Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Targeted delivery of nucleic acids to tumours Manfred Ogris Pharmaceutical Biotechnology Department of Phamacy University of Munich 05-09-2006 DNA Therapeutics “... DNA acts as therapeutic prodrug which can be delivered by a variety of technologies. The body cells read the genetic information carried by the DNA and translate it into the actual drug (usually a protein) …. “ Cancer Gene Therapy Therapeutic concepts: • Direct killing of tumor cells (e.g. enzyme/prodrug) • Block cell cycle/induce apoptosis • Inhibit tumor cell metastasis/migration • Inhibit/revert tumor neoangiogenesis • Stimulate anti-tumor immunity (cytokines, vaccines) Barriers for systemic gene delivery tight junction fenestration plasma proteins DNA blood cells extracellular matrix target cells Polyplexes: Towards ‘Synthetic Viruses’ Non-specific interactions: Non-target cells Blood ++ ++ * ++ ++ ++ ++ ++ DNA Shielding Agent PEG Targeting Ligand Transport Domain (Tf, EGF) (melittin) ** ** * * ** ** * *** **** *** * * Bioresponsive Disassembly Receptor mediated uptake into target cells * * * * ** ** * ** ** ** * * *** ** ***** ** * * Compacting Polycation Endosomal release Kursa 2003 ; Ogris 2003; Boeckle 2005; Walker 2005 Cellular Uptake of Synthetic Viruses * ** * * * ** * * ** **** * * **** ***** ** * * * ** * * * ** * * ** **** * * **** ***** ** * * Endocytosis * * * * ** * ** * * ** ** * * ***** ***** ** * * DNA siRNA NUCLEUS Nuclear Trafficking Endosome * * * * ** * ** * * ** ** * * ***** ***** ** * * * ** * * * ** * * ** **** * * **** ***** ** * Endosomal Release * Single Particle Microscopy DNA/PEI Polyplexes * Vesicle, virus + +* *+**+* +* * * ** *+ * ** *+ ++ * *+ * +*+** *+**+ + *** * ** + HUH-7 cells / GFP-tagged tubulin In vivo Luciferase Imaging + +* *+**+* +* * * ***+ * ** *+ ++ * *+ * +*+** *+**+ * *** * *+ + * PEI /DNA complexes (unshielded, positive charge) gene expression in lungs and tail (application site) I. Hildebrandt et al. Gene Ther. 2003 EGF Polyplexes for Systemic Targeting HUH-7 s.c. SCID mice 0.8-1 µm <+4 mV PEG EGF 2 days mouse 1 – pCMVLuc mouse 2 – control Wolschek 2002; Prasmickaite, 2003 Cellular Uptake of Synthetic Viruses * ** * * * ** * * ** **** * * **** ***** ** * * * ** * * * ** * * ** **** * * **** ***** ** * * * * * * ** * ** * * ** ** * * ***** ***** ** * * DNA NUCLEUS siRNA pIC * * * * ** * ** * * ** ** * * ***** ***** ** * * * ** * * * ** * * ** **** * * **** ***** ** * Endosomal Release * Endosomal Escape: Membrane-active Polymers or/and Peptides Endosomolytic polymers: e.g. polyethylenimine (PEI) proton sponge effect, discovered by J.P. Behr (Boussif et al. 1995) Endosomolytic peptides: D-melittin, N-terminal (as alternative or in combination) Source peptide optimal pH Influenza virus HA-2 acidic INF6: GLFG AIEG FIEN GWEG WEGn IDGW WYGG CG Melittin-SH: CIGA VLKV LTTG LPAL ISWI KRKR QQ Bee venom Melittin Plank 1992 ; Ogris 2001; Boeckle 2005 neutral PEI EGFR-targeted Poly IC: Intracellular Distribution +Mel +Mel Fluorescein labeled polyIC -Mel -Mel A. Shir, M. Ogris, E. Wagner, A. Levitzki PLOS Medicine 2006 pH-Specific Endosomal PEG Deshielding extra - intra- cellular Bioreversible hydrazone linker DNA N ++++ N Endosomal acidification ++++ + + + + pH responsive linker - stable at pH 7, labile at pH 5.5 G. Walker et al, Mol. Ther. 2005 C H ++++ PC-PEG N H PEG polyplex deshielding pH 5: less than 1 hr / 37°C pH 7: no deshielding in 6 hrs /37°C Ligand plus pH-reversible PEG Shield ** * * * DNA * * * ** * * * * Tf log RLU +7 +6 TfR-targeting +5 K562 +4 Non Stable Reversibly shielded shielded shielded or EGF log RLU +8 +7 +6 +5 G. Walker et al, Mol. Ther. 2005 EGFR-targeting Renca-EGFR pH-reversible PEG Shield: in vivo * EGF 1E+7 log RLU/ organ ** * ** * DNA * ** * * * * EGFR-targeted reversibly shielded small polyplexes mediate highest gene expression in sc HUH7 tumors 1E+6 1E+5 1E+4 1E+3 spleen kidney non shielded G. Walker et al, Mol. Ther. 2005 liver heart stable shielded lung tumor reversibly shielded Therapeutic Applications .... Cancer gene therapy: GDEPT CPA: Chemotherapy vs. GDEPT P450/CPA Gene Therapy • Human Hepatoma in SCID mice 1600 control 1400 CPA 1000 CYP/CPA 800 bGal/CPA tumorvolume 1200 600 400 200 0 0 5 10 15 20 days after tumor setting 25 Synthetic RNA: a therapeutic approach EGF Receptor-Targeted Synthetic DoubleStranded RNA Eliminates Glioblastoma, Breast Cancer, and Adenocarcinoma Tumors in Mice A. Shir, M. Ogris, E. Wagner, A. Levitzki PLoS Medicine, 2006 dsRNA Complex Formation Targeting domain: EGF (select desired interaction) ++ ++ Compacting domain: PEI ++ dsRNA Shielding domain: PEG (block undesired interactions) Endosomal domain: Melittin (intracellular release) dsRNA / PEI Targeted Poly (I• C) Eliminates Glioblastoma Tumors From Mouse Brains 20 days tumors 10 days tumors No treatment No treatment conjugate control pIC/PEI-PEG-EGF+Mel 100 Survival of mice (%) 0 0 20 40 60 80 100 120 140 160 180 200 Key Issues for Cancer Gene Therapy Improve targeting - Overcome systemic barriers - Target tumor cells/tumor endothelium Enhance efficiency - intracellular release by membrane-active peptides - optimize into bioresponsive systems (e.g. PEG deshielding) Choice of therapeutic concept - Combined effects with chemotherapeutics - Induction of immune responses Arkadi Zintchenko, postdoc Greg Walker, postdoc Ernst Wagner Sabine Boeckle Julia Fahrmeir Carolin Fella Katharina v. Gersdorff Julia Klöckner Veronika Knorr Nicole Tietze Collaborators: LMU Christoph Bräuchle Karla de Bruin Ralf Bausinger Jerusalem U Alexei Shir Alexander Levitzki EC FP6 ‘GIANT‘ Sanders Stiftung DFG SFB486 ‘NanoMan‘ Dr. Mildred Scheel-Stiftung