Download lecture 3 B - WordPress.com

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lecture 3 B
Maysaa ELmahi
3.3. Distribution Functions of Continuous Random Variables
Recall that a random variable X is said to be continuous if its space is
either an interval or a union of intervals.
Definition 3.7.
Let X be a continuous random variable whose space is the set of real numbers I R.
A nonnegative real valued function f : IR
IR is said to be the probability
density function for the continuous random variable X if it satisfies:
(a)
โˆž
๐Ÿ
โˆ’โˆž
๐ฑ ๐๐ฑ = ๐Ÿ
, and
(b) if A is an event, then ๐ฉ ๐€ =
๐€
๐Ÿ ๐ฑ ๐๐ฑ
Example 3.10.
Is the real valued function f : IR
๐Ÿ๐ฑ โˆ’๐Ÿ
IR defined by
๐ข๐Ÿ ๐Ÿ < ๐ฑ < ๐Ÿ
๐Ÿ ๐ฑ =
๐ŸŽ
๐จ๐ญ๐ก๐ž๐ซ๐ฐ๐ข๐ฌ๐ž
(a) probability density function for some random variable X?
Answer:
โˆž
๐Ÿ
๐Ÿ๐ฑ โˆ’๐Ÿ ๐๐ฑ
๐Ÿ ๐ฑ ๐๐ฑ =
โˆ’โˆž
๐Ÿ
= โˆ’๐Ÿ
๐Ÿ ๐Ÿ
๐ฑ ๐Ÿ
โˆ’๐Ÿ
๐Ÿ
๐Ÿ
โˆ’ ๐Ÿ =1
Thus f is a probability density function.
Example 3.11.
Is the real valued function f : IR
๐Ÿ+ ๐ฑ
IR defined by
๐ข๐Ÿ โˆ’ ๐Ÿ < ๐ฑ < ๐Ÿ
๐Ÿ ๐ฑ =
๐ŸŽ
๐จ๐ญ๐ก๐ž๐ซ๐ฐ๐ข๐ฌ๐ž
(a) probability density function for some random variable X?
Answer:
โˆž
1
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ =
(1 + ๐‘ฅ ) ๐‘‘๐‘ฅ
โˆ’โˆž
โˆ’1
0
=
1
1 โˆ’ ๐‘ฅ ๐‘‘๐‘ฅ +
โˆ’1
0
1
= ๐‘ฅ โˆ’ 2 ๐‘ฅ2
=1 +
(1 + ๐‘ฅ) ๐‘‘๐‘ฅ
1
2
0
+
โˆ’1
1
1
๐‘ฅ + 2 ๐‘ฅ2
+1+2 = 3
1
0
Definition 3.8.
Let f(x) be the probability density function of a continuous random variable X.
The cumulative distribution function F(x) of X is defined as
๐… ๐ฑ =๐ ๐—โ‰ค๐ฑ
=
๐ฑ
๐Ÿ
โˆ’โˆž
๐ญ ๐๐ญ
Theorem 3.5.
If F(x) is the cumulative distribution function of a continuous random variable X,
the probability density function f(x) of X is the derivative of F(x), that is
๐
๐… ๐ฑ = ๐Ÿ(๐ฑ)
๐๐ฑ
Theorem 3.6.
Let X be a continuous random variable whose c d f is F(x). Then followings are
true:
๐‘Ž . ๐‘ƒ ๐‘‹ < ๐‘ฅ = ๐น(๐‘ฅ)
๐‘ . ๐‘ƒ ๐‘‹ > ๐‘ฅ = 1 โˆ’ ๐น(๐‘ฅ)
๐‘ .๐‘ƒ ๐‘‹ = ๐‘ฅ = 0
๐‘‘ .๐‘ƒ ๐‘Ž < ๐‘‹ < ๐‘ =
๐น(๐‘) โˆ’ ๐น(๐‘Ž)
Example : (H.W)
๐‘˜ + 1 ๐‘ฅ2
๐‘–๐‘“
0<๐‘ฅ<1
๐‘“ ๐‘ฅ =
0
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
a. what is the value of the constant k?
b. What is the probability of X between the first and third?
d. What is the cumulative distribution function?
4.2. Expected Value of Random Variables
Definition 4.2.
Let X be a random variable with space ๐‘…๐‘ฅ and probability density function f(x).
The mean ๐œ‡๐‘ฅ of the random variable X is defined as
๐’™๐’‡(๐’™)
๐’Š๐’‡ X is discrete
๐’™โˆˆ๐‘น๐‘ฟ
๐›๐ฑ = ๐„(๐ฑ) =
โˆž
๐’™ ๐’‡ ๐’™ ๐’…๐’™
โˆ’โˆž
if X is continuous
Example :
x
0
1
2
3
P(x)
1/8
3/8
3/8
1/8
what is the mean of X?
Answer:
๏ญ ๏€ฝ E (x ) ๏€ฝ ๏ƒฅ x f (x )
x
= 0* 1/8+ 1* 3/8 +2* 3/8 +3 * 1/8
= 0 + 3/8 + 6/8 + 3/8 = 12/8
Example :
๐Ÿ
๐Ÿ“
๐’‡ ๐’™ =
๐ŸŽ
๐’Š๐’‡
๐Ÿ<๐’™<๐Ÿ•
๐’๐’•๐’‰๐’†๐’“๐’˜๐’Š๐’”๐’†
Answer:
๏‚ฅ
๏ญ ๏€ฝ E (x ) ๏€ฝ ๏ƒฒ x f (x )dx
๏€ญ๏‚ฅ
7
=
2
1
๐‘ฅ ๐‘‘๐‘ฅ
5
=
1 2 7
๐‘ฅ 2
10
=
1
10
45
9
49 โˆ’ 4 = 10 =2
Theorem 4.1
Let X be a random variable with p d f f(x). If a and b are any two real numbers, then
๐š. ๐„(๐š๐ฑ + ๐› ) = a ๐„ ๐ฑ + ๐›
b. ๐„(๐š๐ฑ) = ๐š ๐„(๐ฑ)
c. ๐„(๐š) = ๐š
4.3. Variance of Random Variables
Definition 4.4.
Let X be a random variable with mean ๐œ‡๐‘ฅ . The variance of X, denoted by
Var(X), is defined as
๐•๐š๐ซ ๐ฑ = ( ๐„ ๐ฑ โˆ’ ๐›๐ฑ )
๐Ÿ
๐›”๐Ÿ ๐ฑ = ๐„ ๐ฑ ๐Ÿ โˆ’ (๐›๐Ÿ ๐ฑ )
Example :
2(๐‘ฅ โˆ’ 1)
๐‘–๐‘“
1<๐‘ฅ<2
๐‘“ ๐‘ฅ =
0
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
a. what is the variance of X?
Answer:
โˆž
๐‘ฅ
โˆ’โˆž
๐œ‡๐‘ฅ = ๐ธ ๐‘ฅ =
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ =
=2
2 2
(๐‘ฅ โˆ’๐‘ฅ)๐‘‘๐‘ฅ
1
=2
๐‘ฅ3
3
โˆ’
=2
8
3
โˆ’2
=2โˆ—
2(๐‘ฅ โˆ’ 1)๐‘‘๐‘ฅ
๐‘ฅ2 2
2 1
4
5
6
2
๐‘ฅ
1
=
โˆ’
10
6
1
3
1
4
1
โˆ’ 2 = 2((6 - ( - 6 ) )
โˆž
๐ธ ๐‘ฅ
2
2
2
=
๐‘ฅ 2 2(๐‘ฅ โˆ’ 1)๐‘‘๐‘ฅ
๐‘ฅ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ =
โˆ’โˆž
1
= 2
2 3
2
(๐‘ฅ
โˆ’(๐‘ฅ
)๐‘‘๐‘ฅ
1
=2
๐‘ฅ4
4
โˆ’
=2
16
4
โˆ’3
๐‘ฅ3 2
3 1
8
17
โˆ’
1
4
1
16
1
โˆ’ 3 = 2((12 - ( - 12 ) )
= 2((12) ) = 17/6
Thus, the variance of X is given by
๐›”๐Ÿ ๐ฑ = ๐„ ๐ฑ ๐Ÿ โˆ’ (๐›๐Ÿ ๐ฑ )
=
17
6
โ€“
10
6
=
Remark:
Var (๐‘Ž๐‘ฅ + ๐‘ ) = ๐‘Ž2 ๐‘‰๐‘Ž๐‘Ÿ ๐‘ฅ
๐‘‰๐‘Ž๐‘Ÿ (๐‘Ž ๐‘ฅ ) =๐‘Ž2 ๐‘‰๐‘Ž๐‘Ÿ ๐‘ฅ
๐‘‰๐‘Ž๐‘Ÿ (๐‘Ž) =0
7
6
4.1. Moments of Random Variables
Definition 4.1.
The nth moment about the origin of a random variable X, as denoted by E(๐‘ฅ ๐‘› ),
is defined to be
๐ฑ ๐ง ๐Ÿ(๐ฑ)
๐ข๐Ÿ X is discrete
๐ฑโˆˆ๐‘ ๐—
๐„ ๐ฑ๐ง
=
โˆž
๐ฑ ๐ง ๐Ÿ ๐ฑ ๐๐ฑ
โˆ’โˆž
if X is continuous
for n = 0, 1, 2, 3, ...., provided the right side converges absolutely. If n = 1, then E(X)
is called the first moment about the origin.
If n = 2, then E(๐‘ฅ 2 ) is called the second moment of X about the origin.
4.5. Moment Generating Functions
Definition 4.5.
Let X be a random variable whose probability density function is f(x).
A real valued function M : IR
IR defined by
๐‘ด ๐’• = ๐‘ฌ(๐’†๐’•๐’™ )
is called the moment generating function of X if this expected value exists
for all t in the interval โˆ’h < t < h for some h > 0.
Using the definition of expected value of a random variable, we obtain
the explicit representation for M(t) as
๐ž๐ญ๐ฑ ๐Ÿ(๐ฑ)
๐ข๐Ÿ X is discrete
๐ฑโˆˆ๐‘ ๐—
๐Œ(๐ญ) =
โˆž
๐ž๐ญ๐ฑ ๐Ÿ ๐ฑ ๐๐ฑ
โˆ’โˆž
if X is continuous
Related documents