 coupling reagent R2 H N O R1 O N H O H N O N H O R1 R3 FMOC R2 R2 H N O FMOC N H O H N O O R2 H N O FMOC O N H O H N FMOC R3 FMOC O R3 R2 H N O R1 O N H O H N O R1 R3 R2 H N O FMOC O O N H H N FMOC R3 Number of possible stereoisomers = 2n where n= # of chiral centers A peptide w/ 10 AA residues has 210 possible stereoisomers 23 Standard α-amino protecting group is FMOC removed (deprotected) with base (piperidine) O H N H piperidine + O O _ NH + R O NH R O O NH2 + + N H2 R O an unusually acidic carbon acid + OH N Orthogonal Protection Strategy: if the α-amino group has a baselabile protecting group, then the C-terminus and the side chains require base-stable protecting groups 24 12 Sidechain Protecting Groups: (Lloyd-Williams et al., pp. 23-39) for nitrogen sidechain functional groups • NH2 of lysine (Lloyd-Williams et al., pp. 24-26) 2+Cu + NH3 + _ NH3 O2C 4 Cu2+ _ O 4 + NH3 O2C O2C H N 4 OtBu O BOC group removed with acid 4 + NH3 H N 4 _ 2 NHFMOC NHBOC HO2C + NH3 1) (tBuOCO)2O 2) H2S + NH3 O FMOC-Cl _ NH O _ Ph O2C H N 4 O O O Alloc: selectively removed w/ Pd(0) cBz: removed w/ H+ or w/ hydrogenolysis 25 • Imidazole of Histidine (Lloyd-Williams et al., pp. 28-31) R N N N H2O N+ X FMOCHN R N R N O FMOCHN O CPh3 N FMOCHN N HO2C O BOC N FMOCHN N HO2C O FMOCHN HO2C Boc trityl (Tr) OH FMOCHN S O N N tosyl (Ts) stable to mild base, removed with acid • Indole nitrogen of tryptophan (often not protected) (Lloyd-Williams et al., p. 31) CO2H N BOC CO2H NHFMOC N O H NHFMOC stable to mild base removed with acid 26 13 • Amides of asparagine and glutamine (Lloyd-Williams et al., pp. 32-33) usually not protected- could dehydrate to -C≡N NH2 NH O X n FMOCHN n O OH O FMOCHN Ph O n N H HO2C Benzyl (Bn) N FMOCHN O n N H HO2C O FMOCHN O FMOCHN C n CPh3 stable to mild base, removed with acid Trityl (Tr) • Guanidine group of arginine- often not protected + NH2 H2N (Lloyd-Williams et al., pp. 26-28) NH N FMOCHN O X FMOCHN NH2 NH2 + O FMOCHN HO2C H N 3 HONO2, H2SO4 NH2 FMOCHN HO2C FMOCHN H N 3 NH2 N NH2 HO2C H N 3 NH2 N NO2 removed with hydrogenolysis or with Zn(0) in acetic acid Ts 27 removed with HF for oxygen sidechain functional groups • carboxylate groups of aspartate and glutamate (Lloyd-Williams et al. pp. 33-35) FMOCHN O FMOCHN n O HO2C Ph tBu n O HO2C Benzyl (Bn) FMOCHN O HO2C n O allyl t-butyl removed with acid or hydrogenolysis O removed with acid removed with Pd(0) • alcohols of serine, threonine and tyrosine (Lloyd-Williams et al. pp. 35-35) FMOCHN HO2C FMOCHN O Ph Benzyl (Bn) removed with acid or hydrogenolysis HO2C FMOCHN FMOCHN O tBu HO2C O CPh3 t-butyl (tBu) trityl (Tr) removed with acid removed with acid HO2C O O acetate (Ac) removed with acid 28 14 Sulfur of Cysteine (Lloyd-Williams et al. pp. 39-40) FMOCHN FMOCHN S HO2C Ph FMOCHN S HO2C S HO2C CPh3 t-butyl (tBu) trityl (Tr) removed with acid FMOCHN FMOCHN FMOCHN S HO2C removed with acid Benzyl (Bn) removed with acid tBu S HO2C HO2C S S O NO2 NO2 o-nitrobenzyl removed photochemically H N stable to acid removed with HO- or Hg(II) removed with Ph3P or with HOCH2CH2SH Disulfides of cysteine (cystine) redox active amino acid side chain (Lloyd-Williams et al., Chapter 5, pp. 209-236) HO2C NH2 H2O 1/2 O2 NH2 2 S HO2C SH S CO2H NH2 29 Solid-Phase Peptide Synthesis: The solid support (resin, bead, etc.) (Lloyd-Williams et al., pp. 19-21, 41-46) Merrifield Resin: R. Bruce Merrifield, Rockefeller University, 1984 Nobel Prize in Chemistry: for his development of methodology for chemical synthesis on a solid matrix. Ph H3COCH2Cl ZnCl2 styrene initiator Ph Ph Ph Ph Ph Ph Ph CH2Cl + polymerization Ph Ph Ph Ph divinylbenzene (crosslinker, ~1 %) Ph Ph in the range of 10% of the available phenyl groups are functionalized 30 15 Amide-linked resins O N - K+ 1) CH2Cl O CH2NH2 2) H2NNH2 O HN NHCBz Commercially available R1 Amide Linked Ester-linked Resins K+ O _ NHCBz O CH2Cl O R1 O NHCBz R1 CF3CO2H O Commercially available O NH2 31 R1 Other Resins: Merrifield resin O R1 X linker NH2 Kaiser (oxime) resin (Lloyd-Williams et al., pp. 144-145) O Cl O O2N N OH H2NOH•HCl - H2O AlCl3 NO2 NO2 O R1 N O NH2 NO2 Wang Resin (Lloyd-Williams et al., pp. 143-144) O OH CH2Cl O O O NH2 R1 32 16 Rink (amide) resin (Lloyd-Williams et al., pp. 45-46) H2N H2N R1 R1 HN HN O O H3CO CH3 OCH3 Tanta gel + styrene divinylbenzene (crosslinker, ~1 %) + HO O initiator O O O OH n polymerization O OH n polyethylene glycol (PEG) O O O O n O R1 NH2 Solublizes the synthetic peptide Particularly good for the synthesis of long peptides 33 Deprotection of the peptide sidechain protecting groups cleavage from the solid support (Lloyd-Williams et al., pp. 71-75) Acid hydrolysis: CF3CO2H, HF anisole or p-cresol is added as an alkylation scavenger Purification High performance liquid chromatography (HPLC) electrophoresis Analysis mass spectrometry 34 17 Ribonuclease A- 124 amino acids catalyzes the hydrolysis of RNA Solid-phase synthesis of RNase A: B. Gutte & R. B. Merrifield, J. Am. Chem. Soc. 1969, 91, 501-2. Synthetic RNase A: 78 % activity 0.4 mg was synthesized 2.9 % overall yield average yield ~ 97% per coupling step LYS GLN SER LYS LYS LEU LYS ASN ILE LYS GLN GLU ASP GLU HIS SER SER PRO ALA ASN CYS THR TYR ALA GLY ALA THR MET SER ARG VAL ASP VAL TYR ASP PRO ASN ASN SER ALA ASP ASN ASN ASN VAL ALA GLN CYS ASN LYS PRO VAL ALA SER TYR LEU THR GLN CYS SER ARG CYS HIS TYR ALA SER CYS THR PHE ALA LYS TYR GLU ALA ILE VAL LYS THR ASN LYS VAL VAL ASN SER THR TYR ILE PRO PHE SER GLN ASP HIS CYS GLY THR GLY LYS VAL VAL GLU ALA MET ARG GLU SER GLN MET SER THR ALA HIS ARG ALA MET CYS SER GLN THR SER SER THR CYS PHE His-119 A His-119 B His-12 A His-12 B pdb code: 1AFL 35 Linear vs. Convergent Synthesis SPPS- linear synthesis of peptides, many steps, low overall yield, inefficient for long peptides and proteins Convergent Synthesis (segmental coupling strategy)- make short peptides by SPPS then couple the short peptides, in solution, to give longer ones. Less linear steps and higher overall yield if the segmental coupling is efficient. (Lloyd-Williams et al., Chapter 3, pp. 95-137, Chapter 4, pp.139-207) 36 18 Must activate the C-terminus of a peptide segment recall there are problems with the N to C peptide synthesis (Lloyd-Williams et al., pp. 116-120) O H N R1 N H R2 O X= OH R2 N H X O N H N O couple at glycine, R1=H, no stereochemistry couple at proline- unstable azlactone, little scrambling of stereochemistry O O R2 R2 Scrambling of stereochemistry R1 H X= activated acid N H N O O H N X 37 Couple at cysteine (Kent, Tam) Native peptide ligation O O PhCH2S H2NNH2 _ O SCH2Ph H2N SCH2Ph + HS NH2 N H N3 H2N Thioester: a less reactive activated acid O O H3N O HONO NHNH2 H2N O H2N (Lloyd-Williams et al., pp. 190-195) O CO2 H3N N H SH H N CO2 O 38 19 More general peptide ligation strategy O O HS O HN + SCH2Ph H3N O R H3N CO2 N H R N O H N CO2 O HS Zn(0), AcOH O H3N R N H H N CO2 O O O O N H NH-FMOC Br HO O O R O NH2 O O Br N H DCC, HOBT R (sidechains protected) HO2C O2N S S O O NH2 O O SN2 N H H N O S S Ar 1) deprotect peptide sidechains O 2) HOCH2CH2SH R O O N H H N SH O R 39 Staudinger reaction R N PPh3 + R N N N -N2 PPh3 H2O R NH2 + O PPh3 R N PPh3 Staudinger Ligation: O H3N O O + S PPh2 R N3 N H CO2 H3N R N H H N CO2 + HS O O PPh2 40 20 Cyclic Peptides HO H3C CH3 O N N O CH3 O H H N N CH3 O CH3 N O R2 H2N O R1 O H N NH HN OH R1 O H3C O O R2 H3C N O Diketopiperizine N H O H N O N CH3 O N H N O Cyclosporin A 41 Cyclic Peptide Synthesis Problems with the solution-phase cyclization reaction • stereochemical scrambling - use acyl azide, acyl thioester, HATU or PyBop in the coupling reaction • dimerization - high dilution conditions favors cyclization SPPS O HO O R1 O R1 Rn N H X R1 R1 NH2 O NH2 Rn O NH Rn O Rn O O undesired desired 42 21 Intramolecular Native Peptide Ligation Strategy O SCH2Ph R1 R1 O NH2 NH SH SH O O O R1 SCH2Ph R1 HN O O SH N Rn O R1 Zn(0), AcOH SH O NH Rn O Rn O O Solves the stereochemical scrambling problem but not the dimer formation issue 43 Cyclization on the solid support will solve the dimerization problem Attached the first amino acid through the side chain applicable for Asp, Glu and Lys Requires a carboxylate protecting group that is removed under conditions other than acid or base → Allyl Ph C-Cl Ph CH2Cl O CH2O NH-cBz n O n = 1, 2 O Ph C NH Ph NH-cBz O O 44 22 Attached the first amino acid to the solid support via the α-amino group NH2 OCH3 CH2O CH2Cl O R1 CHO O NaB(CN)H3 OCH3 FMOCHN OCH3 OH R2 O CH2O O N H OCH3 OCH3 O O O CH2O N PyBOP OCH3 R1 O R1 NHFMOC R2 45 On-suppport cyclization OCH3 1) Pd(0), Et3SiH 2) piperidine O O CH2O N OCH3 O NHFMOC R1 Rn O NH R2 OCH3 HO PyBOP O CH2O N OCH3 O NH2 R1 Rn O NH R2 OCH3 H N R1 CH2O N O Rn O H N R1 CH3CO3H, HF anisole HN O Rn O OCH3 O O NH NH R2 R2 46 23