Download Spectroscopy at the Particle Threshold

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Spectroscopy at the Particle
Threshold
H. Lenske
1
Agenda:
• Pairing in the continuum
• Nuclear Polarizability and Spectral Functions
• Continuum spectroscopy and Fano-Resonances
• Summary
2
Pairing in the Continuum:
Quasiparticle Resonances
3
Extended HFB Theory as Coupled Channels
Problem: The Gorkov-Equations
   
 
H 







E






 ( H   )   
 
  
 ~ u(jq) (r ) | (s) jm ;  ~ v(jq) (r ) | (s) jm
Mean-Field Hamiltonian (q  p,n):
Pairing - Field & Density (q  p, n) :
2
 q  1 VSE q
H 
 2  U()
2m
2 j  1 (q)
q (r)  
| v n j (r) |2
4
n j
2
2 j  1 (q)
( q )*
 q (r )  
unj (r )vnj (r )
4
nj
Spectrum of the Gorkov Equation:
Extended HFB Theory: Pairing Self-Energies
• Energy Shifts and Widths
• Spectral Functions for particles and holes
Pairing in Infinite Nuclear Matter
(k F )  
d 3q
 2 
0
V
(
k
,
q
)
u(q;
k
)
v(q;
k
)
~
N(k
)
V
(k F , k F ) ( k F ) I  k F ,  
SE
F
F
F
F
SE
3
G (k F )  N(k F )VSE0 (k F , k F )  I  k F ,   
(k F ) ~ e F (k F ) e
1
G (k F )
3(1G ( k F ))
G ( kF )
7
Pairing in Infinite Nuclear Matter
Free Space SE (S=0,T=1) Interaction:
(Bonn-B Potential)
Pairing is a LOW DENSITY Phenomenon
Pairing Gap  and Anomal Density 
Pairing Correlations in Nuclear Matter
in Symmetric Nuclear Matter
Pairing Gap 
Anomal Density 
Pairing-Field in a Nucleus
RA
RA
11Li
: Continuum HFB Spectral Functions
Neutron Spectrum :
 Dissolution of Shell Structures!
11Li
: Continuum
HFB g.s. Densities
g.s. Densities
g.s. Densities  r2 :
for q  p, n : ( q)  v(jq ) (r ) | (s) jm 
 q (r )  
j
q
2 j 1
(q)
2
de
|
v
(
e
,
r
)
|
j
4 
Neutron Spectral Functions in 9Li(3/2-):
Continuum Admixtures into the g.s.
Continuum Admixtures!
Pairing in the Continuum
S. Orrigo, H.L., PLB 677 (2009)
14
Pairing Resonances in Dripline Nuclei
9Li+n
10Li
S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010, p.5 15
Continuum Spectroscopy at REX-ISOLDE:
d(9Li,10Li)[email protected]
10Li=9Li+n
S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010, p.5
Data: H. Jeppesen et al., REX-ISOLDE Collaboration, NPA 738 (2004) 511 & NPA 748 (2005) 374.
16
New experimental results (Dec. 2013):
10Li continuum spectroscopy at TRIUMF




1 3 3 5 
 , 
2 2 2 2 
S. Orrigo, M. Cavallo, F. Capppuzzello et al.
17
Spectral Structures by
Dynamical Polarization
18
Beyond the Mean-Field:
Short-range Correlations in Nuclear Matter
Momentum Distribution
n(p) = N(kF)  a(w, p) dw
PLB483 (2000) 324
NPA723 (2003) 544
NPA (2005)in print
Nuclear Dynamics…
20
QRPA Response in
10Be
Eth [MeV]
Eexp [MeV]
2+
3.220
3.368
1-
6.423
5.960
0+
6.513
6.179
2-
6.446
6.263
3-
7.372
7.371
J c
4-
(9.270)
1+
7.122
3+
7.159
0-
7.374
DCP Neutron Spectral Distributions in
[0+ × 1/2+]: 0.79
[2+ × 5/2+]: 0.18
[0+ × 1/2-]: 0.58
[2+ × 3/2-]: 0.28
11Be
Spectral Distributions in Carbon Isotopes
…normalized to sum rule
E1 Dipole
E2 Quadrupole
Polarizability of C-Isotopes:
HFB+QRPA results
Multipole polarizabilties
coefficients by sum rules:
S n ( )   E
n
a
2
a T 0
S 1 ( )
P 
S 0 ( )
Longitudinal Momentum Distributions: 17,19C → 16,18C + n
Carbon Target, Elab 900 AMeV
•Binding: Correlation Dynamics
17C
•17C(5/2+,g.s.)
• Sn(the.)=715keV
• C2S(g.s.) = 0.41
G(the.): 132 MeV/c
G(exp.): 143 ± 5 MeV/c
s(-1n,the.): 124 mb
s(-1n,exp.): 129± 22 mb
•Binding: Correlation Dynamics
•19C(1/2+,g.s.)
19C
• Sn(the.)=263keV
• C2S(g.s.) = 0.40
G(the.): 69 MeV/c
G(exp.): 68 ± 3 MeV/c
s(-1n,the.): 192 mb
s(-1n,exp.): 233± 51 mb
Dynamical Core Polarization:
•HFB g.s.:
„3-body renormalized“ GMatrix
• ph-Interactions:
Fermi Liquid Theory
Hole
Spectrum
Particle
Spectrum
Fano Resonances
Interactions of Closed and Open
Channels:
Fano Resonances
27
The Spectral Situation encountered in Atoms,
Molecules, Nuclei, and Hadrons
• A closed channel E* is embedded into a continuum of open channels
• E* interacts via V(r) with open channels given by scattering states
• E* Interacts via V(r) with closed channels, e.g. of (simple) bound states
 Bound
State Embedded into the Continuum - BSEC
28
Examples:
•
Atoms: self-ionizing states of multi-electron configuration
•
Nuclei: Multi-particle-hole states above threshold
•
Mesons: Confined qq-configurations embedded into the
continuum of meson-meson scattering states, e.g. (1232),
(770), Y‘‘(3770)…
•
Baryons: Confined qqq-configurations embedded into the
continuum of meson-nucleon scattering states, e.g. (1232),
N*(1440), L(1405)…
29
Visualizing Quantum Interference in Microscopic Systems:
Asymmetric Fano-Line Shapes of Resonances
Y E   aii( d )    d  bk k(c)
i
k
30
Historically:
The famous Silverman-Lassettre data
He(e,e‘)He*(1P) @ 500eV
Note: q must be negative – q=-1.84
31
Fano-Resonances in Nuclei
32
Hamiltonian and Wave function
 H11b

H  0
 V31

0
H 22s
V32
V13 

V23 
H 33x 
The coupled equations (core nucleus integrated out):

b
n
   zn   nJ V13 j ' c z j ' c  0 

c
  s.p. motion w.r.t. the g.s.
s
 j    z   nJ V23 j ' c z j 'c  0
c


j'

 (  E JC ) z j ' c   j ' c V31 n zn   d  ' j ' c V32  ' z '  0
n
Multi-channel Fano wave function:
33
Extension to Several Open Channels
• n=2 open channels
• n=2 energetically degenerate solutions with outgoing flux
G1   VE
2
; G 2   WE  G   G i
2
i
   arctan
G( E )  
P

G( E )
E  E  G ( E )
 dE '
G( E ')
E ' E
34
Solution 1: fully mixed
1
P
z( E , E ') 
sin    ( E  E ') cos 
 EE'
G1
G2
sin 
a1 
; b1E ' 
z ( E , E ') ; c1E ' 
z ( E , E ')
G
G
G
Solution 2: continuum mixed
a2  0 ; b2 E '
G1
G2

 ( E  E ') ; c 2 E '  
 ( E  E ')
G
G
„Dark States“
 Resonance superimposed on a smoothly varying
background!
35
Multi-channel Coupling
36
Resonance Scenarios in Nuclear Physics
The Fano-Wave Function:
37
Reaction Matrix Elements and Formation
Cross Section
M    Y E , 
  | T |  

1
| T |   
 | T |   sin  
 cot  
*  E ,


 VE

|
T
|



E
,




The (single channel) Fano-Formula:
| q  cot  |
s  =s 
~ M 
2
1  cot 
 | T |  

q=
 E , | T |  
2
s
1
s  ~
 | T |  
*  E ,
 VE
2
2
s
38
Correlation Dynamics in an Open Quantum System:
d-wave Fano-Resonances in 15C
G~60…140keV
Sonja Orrigo, H.L., Phys.Lett. B633 (2006)
39
DD-Dynamics at Threshold
Channel Coupling and the Line Shape of Y(3770)
D  D  threshold
3739.2 MeV
D0 D0 threshold
3729.7 MeV
q=-2.1±0.6
X(3900) ??
3.65
 (2s / 3686)
Xu Cao, H. L., PRL, submitted
40
Summary
•
Dynamics at the particle threshold
•
Pairing at the dripline/in the continuum
•
Nuclear polarizabilities
•
Fano resonances in atomic nuclei
•
Tools for continuum spectroscopy
•
Universality of quantum interference
…with contributions by
Sonja Orrigo (Valencia) and Xu Cao (Giessen/Lanzhou)
41
Related documents