Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
822 CHAPTER 7 TECHNIQUES OF INTEGRATION (e) Take the limit of both sides of the equation obtained at the conclusion of Exercise 78: lim m!1 ! 2!2 4!4 2m ! 2m I2m D lim ! !!! m!1 1 ! 3 3 ! 5 2 .2m " 1/.2m C 1/ I2mC1 ! "! " ! 2!2 4!4 2m ! 2m I2m D lim ! !!! lim : m!1 1 ! 3 3 ! 5 m!1 I2mC1 2 .2m " 1/.2m C 1/ Finally, using the result from (d), we have ! 2!2 4!4 2m ! 2m D lim ! !!! : m!1 1 ! 3 3 ! 5 2 .2m " 1/.2m C 1/ 7.3 Trigonometric Substitution Preliminary Questions 1. State the trigonometric substitution appropriate to the given integral: Z p Z (a) 9 " x 2 dx (b) x 2 .x 2 " 16/3=2 dx Z Z (c) x 2 .x 2 C 16/3=2 dx (d) .x 2 " 5/!2 dx SOLUTION (a) x D 3 sin " (b) x D 4 sec " 2. Is trigonometric substitution needed to evaluate Z (c) x D 4 tan " p x 9 " x 2 dx? (d) x D p 5 sec " No. There is a factor of x in the integrand outside the radical and the derivative of 9 " x 2 is "2x, so we may use the substitution u D 9 " x 2 , du D "2x dx to evaluate this integral. SOLUTION 3. Express sin 2" in terms of x D sin ". SOLUTION p p 1 " sin2 " D 1 " x 2 . Thus, p sin 2" D 2 sin " cos " D 2x 1 " x 2 : First note that if sin " D x, then cos " D 4. Draw a triangle that would be used together with the substitution x D 3 sec ". SOLUTION x !x 2 − 9 3 Exercises In Exercises 1–4, evaluate the integral by following the steps given. Z dx 1. I D p 9 " x2 Z (a) Show that the substitution x D 3 sin " transforms I into d", and evaluate I in terms of ". (b) Evaluate I in terms of x. SOLUTION (a) Let x D 3 sin ". Then dx D 3 cos " d", and p p p p 9 " x 2 D 9 " 9 sin2 " D 3 1 " sin2 " D 3 cos2 " D 3 cos ": Thus, I D Z (b) If x D 3 sin ", then " D sin!1 . x3 /. Thus, p dx 9 " x2 D Z 3 cos " d" D 3 cos " I D " C C D sin!1 #x $ 3 Z d" D " C C: C C: S E C T I O N 7.3 2. I D Z Trigonometric Substitution dx p x2 x2 " 2 Z p 1 2 sec " transforms the integral I into cos "d", and evaluate I in terms of ". p2 (b) Use a right triangle to show that with the above substitution, sin " D x 2 " 2=x. (c) Evaluate I in terms of x. (a) Show that the substitution x D SOLUTION p p 2 sec ". Then dx D 2 sec " tan " d", and q p p p p x 2 " 2 D 2 sec2 " " 2 D 2.sec2 " " 1/ D 2 tan2 " D 2 tan ": (a) Let x D Thus, I D (b) Since x D p Z dx p D 2 x x2 " 2 2 sec ", sec " D x p , 2 p Z 2 sec " tan " d" 1 p D 2 2 .2 sec "/. 2 tan "/ Z d" 1 D sec " 2 Z cos " d" D 1 sin " C C: 2 and we construct the following right triangle: x x2 − 2 2 p From this triangle we see that sin " D x 2 " 2=x. (c) Combining the results from parts (a) and (b), 3. I D Z I D p 1 sin " C C D 2 p x2 " 2 C C: 2x dx 4x 2 C 9 Z 1 sec " d". 2 (b) Evaluate I in terms of " (refer to the table of integrals on page 410 in Section 7.2 if necessary). (c) Express I in terms of x. (a) Show that the substitution x D 3 2 tan " transforms I into SOLUTION (a) If x D 3 2 3 2 sec2 " d", and s ! "2 p p p 3 4x 2 C 9 D 4 ! tan " C 9 D 9 tan2 " C 9 D 3 sec2 " D 3 sec " 2 tan ", then dx D Thus, I D Z p (b) I D (c) Since x D 3 2 dx 4x 2 C 9 1 2 Z D Z sec " d" D 3 2 sec2 " d" 1 D 3 sec " 2 Z sec " d" 1 ln j sec " C tan "j C C 2 tan ", we construct a right triangle with tan " D !4x2 + 9 2x 3 : 2x 3 4x 2 C 9, and therefore ˇ ˇ 1 ˇ1p 2 2x ˇˇ ln j sec " C tan "j C C D ln ˇˇ 4x C 9 C CC 2 3 3 ˇ ˇp ˇ ˇ 4x 2 C 9 C 2x ˇ p p 1 1 1 ˇ ˇ ln ˇ ˇ C C D ln j 4x 2 C 9 C 2xj " ln 3 C C D ln j 4x 2 C 9 C 2xj C C ˇ ˇ 3 2 2 2 From this triangle, we see that sec " D I D 1 2 D 1 2 p 1 3 823 824 TECHNIQUES OF INTEGRATION CHAPTER 7 4. I D Z dx .x 2 C 4/2 Z 1 (a) Show that the substitution x D 2 tan " transforms the integral I into cos2 " d". 8 Z 1 1 (b) Use the formula cos2 " d" D " C sin " cos " to evaluate I in terms of ". 2 2 x 2 (c) Show that sin " D p and cos " D p . 2 2 x C4 x C4 (d) Express I in terms of x. SOLUTION (a) If x D 2 tan ", then dx D 2 sec2 " d", and Z Z Z dx 2 sec2 " d" 2 sec2 " d" I D D D 2 2 2 2 16 .x C 4/ .4 tan " C 4/ .tan2 " C 1/2 Z Z Z 1 sec2 " d" 1 d" 1 D D D cos2 " d": 8 8 8 .sec2 "/2 sec2 " R (b) Using the formula cos2 d" D 12 " C 12 sin " cos ", we get Z 1 1 1 I D cos2 " d" D "C sin " cos " C C: 8 16 16 x 2: (c) Since x D 2 tan ", we construct a right triangle with tan " D x2 + 4 x 2 From this triangle we see that sin " D p x x2 and C4 cos " D p 2 x2 C4 : (d) Since x D 2 tan ", then " D tan!1 . x2 /, and ! "! " # $ #x$ 1 1 x 2 1 x !1 x I D tan C p p CC D tan!1 C C C: 16 2 16 16 2 8.x 2 C 4/ x2 C 4 x2 C 4 In Exercises 5–10, use the indicated substitution to evaluate the integral. Z p 4 5. 16 " 5x 2 dx, x D p sin " 5 SOLUTION Let x D p4 5 sin ". Then dx D Since x D p4 5 cos " d", and s ! "2 Z p 4 4 4 16 " 5 p sin " ! p cos " d" D p 16 " 16 sin2 " ! cos " d" 5 5 5 Z 16 cos " ! cos " d" D p cos2 " d" 5 " 1 8 C sin " cos " C C D p ." C sin " cos "/ C C 2 5 Z p Z I D 16 " 5x 2 dx D Z 4 D p !4 5 ! 16 1 D p " 5 2 p4 5 sin ", we construct a right triangle with sin " D x p 5 4 : 4 !16 − 5x 2 x !5 Trigonometric Substitution S E C T I O N 7.3 From this triangle we see that cos " D 6. Z 1 4 p 16 " 5x 2 , so we have 8 I D p ." C sin " cos "/ C C 5 ! p ! p 8 x 5 1p !1 x 5 2 D p sin C ! 16 " 5x C C 4 4 4 5 p ! 8 1 p !1 x 5 D p sin C x 16 " 5x 2 C C 4 2 5 1=2 p 0 x2 1 " x2 dx, x D sin " Let x D sin ". Then dx D cos " d", and SOLUTION p 1 " x2 D Converting the limits of integration to ", we find xD p 1 " sin2 " D 1 ) " D sin!1 2 p cos2 " D cos ": ! " 1 ! D 2 6 x D 0 ) " D sin!1 .0/ D 0 Therefore ! "ˇ!=6 Z !=6 ˇ sin2 " 1 1 2 I D p dx D .cos " d"/ D sin " d" D " " sin " cos " ˇˇ 2 cos " 2 2 0 0 0 1"x 0 " p p ! " p !# ! 1 1 3 ! 3 2! " 3 3 D " " Œ0 " 0# D " D : 12 2 2 2 12 8 24 Z 7. Z 1=2 Z x2 !=6 dx p , x D 3 sec " x x2 " 9 Let x D 3 sec ". Then dx D 3 sec " tan " d", and SOLUTION p p p p x 2 " 9 D 9 sec2 " " 9 D 3 sec2 " " 1 D 3 tan2 " D 3 tan ": Thus, Z x p dx x2 "9 Since x D 3 sec ", " D sec!1 . x3 /, and 8. Z 1 1=2 x 2 dx p , x2 C 4 SOLUTION Z D Z p .3 sec " tan " d"/ 1 D .3 sec "/.3 tan "/ 3 dx x x2 " 9 D Z d" D 1 " C C: 3 #x$ 1 sec!1 C C: 3 3 x D 2 tan " Let x D 2 tan ". Then dx D 2 sec2 " d", and p This gives us Z x2 C 4 D p dx D p 2 x x2 C 4 p p 4 tan2 " C 4 D 2 tan2 " C 1 D 2 sec2 " D 2 sec ": Z 2 sec2 " d" 1 D 4 tan2 ".2 sec "/ 4 Z sec " d" 1 D tan2 " 4 Z cos " sin2 " d": Now use substitution, with u D sin " and du D cos " d". Then Z Z 1 # !1 $ 1 1 cos " 1 !2 D C C: d" D u du "u CC D" 2 " 4 4 4 4 sin sin " Since x D 2 tan ", we construct a right triangle with tan " D x 2: 825 826 TECHNIQUES OF INTEGRATION CHAPTER 7 x2 + 4 x 2 From this triangle we see that sin " D Z 1 1=2 9. Z .x 2 SOLUTION dx , " 4/3=2 p x . x 2 C4 dx p D " x2 x2 C 4 Thus p 2 3 q 1 C 4 p p i 16 1 hp 4 7 D" 4 5" 17 " 5 : 5D 1 4 4 2 ˇ1 C 4 ˇˇ ˇ ˇ 4x x2 1=2 x D 2 sec " Let x D 2 sec ". Then dx D 2 sec " tan " d", and x 2 " 4 D 4 sec2 " " 4 D 4.sec2 " " 1/ D 4 tan2 ": This gives I D Z dx D 2 .x " 4/3=2 Z 2 sec " tan " d" D .4 tan2 "/3=2 Z 2 sec " tan " d" 1 D 4 8 tan3 " Z sec " d" 1 D 4 tan2 " Z cos " sin2 " d": Now use substitution with u D sin " and du D cos " d". Then Z 1 1 "1 I D u!2 du D " u!1 C C D C C: 4 4 4 sin " Since x D 2 sec ", we construct a right triangle with sec " D x 2: x x2 − 4 2 From this triangle we see that sin " D p x 2 " 4=x, so therefore I D 10. Z 0 1 dx , .4 C 9x 2 /2 SOLUTION Let x D xD 2 3 2 3 4. p "1 x2 "x CC D p C C: " 4=x/ 4 x2 " 4 tan " tan ". Then dx D 2 3 4 C 9x 2 D 4 C 9 sec2 " d", and ! 2 tan " 3 "2 D 4 C 4 tan2 " D 4.1 C tan2 "/ D 4 sec2 " This gives Z Z sec2 " d" 1 d" D 24 16 sec4 " sec2 " ! " Z 1 1 1 1 2 D cos " d" D " C sin " cos " C C 24 24 2 2 dx D .4 C 9x 2 /2 D Z 2 3 1 ." C sin " cos "/ C C 48 The limits of integration are from x D 0 to x D 1. x D 0 corresponds to " D 0, while x D 1 corresponds to the angle " with tan " D 32 . So we construct a right triangle with tan " D 23 : !13 2 3 S E C T I O N 7.3 From this triangle we see that sin " D Z 1 0 11. Evaluate SOLUTION Z p3 13 and cos " D p2 , 13 Trigonometric Substitution 827 so that ˇtan!1 .3=2/ ˇ dx 1 D ." C sin " cos "/ˇˇ 48 .4 C 9x 2 /2 0 ! ! " " ! " 1 3 3 2 1 3 1 D tan!1 C p ! p "0"0 D tan!1 C 48 2 48 2 104 13 13 x dx p in two ways: using the direct substitution u D x 2 " 4 and by trigonometric substitution. x2 " 4 Let u D x 2 " 4. Then du D 2x dx, and Z Z p p x dx 1 du 1 # 1=2 $ I1 D p D p D 2u C C D u C C D x 2 " 4 C C: 2 2 u x2 " 4 To use trigonometric substitution, let x D 2 sec ". Then dx D 2 sec " tan " d", x 2 " 4 D 4 sec2 " " 4 D 4 tan2 ", and Z Z Z x dx 2 sec ".2 sec " tan " d"/ I1 D p D D 2 sec2 " d" D 2 tan " C C: 2 tan " x2 " 4 Since x D 2 sec ", we construct a right triangle with sec " D x 2: x x2 − 4 2 From this triangle we see that p I1 D 2 x2 " 4 2 ! CC D 12. Is the substitution u D x 2 " 4 effective for evaluating the integral tion. SOLUTION p Z x 2 " 4 C C: x 2 dx p ? If not, evaluate using trigonometric substitux2 " 4 p If u D x 2 " 4, then du D 2x dx, x 2 D u C 4, dx D du=2x D du=2 u C 4, and I D Z x 2 dx p D x2 " 4 Z .u C 4/ p u ! du p 2 uC4 " D 1 2 Z uC4 p du u2 C 4u This substitution is clearly not effective for evaluating this integral. Instead, use the trigonometric substitution x D 2 sec ". Then dx D 2 sec " tan ", p p x 2 " 4 D 4 sec2 " " 4 D 2 tan "; and we have I D Z x 2 dx p D x2 " 4 Z 4 sec2 ".2 sec " tan " d"/ D4 2 tan " Z sec3 " d": R Now use the reduction formula for secm x dx from Section 8.7.2: % & Z Z ' ( tan " sec " 1 4 sec3 " d" D 4 C sec " d" D 2 tan " sec " C 2 ln j sec " C tan "j C C: 2 2 Since x D 2 sec ", we construct a right triangle with sec " D x 2: x x2 − 4 2 p From this triangle we see that tan " D 21 x 2 " 4. Therefore ˇ ˇ ˇ # "# $ ! p $ˇˇ p ˇx ˇ ˇ1 x 1p 2 1 p 1 x2 " 4 C 2 ln ˇˇ C x " 4ˇˇ C C D x x 2 " 4 C 2 ln ˇˇ x C x 2 " 4 ˇˇ C C: I D2 2 2 2 2 2 2 828 CHAPTER 7 TECHNIQUES OF INTEGRATION Finally, since ˇ ˇ ! " p p ˇ1 ˇ 1 2 ˇ ˇ ln ˇ .x C x " 4/ˇ D ln C ln jx C x 2 " 4j; 2 2 and ln. 12 / is a constant, we can “absorb” this constant into the constant of integration, so that I D p 1 p 2 x x " 4 C 2 ln jx C x 2 " 4j C C: 2 13. Evaluate using the substitution u D 1 " x 2 or trigonometric substitution. Z Z p x (a) p dx (b) x 2 1 " x 2 dx 1 " x2 Z Z p x4 (c) x 3 1 " x 2 dx (d) p dx 1 " x2 SOLUTION (a) Let u D 1 " x 2 . Then du D "2x dx, and we have Z Z Z x 1 "2x dx 1 du p dx D " p D" : 2 2 2 2 u1=2 1"x 1"x (b) Let x D sin ". Then dx D cos " d", 1 " x 2 D cos2 ", and so Z Z Z p x 2 1 " x 2 dx D sin2 ".cos "/ cos " d" D sin2 " cos2 " d": (c) Use the substitution u D 1 " x 2 . Then du D "2x dx, x 2 D 1 " u, and so Z Z Z p p 1 1 x 3 1 " x 2 dx D " x 2 1 " x 2 ."2x dx/ D " .1 " u/u1=2 du: 2 2 (d) Let x D sin ". Then dx D cos " d", 1 " x 2 D cos2 ", and so Z Z Z x4 sin4 " p dx D cos " d" D sin4 " d": cos " 1 " x2 14. Z Evaluate: Z dt t dt (a) (b) 2 3=2 2 .t C 1/ .t C 1/3=2 SOLUTION (a) Use the substitution t D tan ", so that dt D sec2 " d". Then Z Z Z Z dt sec2 " sec2 " D d" D d" D cos " d" D sin " C C .t 2 C 1/3=2 .tan2 " C 1/3=2 .sec2 "/3=2 Since t D tan ", we construct a right triangle with tan " D t: !t 2 + 1 t 1 From this we see that sin " D p t , t 2 C1 so that the integral is Z .t 2 dt t D sin " C C D p CC 3=2 2 C 1/ t C1 (b) Use the substitution u D t 2 C 1, du D 2t dt; then Z Z 1 t dt 1 u!3=2 du D "u!1=2 C C D " p CC D 2 2 .t 2 C 1/3=2 t C1 S E C T I O N 7.3 Trigonometric Substitution In Exercises 15–32, evaluate using trigonometric substitution. Refer to the table of trigonometric integrals as necessary. Z x 2 dx 15. p 9 " x2 SOLUTION Let x D 3 sin ". Then dx D 3 cos " d", 9 " x 2 D 9 " 9 sin2 " D 9.1 " sin2 "/ D 9 cos2 "; and I D Z x 2 dx p D 9 " x2 Z 9 sin2 ".3 cos " d"/ D9 3 cos " Since x D 3 sin ", we construct a right triangle with sin " D Z sin2 " d" D 9 % & 1 1 " " sin " cos " C C: 2 2 x 3: 3 x 9 − x2 From this we see that cos " D 16. Z dt .16 " t 2 /3=2 SOLUTION p 9 " x 2 =3, and so #x$ 9 #x$ 9 I D sin!1 " 2 3 2 3 p 9 " x2 3 ! CC D 9 !1 # x $ 1 p sin " x 9 " x 2 C C: 2 3 2 Let t D 4 sin ". Then dt D 4 cos " d", and .16 " t 2 /3=2 D .16 " 16 sin2 "/3=2 D .16 cos2 "/3=2 D .4 cos "/3 D 64 cos3 " so that I D Z dt D .16 " t 2 /3=2 Z 4 cos " 1 d" D 16 64 cos3 " Z sec2 " d" C C D 1 tan " C C 16 Since t D 4 sin ", we construct a right triangle with sin " D 4t : 4 t !16 − t2 From this, we see that tan " D p t , 16!t 2 so that I D Z 1 t tan " C C D p CC 16 16 16 " t 2 dx p x x 2 C 16 SOLUTION Use the substitution x D 4 tan ", so that dx D 4 sec2 " d". Then q q p x x 2 C 16 D 4 tan " .4 tan "/2 C 16 D 4 tan " 16.tan2 " C 1/ D 16 tan " sec " 17. so that I D Z dx p D x x 2 C 16 Z 4 sec2 " 1 d" D 16 tan " sec " 4 Since x D 4 tan ", we construct a right triangle with tan " D Z sec " 1 d" D tan " 4 x 4: !16 + x2 4 x Z 1 csc " d" D " ln j csc x C cot xj C C 4 829 830 TECHNIQUES OF INTEGRATION CHAPTER 7 From this, we see that csc x D 18. p x 2 C16 x and cot x D 4 x, so that ˇp ˇ ˇ ˇ p 1 1 ˇˇ x 2 C 16 4 ˇˇ 1 ˇˇ 4 C x 2 C 16 ˇˇ I D " ln j csc x C cot xj C C D " ln ˇ C ˇ C C D " ln ˇ ˇCC ˇ 4 4 ˇ x xˇ 4 ˇ x Z p 12 C 4t 2 dt SOLUTION First simplify the integral: I D Now let t D p 3 tan ". Then dt D p Z p Z p 12 C 4t 2 dt D 2 3 C t 2 dt 3 sec2 " d", 3 C t 2 D 3 C 3 tan2 " D 3.1 C tan2 "/ D 3 sec2 "; and I D2 Since t D p Z p 3 sec2 " #p % & Z Z $ tan " sec " 1 3 sec2 " d" D 6 sec3 " d" D 6 C sec " d" 2 2 D 3 tan " sec " C 3 ln j sec " C tan "j C C: 3 tan ", we construct a right triangle with tan " D pt 3 : !t 2 + 3 t !3 p p From this we see that sec " D t 2 C 3= 3. Therefore, ˇp ˇ ! ! " p2 ! " ˇ t2 C 3 ˇp ˇ p t t C3 t ˇˇ 1 ˇ ˇ ˇ I D3 p p C 3 ln ˇ p C p ˇ C C1 D t t 2 C 3 C 3 ln ˇ t 2 C 3 C t ˇ C 3 ln p C C1 ˇ 3 3 3 3ˇ 3 ˇp ˇ p ˇ ˇ D t t 2 C 3 C 3 ln ˇ t 2 C 3 C t ˇ C C; where C D 3 ln. p1 / C C1 . 3 Z dx 19. p x2 " 9 SOLUTION Let x D 3 sec ". Then dx D 3 sec " tan " d", x 2 " 9 D 9 sec2 " " 9 D 9.sec2 " " 1/ D 9 tan2 "; and I D Z dx p D x2 " 9 Z 3 sec " tan " d" D 3 tan " Since x D 3 sec ", we construct a right triangle with sec " D Z sec " d" D ln j sec " C tan "j C C: x 3: x x2 − 9 3 p From this we see that tan " D x 2 " 9=3, and so ˇ ˇ p ! " ˇ ˇ ˇx ˇ ˇ p p 1 x 2 " 9 ˇˇ ˇ ˇ ˇ ˇ ˇ I D ln ˇ C C C1 D ln ˇx C x 2 " 9 ˇ C C; ˇ C C1 D ln ˇx C x 2 " 9 ˇ C ln ˇ3 ˇ 3 3 where C D ln )1* 3 C C1 . S E C T I O N 7.3 Trigonometric Substitution Z dt p t 2 t 2 " 25 SOLUTION Let t D 5 sec ". Then dt D 5 sec " tan " d", 20. t 2 " 25 D 25 sec2 " " 25 D 25.sec2 " " 1/ D 25 tan2 "; and I D Z Z dt p D 2 t t 2 " 25 5 sec " tan " d" 1 D 2 25 .25 sec "/.5 tan "/ Z d" 1 D sec " 25 Z cos " d" D 1 sin " C C: 25 Since t D 5 sec ", we construct a right triangle with sec " D 5t : t !t 2 − 25 5 From this we see that sin " D p t 2 " 25=t, and so 1 I D 25 21. Z y2 dy p 5 " y2 SOLUTION p Let y D 5 sin ". Then dy D p t 2 " 25 t ! CC D p t 2 " 25 C C: 25t p 5 cos " d", 5 " y 2 D 5 " 5 sin2 " D 5.1 " sin2 "/ D 5 cos2 "; and I D Since y D p Z dy p D 2 y 5 " y2 p Z Z 5 cos " d" 1 d" 1 1 p D D csc2 " d" D ." cot "/ C C: 2 2 5 5 5 sin " .5 sin "/. 5 cos "/ Z 5 sin ", we construct a right triangle with sin " D y p : 5 5 y 5 − y2 From this we see that cot " D 22. Z p x 3 9 " x 2 dx SOLUTION p 5 " y 2 =y, which gives us ! p p 1 " 5 " y2 5 " y2 I D CC D " C C: 5 y 5y Let x D 3 sin ". Then dx D 3 cos " d", 9 " x 2 D 9 " 9 sin2 " D 9.1 " sin2 "/ D 9 cos2 "; and I D Z Z p x 3 9 " x 2 dx D .27 sin3 "/.3 cos "/.3 cos " d"/ D 243 D 243 Z %Z sin3 " cos2 " d" D 243 cos2 " sin " d" " Z Z .1 " cos2 "/ cos2 " sin " d" & cos4 " sin " d" : Now use substitution, with u D cos " and du D " sin " d" for both integrals: % & 1 1 I D 243 " cos3 " C cos5 " C C: 3 5 Since x D 3 sin ", we construct a right triangle with sin " D x 3: 831 832 TECHNIQUES OF INTEGRATION CHAPTER 7 3 x θ 9 − x2 From this we see that cos " D 2 1 I D 243 4" 3 p 9 " x 2 =3. Thus p 9 " x2 3 !3 !5 3 p 9 " x2 5 1 C C D "3.9 " x 2 /3=2 C .9 " x 2 /5=2 C C: 3 5 1 C 5 Alternately, let u D 9 " x 2 . Then ! " Z Z p p 1 1 2 I D x 3 9 " x 2 dx D " .9 " u/ u du D " 6u3=2 " u5=2 C C 2 2 5 23. Z 1 5=2 1 u " 3u3=2 C C D .9 " x 2 /5=2 " 3.9 " x 2 /3=2 C C: 5 5 D p dx 25x 2 C 2 Let x D SOLUTION p 2 5 I D Since x D p 2 5 p 2 5 tan ". Then dx D Z p dx 25x 2 C 2 D Z sec2 " d", 25x 2 C 2 D 2 tan2 " C 2 D 2 sec2 ", and p 2 5 sec2 " d" 1 p D 5 2 sec " tan ", we construct a right triangle with tan " D Z sec " d" D 1 ln j sec " C tan "j C C: 5 5x p : 2 !25x 2 + 2 5x !2 From this we see that sec " D p1 2 p 25x 2 C 2, so that ˇp ˇ 1 1 ˇˇ 25x 2 C 2 5x ˇˇ I D ln j sec " C tan "j C C D ln ˇ p C p ˇCC 5 5 ˇ 2 2ˇ ˇ ˇ p ˇ 1 p p 1 ˇˇ 5x C 25x 2 C 2 ˇˇ 1 ˇˇ ˇ D ln ˇ p ˇ C C D ln ˇ5x C 25x 2 C 2ˇ " ln 2 C C ˇ 5 ˇ 5 5 2 24. Z D dt .9t 2 C 4/2 SOLUTION Now let t D ˇ p 1 ˇˇ ˇ ln ˇ5x C 25x 2 C 2ˇ C C 5 First factor out the t 2 -coefficient: Z Z Z dt dt 1 dt I D D D ' ) *( ) *2 : 2 2 2 4 81 .9t C 4/ 9 t2 C 9 t 2 C 49 2 3 tan ". Then dt D 2 3 sec2 " d", t2 C 4 4 4 4 4 D tan2 " C D .tan2 " C 1/ D sec2 "; 9 9 9 9 9 and I D Since t D 2 3 1 81 Z 2 3 16 81 sec2 d" sec4 " d" D 1 24 Z tan ", we construct a right triangle with tan " D cos2 " d" D 3t 2: & % 1 1 1 " C sin " cos " C C: 24 2 2 S E C T I O N 7.3 !9t 2 + 4 Trigonometric Substitution 833 3t 2 p p From this we see that sin " D 3t= 9t 2 C 4 and cos " D 2= 9t 2 C 4. Thus ! " ! "! " ! " 1 3t 1 3t 2 1 3t t I D tan!1 C p p CC D tan!1 C C C: 2 C4 2 C4 48 2 48 48 2 8.9t 2 C 4/ 9t 9t Z dz 25. p z3 z2 " 4 SOLUTION Let z D 2 sec ". Then dz D 2 sec " tan " d", z 2 " 4 D 4 sec2 " " 4 D 4.sec2 " " 1/ D 4 tan2 "; and Z Z Z dz 2 sec " tan " d" 1 d" 1 p D D D cos2 " d" 8 8 .8 sec3 "/.2 tan "/ sec2 " z3 z2 " 4 % & 1 1 1 1 1 D " C sin " cos " C C D "C sin " cos " C C: 8 2 2 16 16 I D Z As explained in the text, this computation is valid if we choose " in Œ0; !=2/ if z # 2 and in Œ!; 3!=2/ if z $ "2. If z # 2, we may construct a right triangle with sec " D z2 : z z2 − 4 2 p z 2 " 4=z and cos " D 2=z. Then !! " p p #z $ #z $ 1 1 z2 " 4 2 1 z2 " 4 I D sec!1 C CC D sec!1 C C C: 16 2 16 z z 16 2 8z 2 ) * ) ( However, if z $ "2 then sec!1 z2 lies in !2 ; ! according to the definition of sec!1 x used in the text. But since " is the angle h $ p ) * in !; 3! satisfying sec " D z=2, we find that " D 2! " sec!1 z2 . Similarly, sin " D " z 2 " 4=z and cos " D "2=z: So, for 2 ) * pz 2 !4 ) * 1 z $ "2, I D " 16 sec!1 z2 C 8z C C . Note that although " D 2! " sec!1 z2 ; the 2! is not needed in the expression for 2 I because it may be absorbed in the constant C . Z dy 26. p y2 " 9 SOLUTION Let y D 3 sec ", so that dy D 3 sec " tan " d" and From this we see that sin " D y 2 " 9 D .3 sec "/2 " 9 D 9.sec2 " " 1/ D 9 tan2 " so that I D Z p dy y2 " 9 D Z 3 sec " tan " d" D 3 tan " Since y D 3 sec ", we construct a right triangle with sec " D Z sec " d" D ln j sec " C tan "j C C y 3: y !y 2 − 9 3 p From this, we see that tan " D 13 y 2 " 9, so that ˇ ˇ p ˇy y 2 " 9 ˇˇ ˇ I D ln j sec " C tan "j C C D ln ˇ C ˇCC ˇ3 ˇ 3 ˇ ˇ p ˇ ˇ ˇ ˇ q q ˇ y C y2 " 9 ˇ ˇ ˇ ˇ ˇ ˇ ˇ 2 2 ˇ ˇ ˇ D ln ˇ ˇ C C D ln ˇy C y " 9ˇ " ln 3 C C D ln ˇy C y " 9ˇˇ C C ˇ ˇ 3 834 27. TECHNIQUES OF INTEGRATION CHAPTER 7 Z x 2 dx .6x 2 " 49/1=2 SOLUTION Let x D p7 6 sec "; then dx D p7 6 sec " tan " d", and ! "2 7 6x 2 " 49 D 6 p sec " " 49 D 49.sec2 " " 1/ D 49 tan2 " 6 so that Z 49 sec2 ". p7 sec " tan "/ 6 x 2 dx 6 D d" 2 1=2 7 tan " .6x " 49/ ! " Z Z 49 49 1 1 D p sec3 " d" D p tan " sec " C sec " d" 2 6 6 6 6 2 I D D Since x D p7 6 Z 49 p .tan " sec " C ln j sec " C tan "j/ C C 12 6 sec ", we construct a right triangle with sec " D x p 6 7 x !6 : !6x 2 − 49 7 From this we see that tan " D 1 7 p 6x 2 " 49, so that 49 I D p 12 6 28. Z D 49 p 12 6 D ˇ p ˇ$ p 1 # p p 2 ˇ ˇ p x 6 6x " 49 C 49 ln ˇx 6 C 6x 2 " 49ˇ C C 12 6 dx .x 2 " 4/2 SOLUTION ˇ p ˇ! p p ˇ x 6 C p6x 2 " 49 ˇ x 6 6x 2 " 49 ˇ ˇ C ln ˇ ˇ CC ˇ ˇ 49 7 ! p p ˇ p ˇ p x 6 6x 2 " 49 ˇ ˇ 2 C ln ˇx 6 C 6x " 49ˇ " ln 7 C C 49 Let x D 2 sec ". Then dx D 2 sec " tan " d", x 2 " 4 D 4 sec2 " " 4 D 4.sec2 " " 1/ D 4 tan2 "; and Z Z dx 2 sec " tan " d" 1 sec " d" D D 8 .x 2 " 4/2 16 tan4 " tan3 " Z Z Z Z 1 cos2 " 1 1 " sin2 " 1 1 3 D d" D d" D csc " d" " csc " d": 8 8 8 8 sin3 " sin3 " Z Now use the reduction formula for csc3 " d": I D I D Z % & Z Z Z 1 cot " csc " 1 1 1 1 " C csc " d" " csc " d" D " cot " csc " " csc " d" 8 2 2 8 16 16 D" 1 1 cot " csc " " ln j csc " " cot "j C C: 16 16 Since x D 2 sec ", we construct a right triangle with sec " D x 2: x 2 x2 − 4 Trigonometric Substitution S E C T I O N 7.3 p p From this we see that cot " D 2= x 2 " 4 and csc " D x= x 2 " 4. Thus ˇ ˇ ! "! " ˇ 1 2 x 1 ˇˇ x 2 ˇCC I D" p p " ln ˇ p "p ˇ 2 2 2 2 16 16 x "4 x "4 x "4 x "4 ˇ ˇ "x 1 ˇˇ x " 2 ˇˇ D " ln p C C: 8.x 2 " 4/ 16 ˇ x 2 " 4 ˇ Z dt 29. .t 2 C 9/2 SOLUTION Let t D 3 tan ". Then dt D 3 sec2 " d", t 2 C 9 D 9 tan2 " C 9 D 9.tan2 " C 1/ D 9 sec2 "; and I D Z dt D .t 2 C 9/2 Z 3 sec2 " d" 1 D 27 81 sec4 " Z cos2 " d" D % & 1 1 1 " C sin " cos " C C: 27 2 2 Since t D 3 tan ", we construct a right triangle with tan " D 3t : !t 2 + 9 t 3 p p From this we see that sin " D t= t 2 C 9 and cos " D 3= t 2 C 9. Thus ! " ! "! " ! " 1 t 1 t 3 1 t t I D tan!1 C p p CC D tan!1 C C C: 2 C 9/ 2 2 54 3 54 54 3 18.t t C9 t C9 Z dx 30. .x 2 C 1/3 SOLUTION Let x D tan ". Then dx D sec2 " d", x 2 C 1 D tan2 " C 1 D sec2 ", and I D Using the reduction formula for I D Z Z dx D 2 .x C 1/3 Z sec2 " d" D sec6 " Z cos4 " d": cos4 " d", we get cos3 " sin " 3 C 4 4 Z cos2 " d" D 1 3 cos3 " sin " C 4 4 ! " 1 1 " C sin " cos " C C: 2 2 Since x D tan ", we construct the following right triangle: x2 + 1 x 1 p p From this we see that sin " D x= x 2 C 1 and cos " D 1= x 2 C 1. Thus I D D 31. Z x 2 dx .x 2 " 1/3=2 SOLUTION 1 4 ! p 1 x2 C 1 "3 ! p x x2 C 1 " C 3 3 tan!1 x C 8 8 x 3x 3 C C tan!1 x C C: 8 4.x 2 C 1/2 8.x 2 C 1/ ! p x x2 C 1 "! p 1 x2 C 1 Let x D sec ". Then dx D sec " tan " d", and x 2 " 1 D sec2 " " 1 D tan2 ". Thus I D Z x2 dx D 2 .x " 1/3=2 Z sec2 " sec " tan " d" .tan2 "/3=2 " CC 835 836 CHAPTER 7 TECHNIQUES OF INTEGRATION Z sec2 " sec " tan " sec3 " d" D d" tan3 " tan2 " Z Z Z sec2 " 2 D sec " d" D csc " sec " d" D .1 C cot2 "/ sec " d" tan2 " Z D sec " C cot " csc " d" D ln j sec " C tan "j " csc " C C D Z Since x D sec ", we construct the following right triangle: x !x2 − 1 1 From this we see that tan " D Z p x 2 " 1 and that csc " D p x , x 2 !1 so that ˇ ˇ p x ˇ ˇ I D ln ˇx C x 2 " 1ˇ " p CC 2 x "1 x 2 dx C 1/3=2 SOLUTION Let x D tan ". Then dx D sec2 " d", x 2 C 1 D tan2 " C 1 D sec2 ", and Z Z Z Z Z x 2 dx tan2 ".sec2 " d"/ tan2 " sin2 " 1 " cos2 " I D D D d" D d" D d" sec " cos " cos " .x 2 C 1/3=2 .sec2 "/3=2 Z Z Z Z 1 cos2 " D d" " d" D sec " d" " cos " d" D ln j sec " C tan "j " sin " C C: cos " cos " 32. .x 2 Since x D tan ", we construct the following right triangle: x2 + 1 x 1 From this we see that sec " D 33. Prove for a > 0: p p x 2 C 1 and sin " D x= x 2 C 1. Thus ˇp ˇ x ˇ ˇ I D ln ˇ x 2 C 1 C x ˇ " p C C: x2 C 1 Z dx 1 x D p tan!1 p C C x2 C a a a p p SOLUTION Let x D a u. Then, x 2 D au2 , dx D a du, and ! " Z Z dx 1 du 1 1 x !1 !1 D p D p tan u C C D p tan p C C: x2 C a u2 C 1 a a a a 34. Prove for a > 0: ! " Z dx 1 x 1 !1 x D C p tan p CC 2a x 2 C a .x 2 C a/2 a a p p SOLUTION Let x D a u. Then, x 2 D au2 , dx D a du, and Z Z dx 1 du D : .x 2 C a/2 .u2 C 1/2 a3=2 Now, let u D tan ". Then du D sec2 " d", and ! " Z Z Z sec2 " 1 1 1 1 dx 1 2 cos " d" D D d" D sin " cos " C " CC 2 .x 2 C a/2 .sec2 "/2 a3=2 a3=2 a3=2 2 p ! "" ! " ! 1 x u 1 x= a !1 !1 D C tan p C tan p CC u C C D a 2a3=2 1 C u2 2a3=2 1 C .x= a/2 ! ! "" x 1 x 1 !1 C C: D C p tan p 2a x 2 C a a a S E C T I O N 7.3 Z Trigonometric Substitution dx . x 2 " 4x C 8 (a) Complete the square to show that x 2 " 4x C 8 D .x " 2/2 C 4. Z du (b) Use the substitution u D x " 2 to show that I D p . Evaluate the u-integral. 2 C 22 u ˇq ˇ ˇ ˇ (c) Show that I D ln ˇ .x " 2/2 C 4 C x " 2ˇ C C . 35. Let I D p SOLUTION (a) Completing the square, we get x 2 " 4x C 8 D x 2 " 4x C 4 C 4 D .x " 2/2 C 4: (b) Let u D x " 2. Then du D dx, and Z I D p dx x 2 " 4x C 8 D Z Now let u D 2 tan ". Then du D 2 sec2 " d", dx p D .x " 2/2 C 4 Z p du u2 C 4 : u2 C 4 D 4 tan2 " C 4 D 4.tan2 " C 1/ D 4 sec2 "; and I D Z 2 sec2 " d" D 2 sec " Z sec " d" D ln j sec " C tan "j C C: Since u D 2 tan ", we construct a right triangle with tan " D u 2: u2 + 4 u 2 p From this we see that sec " D u2 C 4=2. Thus ˇp ˇ " ˇ u2 C 4 ˇp ˇ ! 1 ˇp ˇ u ˇˇ ˇ ˇ ˇ ˇ ˇ 2 I D ln ˇ C ˇ C C1 D ln ˇ u C 4 C uˇ C ln C C1 D ln ˇ u2 C 4 C uˇ C C: ˇ 2 2ˇ 2 (c) Substitute back for x in the result of part (b): Z ˇq ˇ ˇ ˇ I D ln ˇˇ .x " 2/2 C 4 C x " 2ˇˇ C C: dx . First complete the square to write 12x " x 2 D 36 " .x " 6/2 . 12x " x 2 SOLUTION First complete the square: # $ # $ 12x " x 2 D " x 2 " 12x C 36 " 36 D " x 2 " 12x C 36 C 36 D 36 " .x " 6/2 : 36. Evaluate p Now let u D x " 6, and du D dx. This gives us Z Z Z dx dx du I D p D p D p : 2 2 36 " .x " 6/ 12x " x 36 " u2 Next, let u D 6 sin ". Then du D 6 cos " d", 36 " u2 D 36 " 36 sin2 " D 36.1 " sin2 "/ D 36 cos2 "; and I D Z 6 cos " d" D 6 cos " Z d" D " C C: Substituting back, we find I D sin!1 #u$ 6 C C D sin!1 ! x"6 6 " C C: 837 838 TECHNIQUES OF INTEGRATION CHAPTER 7 In Exercises 37–42, evaluate the integral by completing the square and using trigonometric substitution. Z dx 37. p x 2 C 4x C 13 First complete the square: SOLUTION x 2 C 4x C 13 D x 2 C 4x C 4 C 9 D .x C 2/2 C 9: Let u D x C 2. Then du D dx, and I D Z p dx x2 Z D C 4x C 13 p Now let u D 3 tan ". Then du D 3 sec2 " d", dx .x C 2/2 C9 D Z p du u2 C 9 : u2 C 9 D 9 tan2 " C 9 D 9.tan2 " C 1/ D 9 sec2 "; and I D Z 3 sec2 " d" D 3 sec " Z sec " d" D ln j sec " C tan "j C C: Since u D 3 tan ", we construct the following right triangle: u2 + 9 u 3 u2 C 9=3. Thus ˇp ˇ " ˇ u2 C 9 ˇp ˇ ! 1 u ˇˇ ˇ ˇ ˇ I D ln ˇ C ˇ C C1 D ln ˇ u2 C 9 C uˇ C ln C C1 ˇ 3 3ˇ 3 ˇq ˇ ˇ ˇ p ˇ ˇ ˇ ˇ D ln ˇˇ .x C 2/2 C 9 C x C 2ˇˇ C C D ln ˇ x 2 C 4x C 13 C x C 2ˇ C C: From this we see that sec " D 38. Z p p dx 2 C x " x2 First complete the square: SOLUTION Let u D x " 1 2 Now let u D 3 2 ! " ! " ) * 1 1 9 1 2 2 C x " x2 D " x2 " x C 2 D " x2 " x C C2C D " x" : 4 4 4 2 and du D dx. This gives us Z I D p sin ". Then du D 3 2 dx 2Cx " x2 D Z q dx 9 4 " .x " 12 /2 D Z q du 9 4 : " u2 cos " d", 9 9 9 9 9 " u2 D " sin2 " D .1 " sin2 "/ D cos2 "; 4 4 4 4 4 and I D 39. Z p Z 3 2 cos " d" 3 2 cos " D Z d" D " C C D sin!1 ! 2u 3 " C C D sin!1 2.x " 12 / 3 ! C C D sin!1 dx x C 6x 2 SOLUTION First complete the square: ! " ! " p 1 1 1 2 1 6x 2 C x D 6x 2 C x C " D 6x C p " 24 24 24 2 6 ! 2x " 1 3 " C C: S E C T I O N 7.3 Let u D p 6x C 1 p 2 6 Z I D Now let u D 1 p 2 6 p so that du D 6 dx. Then 1 p dx D x C 6x 2 1 p 2 6 sec ". Then du D Trigonometric Substitution Z r# p 1 6x C 1 p 2 6 $2 " 1 24 1 dx D p 6 Z 1 q u2 " 1 24 du sec " tan ", and u2 " 1 1 1 D .sec2 " " 1/ D tan2 " 24 24 24 so that 1 I D p 6 Since u D 1 p 2 6 Z 1 1 p 2 6 1 1 p sec " tan " d" D p tan " 2 6 6 Z 1 sec " d" D p ln j sec " C tan "j C C 6 sec ", we construct the following right triangle: 2u!6 !24u2 − 1 1 p 24u2 " 1 and sec " D 2u 6. Thus ˇ ˇ " s ! " ˇ p ˇ ˇ p !p ˇ p 1 1 1 1 ˇ ˇ ˇ ˇ 2 2 I D p ln ˇ2u 6 C 24u " 1ˇ C C D p ln ˇ2 6 6x C p C 24 6x C x C " 1ˇ C C ˇ ˇ 24 6 6 2 6 ˇ ˇ p 1 ˇ ˇ D p ln ˇ12x C 1 C 144x 2 C 24x ˇ C C 6 from which we see that tan " D 40. p Z p x 2 " 4x C 7 dx SOLUTION First complete the square: x 2 " 4x C 7 D x 2 " 4x C 4 C 3 D .x " 2/2 C 3: Let u D x " 2. Then du D dx, and Z p Z q Z p I D x 2 " 4x C 7 dx D .x " 2/2 C 3 dx D u2 C 3 du: Now let u D p 3 tan ". Then du D p 3 sec2 " d", u2 C 3 D 3 tan2 " C 3 D 3.tan2 " C 1/ D 3 sec2 "; and I D D Since u D Z p % & Z Z p tan " sec " 1 3 sec2 " 3 sec2 " d" D 3 sec3 " d" D 3 C sec " d" 2 2 3 3 tan " sec " C ln j sec " C tan "j C C: 2 2 p 3 tan ", we construct a right triangle with tan " D u p : 3 u2 + 3 u 3 From this we see that sec " D p u2 C 3=3. Thus ˇp ˇ ! ! " p 2 3 u u C3 3 ˇˇ u2 C 3 u ˇˇ I D p p C ln ˇ p C p ˇ C C1 2 2 ˇ 3 3 3 3ˇ 839 840 CHAPTER 7 TECHNIQUES OF INTEGRATION " ˇ !3 1 p 2 3 ˇˇp 1 ˇ u u C 3 C ln ˇ u2 C 3 C uˇ C ln p C C1 2 2 2 3 ˇq ˇ q ˇ ˇ 1 3 D .x " 2/ .x " 2/2 C 3 C ln ˇˇ .x " 2/2 C 3 C x " 2ˇˇ C C 2 2 ˇ p 1 3 ˇˇp ˇ D .x " 2/ x 2 " 4x C 7 C ln ˇ x 2 " 4x C 7 C x " 2ˇ C C: 2 2 D 41. Z p x 2 " 4x C 3 dx SOLUTION First complete the square: x 2 " 4x C 3 D x 2 " 4x C 4 " 1 D .x " 2/2 " 1: Let u D x " 2. Then du D dx, and Z p Z q Z p I D x 2 " 4x C 3 dx D .x " 2/2 " 1 dx D u2 " 1 du: Now let u D sec ". Then du D sec " tan " d", u2 " 1 D sec2 " " 1 D tan2 ", and Z p Z Z # $ I D tan2 " .sec " tan " d"/ D tan2 " sec " d" D sec2 " " 1 sec " d" D Z D 1 1 tan " sec " " 2 2 sec3 " d" " Z sec " d" D Z ! tan " sec " 1 C 2 2 Z " Z sec " d" " sec " d" 1 1 tan " sec " " ln j sec " C tan "j C C: 2 2 sec " d" D Since u D sec ", we construct the following right triangle: u u2 − 1 1 p From this we see that tan " D u2 " 1. Thus ˇ ˇ q q ˇ p ˇ 1 p 1 ˇˇ 1 1 ˇ ˇ I D u u2 " 1 " ln ˇu C u2 " 1ˇ C C D .x " 2/ .x " 2/2 " 1 " ln ˇˇx " 2 C .x " 2/2 " 1ˇˇ C C 2 2 2 2 ˇ ˇ p p 1 1 ˇ ˇ D .x " 2/ x 2 " 4x C 3 " ln ˇx " 2 C x 2 " 4x C 3ˇ C C: 2 2 Z dx 42. 2 .x C 6x C 6/2 SOLUTION First complete the square: x 2 C 6x C 6 D x 2 C 6x C 9 " 3 D .x C 3/2 " 3: Let u D x C 3. Then du D dx, and I D Now let u D p 3 sec ". Then du D Z dx D .x 2 C 6x C 6/2 p 3 sec " tan ", Z dx D ..x C 3/2 " 3/2 Z du : .u2 " 3/2 u2 " 3 D 3 sec2 " " 3 D 3.sec2 " " 1/ D 3 tan2 "; and p Z p Z p Z Z p 3 sec " tan " d" 3 sec " d" 3 cos2 " 3 .1 " sin2 "/ d" I D D D d" D 9 9 9 9 tan4 " tan3 " sin3 " sin3 " p %Z p %! & " Z & Z Z 3 3 cot " csc " 1 D csc3 " d" " csc " d" D " C csc " d" " csc " d" 9 9 2 2 p % p p & Z 3 1 1 3 3 D " cot " csc " " csc " d" D " cot " csc " " ln j csc " " cot "j C C: 9 2 2 18 18 Since u D p 3 sec ", we construct a right triangle with sec " D u p : 3 S E C T I O N 7.3 Trigonometric Substitution 841 u u2 − 3 3 p p p From this we see that cot " D 3= u2 " 3 and csc " D u= u2 " 3. Thus ˇ ˇ !! p p p " p 3 3 u 3 ˇˇ u 3 ˇˇ I D" p p " ln ˇ p "p ˇCC 18 18 ˇ u2 " 3 u2 " 3 u2 " 3 u2 " 3 ˇ ˇ ˇ p p ˇ p p ˇ "u 3 ˇˇ u " 3 ˇˇ ".x C 3/ 3 ˇˇ x C 3 " 3 ˇˇ D " ln ˇ p " ln ˇ p ˇCC D ˇCC 18 ˇ u2 " 3 ˇ 18 ˇ .x C 3/2 " 3 ˇ 6.u2 " 3/ 6..x C 3/2 " 3/ ˇ p p ˇ ".x C 3/ 3 ˇˇ x C 3 " 3 ˇˇ D " ln p ˇ ˇ C C: 18 ˇ x 2 C 6x C 6 ˇ 6.x 2 C 6x C 6/ In Exercises 43–52, indicate a good method for evaluating the integral (but do not evaluate). Your choices are: substitution (specify u and du), Integration by Parts (specify u and v 0 ), a trigonometric method, or trigonometric substitution (specify). If it appears that these techniques are not sufficient, state this. Z x dx 43. p 12 " 6x " x 2 p SOLUTION Complete the square so the the denominator is 15 " .x C 3/2 and then use trigonometric substitution with x C 3 D sin ". Z p 44. 4x 2 " 1 dx SOLUTION 45. Z Use trigonometric substitution, with x D Z 47. methods: rewrite sin3 x D .1 " cos2 x/ sin x and let u D cos x, or rewrite x sec2 x dx SOLUTION Z sec ". sin3 x cos3 x dx SOLUTION Use one of the following trigonometric cos3 x D .1 " sin2 x/ cos x and let u D sin x. 46. 1 2 p Use Integration by Parts, with u D x and v 0 D sec2 x. dx 9 " x2 SOLUTION Either use the substitution x D 3u and then recognize the formula for the inverse sine: Z du D sin!1 u C C; p 1 " u2 or use trigonometric substitution, with x D 3 sin ". Z p 48. 1 " x 3 dx SOLUTION 49. Z sin3=2 x dx SOLUTION 50. Z 51. Not solvable by any method yet considered. p x 2 x C 1 dx SOLUTION Z Not solvable by any method yet considered. (In fact, this has no antiderivative using elementary functions). Use integration by parts twice, first with u D x 2 and then with u D x. dx .x C 1/.x C 2/3 SOLUTION The techniques we have covered thus far are not sufficient to treat this integral. This integral requires a technique known as partial fractions. 842 52. TECHNIQUES OF INTEGRATION CHAPTER 7 Z dx .x C 12/4 SOLUTION Use the substitution u D x C 12, and then recognize the formula Z 1 u!4 du D " 3 C C: 3u In Exercises 53–56, evaluate using Integration by Parts as a first step. Z 53. sec!1 x dx SOLUTION p Let u D sec!1 x and v 0 D 1. Then v D x, u0 D 1=x x 2 " 1, and Z Z Z x dx I D sec!1 x dx D x sec!1 x " p dx D x sec!1 x " p : 2 x x "1 x2 " 1 To evaluate the integral on the right, let x D sec ". Then dx D sec " tan " d", x 2 " 1 D sec2 " " 1 D tan2 ", and Z Z Z ˇ ˇ p dx sec " tan " d" ˇ ˇ p D D sec " d" D ln j sec " C tan "j C C D ln ˇx C x 2 " 1 ˇ C C: tan " x2 " 1 Thus, the final answer is 54. Z ˇ ˇ p ˇ ˇ I D x sec!1 x " ln ˇx C x 2 " 1 ˇ C C: sin!1 x dx x2 SOLUTION p Let u D sin!1 x and v 0 D x !2 . Then u0 D 1= 1 " x 2 , v D "x !1 , and I D Z sin!1 x sin!1 x dx D " C 2 x x Z dx p : x 1 " x2 To evaluate the integral on the right, let x D sin ". Then dx D cos " d", 1 " x 2 D 1 " sin2 " D cos2 ", and Z Z Z dx cos " d" p D D csc " d" D ln j csc " " cot "j C C: .sin "/.cos "/ x 1 " x2 Since x D sin ", we construct the following right triangle: 1 x 1 − x2 The final answer is 55. Z ˇ ˇ 1 " p1 " x 2 sin!1 x ˇ I D" C ln ˇ ˇ x x ln.x 2 C 1/ dx SOLUTION p 1 " x 2 =x. Thus ˇ ˇ ˇ Z ˇ 1 p1 " x 2 ˇ ˇ 1 " p1 " x 2 dx ˇ ˇ ˇ p D ln ˇ " ˇ C C D ln ˇ ˇx ˇ ˇ x x x 1 " x2 From this we see that csc " D 1=x and cot " D ˇ ˇ ˇ ˇ C C: ˇ Start by using integration by parts, with u D ln.x 2 C 1/ and v 0 D 1; then u0 D I D Z ln.x 2 C 1/ dx D x ln.x 2 C 1/ " 2 D x ln.x 2 C 1/ " 2x C 2 Z 1 dx x2 C 1 Z x2 dx D x ln.x 2 C 1/ " 2 2 x C1 ˇ ˇ ˇ ˇ C C: ˇ 2x x 2 C1 and v D x, so that Z ! 1" 1 x2 C 1 " dx Trigonometric Substitution S E C T I O N 7.3 To deal with the remaining integral, use the substitution x D tan ", so that dx D sec2 " d" and Z Z Z Z 1 sec2 " sec2 " dx D d" D d" D 1 d" D " D tan!1 x C C x2 C 1 tan2 " C 1 sec2 " so that finally 56. Z I D x ln.x 2 C 1/ " 2x C 2 tan!1 x C C x 2 ln.x 2 C 1/ dx SOLUTION Start by using integration by parts with u D ln.x 2 C 1/, v 0 D x 2 ; then u0 D I D Z x 2 ln.x 2 C 1/ dx D 1 3 2 x ln.x 2 C 1/ " 3 3 Z 2x x 2 C1 and v D 1 3 3x , so that x4 dx C1 x2 To deal with the remaining integral, use the substitution x D tan "; then dx D sec2 " d" and Z Z Z Z x4 tan4 " tan4 " 2 2 dx D sec " d" D sec " d" D tan4 " d" x2 C 1 tan2 " C 1 sec2 " Using the reduction formula for tann gives Z Z 1 1 tan4 " d" D tan3 " " tan2 " d" D tan3 " " tan " C " C C 3 3 so that, substituting back for x D tan ", we get ! " 1 2 1 3 1 2 2 2 I D x 3 ln.x 2 C 1/ " x " x C tan!1 x C C D x 3 ln.x 2 C 1/ " x 3 C x " tan!1 x C C 3 3 3 3 9 3 3 p 57. Find the average height of a point on the semicircle y D 1 " x 2 for "1 $ x $ 1. SOLUTION The average height is given by the formula yave D 1 1 " ."1/ Z Z p 1 1p 1 " x 2 dx D 1 " x 2 dx 2 !1 !1 1 Let x D sin ". Then dx D cos " d", 1 " x 2 D cos2 ", and Z p Z Z 1 1 1 " x 2 dx D .cos "/.cos " d"/ D cos2 " d" D " C sin " cos " C C: 2 2 Since x D sin ", we construct the following right triangle: 1 x 1 − x2 p 1 " x 2 . Therefore, ! "ˇ1 %! " ! "& ˇ 1 1 !1 1 p 1 1 1 ! yave D sin x C x 1 " x 2 ˇˇ D ! C0 " " ! C0 D : 2 2 2 2 2 2 4 !1 p 58. Find the volume of the solid obtained by revolving the graph of y D x 1 " x 2 over Œ0; 1# about the y-axis. From this we see that cos " D SOLUTION Using the method of cylindrical shells, the volume is given by V D 2! Z 0 1 Z # p $ x x 1 " x 2 dx D 2! 0 1 p x 2 1 " x 2 dx: To evaluate this integral, let x D sin ". Then dx D cos " d", 1 " x 2 D 1 " sin2 " D cos2 "; and I D Z Z Z # Z Z $ p x 2 1 " x 2 dx D sin2 " cos2 " d" D 1 " cos2 " cos2 " d" D cos2 " d" " cos4 " d": 843 844 TECHNIQUES OF INTEGRATION CHAPTER 7 Now use the reduction formula for R cos4 " d": # Z Z cos3 " sin " 3 1 1 C cos2 " d" D " cos3 " sin " C cos2 " d" 4 4 4 4 % & 1 1 1 1 1 1 1 D " cos3 " sin " C " C sin " cos " C C D " cos3 " sin " C " C sin " cos " C C: 4 4 2 2 4 8 8 p Since sin " D x, we know that cos " D 1 " x 2 . Then we have I D Z cos2 " d" " " I D" Now we can complete the volume: V D 2! *3=2 1) 1 1 p 1 " x2 x C sin!1 x C x 1 " x 2 C C: 4 8 8 ! "ˇ1 h# $ i ˇ *3=2 1 !1 1 ) 1 p ! !2 " x 1 " x2 C sin x C x 1 " x 2 ˇˇ D 2! 0 C C 0 " .0/ D : 4 8 8 16 8 0 59. Find the volume of the solid obtained by revolving the region between the graph of y 2 " x 2 D 1 and the line y D 2 about the line y D 2. SOLUTION First solve the equation y 2 " x 2 D 1 for y: p y D ˙ x 2 C 1: The region in question is bounded in part by the top half of this hyperbola, which is the equation p y D x 2 C 1: The limits of integration are obtained by finding the points of intersection of this equation with y D 2: p p 2 D x 2 C 1 ) x D ˙ 3: p The radius of each disk is given by 2 " x 2 C 1; the volume is therefore given by V D Z p 3 p !r ! 3 Z p3 D 8! To evaluate the integral 0 2 dx D 2! dx " 8! Z Z p 0 p 3# 3p Z $2 p 2 " x 2 C 1 dx D 2! 0 x 2 C 1 dx C 2! 0 p Z p 0 3 3h i p 4 " 4 x 2 C 1 C .x 2 C 1/ dx .x 2 C 1/ dx: Z p x 2 C 1 dx, let x D tan ". Then dx D sec2 " d", x 2 C 1 D sec2 ", and Z p Z Z 1 1 x 2 C 1 dx D sec3 " d" D tan " sec " C sec " d" 2 2 D ˇ 1 1 1 p 1 ˇˇp ˇ tan " sec " C ln j sec " C tan "j C C D x x 2 C 1 C ln ˇ x 2 C 1 C x ˇ C C: 2 2 2 2 Now we can compute the volume: % V D 8!x " 8! ! &ˇp3 ˇ" 2 ˇ 1 p 2 1 ˇˇp 2 ˇ x x C 1 C ln ˇ x C 1 C x ˇ C !x 3 C 2!x ˇˇ 2 2 3 0 p ˇp ˇ"ˇˇ 3 p 2 3 ˇ ˇ ˇ 2 2 D 10!x C !x " 4!x x C 1 " 4! ln ˇ x C 1 C x ˇ ˇ 3 0 ˇ ˇ # hp p p p p ˇˇ$ p ˇˇi ˇ ˇ D 10! 3 C 2! 3 " 8! 3 " 4! ln ˇ2 C 3ˇ " .0/ D 4! 3 " ln ˇ2 C 3ˇ : ! 60. Find the volume of revolution for the region in Exercise 59, but revolve around y D 3. SOLUTION Using the washer method, the volume is given by V D Z p 3 # p ! R ! 3 Z p3 # D 2! 0 2 "r 2 $ dx D 2! Z p 0 3 %# 3" p x2 C 1 $2 Z # $ $ p 9 " 6 x 2 C 1 C x 2 C 1 " 1 dx D 2! & " 12 dx p 0 3# $ p 9 " 6 x 2 C 1 C x 2 dx S E C T I O N 7.3 identity Z ! dx in two ways and verify that the answers agree: first via trigonometric substitution and then using the "1 x2 ! 1 1 D 2 x2 " 1 SOLUTION 845 p ˇ" 1 &ˇˇ 3 1 p 2 1 ˇˇp 2 ˇ 3 ˇ D 2! 9x " 6 x x C 1 C ln ˇ x C 1 C x ˇ C x ˇ 2 2 3 0 ˇ ˇ p $ ˇ h# p i p p p p ˇˇ ˇ ˇ ˇ D 2! 9 3 " 3 3.2/ " 3 ln ˇ2 C 3ˇ C 3 " .0/ D 8! 3 " 6! ln ˇ2 C 3ˇ : % 61. Compute Trigonometric Substitution 1 1 " x"1 xC1 " Using trigonometric substitution, let x D sec ". Then dx D sec " tan "d", x 2 " 1 D sec2 " " 1 D tan2 ", and Z Z Z Z Z dx sec " tan " d" sec " d" I D D D d" D D csc " d" D ln j csc " " cot "j C C: tan " sin " x2 " 1 tan2 " Since x D sec ", we construct the following right triangle: x x2 − 1 1 p p From this we see that csc " D x= x 2 " 1 and cot " D 1= x 2 " 1. This gives us ˇ ˇ ˇ ˇ ˇ ˇ ˇ x"1 ˇ x 1 ˇ ˇ ˇ ˇ C C: I D ln ˇ p "p ˇ C C D ln ˇ p 2 ˇ x2 " 1 x2 " 1 x "1 Using the given identity, we get " Z Z ! Z Z dx 1 1 1 1 dx 1 dx 1 1 I D D " dx D " D ln jx " 1j " ln jx C 1j C C: 2 x"1 xC1 2 x"1 2 xC1 2 2 x2 " 1 To confirm that these answers agree, note that sˇ ˇp ˇ ˇ ˇ ˇ ˇ ˇ ˇ x " 1 px " 1 ˇ ˇx "1ˇ ˇ x "1 ˇ 1 1 1 ˇˇ x " 1 ˇˇ ˇ ˇ ˇ ˇ ˇp ˇ: ln jx " 1j " ln jx C 1j D ln ˇ D ln D ln p ! p D ln ˇ ˇ ˇx C 1ˇ ˇ ˇ ˇ xC1 2 2 2 x C 1ˇ x " 1ˇ x2 " 1 62. You want to divide an 18-inch pizza equally among three friends using vertical slices at ˙x as in Figure 1. Find an equation satisfied by x and find the approximate value of x using a computer algebra system. y −9 −x x 9 x FIGURE 1 Dividing a pizza into three equal parts. SOLUTION First find the value of x which divides evenly a pizza with a 1-inch radius. By proportionality, we can then take this answer and multiply by 9 to get the answer for the 18-inch pizza. The total area of a 1-inch radius pizza is ! ! 12 D ! (in square inches). The three equal pieces will have an area of !=3. The center piece is further divided into 4 equal pieces, each of area !=12. From Example 1, we know that Z xp 1 1 p 1 " x 2 dx D sin!1 x C x 1 " x 2 : 2 2 0 Setting this expression equal to !=12 and solving for x using a computer algebra system, we find x D 0:265. For the 18-inch pizza, the value of x should be x D 9.0:265/ D 2:385 inches: 846 CHAPTER 7 TECHNIQUES OF INTEGRATION 63. A charged wire creates an electric field at a point P located at a distance D from the wire (Figure 2). The component E? of the field perpendicular to the wire (in N/C) is Z x2 k$D E? D dx x1 .x 2 C D 2 /3=2 where $ is the charge density (coulombs per meter), k D 8:99 % 109 N!m2 /C2 (Coulomb constant), and x1 , x2 are as in the figure. Suppose that $ D 6 % 10!4 C/m, and D D 3 m. Find E? if (a) x1 D 0 and x2 D 30 m, and (b) x1 D "15 m and x2 D 15 m. y P D x x1 x2 FIGURE 2 SOLUTION Let x D D tan ". Then dx D D sec2 " d", x 2 C D 2 D D 2 tan2 " C D 2 D D 2 .tan2 " C 1/ D D 2 sec2 "; and Z x2 k$D D sec2 " d" dx D k$D x1 .x 2 C D 2 /3=2 x1 .D 2 sec2 "/3=2 ˇx2 Z Z ˇ k$D 2 x2 sec2 " d" k$ x2 k$ ˇ D D cos " d" D sin " ˇ D 3 x1 sec3 " D x1 D x1 E? D Z x2 Since x D D tan ", we construct a right triangle with tan " D x=D: x 2 + D2 x D p From this we see that sin " D x= x 2 C D 2 . Then E? D k$ D ! "ˇx2 ˇ x ˇ p ˇ 2 2 x CD x1 (a) Plugging in the values for the constants k, $, D, and evaluating the antiderivative for x1 D 0 and x2 D 30, we get % & .8:99 % 109 /.6 % 10!4 / 30 V E? D p " 0 & 1:789 % 106 2 2 3 m 30 C 3 (b) If x1 D "15 m and x2 D 15 m, we get .8:99 % 109 /.6 % 10!4 / E? D 3 " p 15 152 C 32 "15 "p ."15/2 C 32 Further Insights and Challenges 64. Let Jn D Z dx . Use Integration by Parts to prove .x 2 C 1/n ! " ! " 1 1 x JnC1 D 1 " Jn C 2n 2n .x 2 C 1/n Then use this recursion relation to calculate J2 and J3 . # & 3:526 % 106 V m Trigonometric Substitution S E C T I O N 7.3 SOLUTION Let x D tan ". Then dx D sec2 " d", x 2 C 1 D tan2 " C 1 D sec2 ", and Z JnC1 D Using the reduction formula for R dx D .x 2 C 1/nC1 Z sec2 " d" D sec2nC2 " Z sec!2n " d" D Z 847 cos2n " d": cosm " d", we get JnC1 D cos2n!1 " sin " 2n " 1 C 2n 2n Z cos2n!2 " d": Since x D tan ", we construct the following right triangle: x2 + 1 x 1 p p From this we see that cos " D 1= x 2 C 1, and sin " D x= x 2 C 1. This gives us JnC1 D 1 2n ! p 1 x2 C 1 "2n!1 ! x p x2 C 1 " C 2n " 1 2n Z ! p 1 x2 C 1 "2n!2 ! p 1 x2 C 1 "2 dx: Here we’ve used the fact that dx d" D D cos2 " dx D sec2 " ! p 1 x2 C 1 "2 dx: Simplifying, we get ! 1 2n " 2n " 1 2 2n 2n . x C 1/ ! " 1 x 1 D C 1" Jn : 2 n 2n .x C 1/ 2n JnC1 D p x C Z . p dx x2 C 1/2n D 1 x 2n " 1 C 2n .x 2 C 1/n 2n Z dx .x 2 C 1/n To use this formula, we first compute J1 : J1 D Z dx D tan!1 x C C: x2 C 1 Now use the formula to compute J2 and J3 : ! " 1 x 1 x 1 J2 D C 1 " J1 D C tan!1 x C C I 2 2 2x C1 2 2 2.x C 1/ ! " % & 1 x 1 1 x 3x 3 !1 J3 D C 1 " J D C C tan x C C: 2 4 .x 2 C 1/2 4 4 .x 2 C 1/2 8 8.x 2 C 1/ 65. Prove the formula Z p 1 1 p 1 " x 2 dx D sin!1 x C x 1 " x 2 C C 2 2 using geometry by interpreting the integral as the area of part of the unit circle. Z ap SOLUTION The integral 1 " x 2 dx is the area bounded by the unit circle, the x-axis, the y-axis, and the line x D a. This 0 area can be divided into two regions as follows: y 1 II I 0 a 1 x