Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 7. Probability Basics A = an event with possible outcomes A1,, An ; = Total Event Venn Diagrams: Ratio of area of the event and the area of the total rectangle can be interpreted as the probability of the event Probabilities must lie between 0 and 1: 0 Pr( A1 ) 1, A1 A1 Probabilities must add up: A1 A2 Pr( A1 A2 ) Pr( A1 ) Pr( A2 ) A2 A1 Total Probability Must Equal 1: A A i j , i j 3i 1 Ai Pr( 3i 1 Ai ) 1 A1 A2 A3 Instructor: Dr. J. Rene van Dorp Session 3 - Page 32 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making A1 A1 4/29/17 A1 A2 Note: Pr( A1 ) 1 Pr( A1 ) Pr( A1 A2 ) Pr( A1 ) Pr( A2 ) Pr( A1 A2 ) Conditional Probability: Dow Jones Up Stock Price Up { New Total Event based on condition that we know that Dow Jones went up Pr( Stock | Dow ) Pr( Stock Dow ) Pr( Dow ) Informally: Conditioning on an event coincides with reducing the total event to the conditioning event Instructor: Dr. J. Rene van Dorp Session 3 - Page 33 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Pr( A1 B1 ) Pr( B1 ) Pr( A1 B1 ) Pr( B1 | A1 ) Pr( A1 ) Pr( A1 | B1 ) Thus: Also: Note: Pr( A1 B1 ) Pr( B1 | A1 ) Pr( A1 ) Pr( A1 | B1 ) Pr( B1 ) Independence A with possible outcomes A1 ,, An ; B ,, Bm 2. Event B with possible outcomes 1 1. Event Event A and Event B are independent: 1. Pr( Ai | B j ) Pr( Ai ), Ai , B j or 2. Pr( B j | Ai ) Pr( B j ), Ai , B j or 3. Pr( Ai B j ) Pr( Ai ) Pr( B j ), Ai , B j . Informally: Information about A does not tell me anything about B and vice versa Independence in Influence Diagrams: No arrow between two chance nodes implies independence between the uncertain events Instructor: Dr. J. Rene van Dorp Session 3 - Page 34 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 An arrow from a chance event A to a chance event B does not mean that "A causes B". It indicates that information about A helps in determining the likeliness of outcomes of B. Conditional Independence A and Event B are conditionally independent given C , , C p : event C with possible outcomes 1 Event 1. Pr( Ai | B j , Ck ) Pr( Ai | Ck ), Ai , B j , Ck or 2. Pr( B j | Ai , Ck ) Pr( B j | Ck ), Ai , B j , Ck or 3. Pr( Ai B j | Ck ) Pr( Ai | Ck ) Pr( B j | Ck ), Ai , B j , Ck Informally: If I already know C, information about A does not tell me anything about B and vice versa Conditional Independence in Influence Diagrams: C C A B A B Instructor: Dr. J. Rene van Dorp Session 3 - Page 35 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Law of Total Probability: B1 ,, B3 mutually exclusive, collectively exhaustive: Pr( A1 ) Pr( A1 B1 ) Pr( A1 B2 ) Pr( A1 B3 ) Pr( A1 ) Pr( A1 | B1 ) Pr( B1 ) Pr( A1 | B2 ) Pr( B2 ) Pr( A1 | B3 ) Pr( B3 ) A1 B1 B3 B2 Example Law of Total Probability: SYSTEM: X, X=failure , X= No Failure B A C 1. Pr( X ) Pr( X | A) Pr( A) Pr( X | A ) Pr( A ) 1 Pr( A) Pr( X | A ) Pr( A ) 2. Pr( X | A ) Pr( X | B, A ) Pr( B | A ) Pr( X | B , A ) Pr( B | A ) Pr( X | B, A ) Pr( B) 0 Pr( B ) Pr( X | B, A ) Pr( B) Instructor: Dr. J. Rene van Dorp Session 3 - Page 36 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 3. Pr( X ) Pr( A) Pr( X | B, A ) Pr( B) Pr( A ) 4. Pr( X | B, A ) Pr( X | C, B, A ) Pr(C | B, A ) Pr( X | C , B, A ) Pr(C | B, A ) Pr( X | B, A ) 1 Pr(C ) 0 Pr(C ) Pr(C ) 5. Pr( X ) Pr( A) Pr(C ) Pr( B) Pr( A ) Pr( A) Pr(C ) Pr( B ) Pr(C ) Pr( B ) Pr( A) Bayes Theorem B1 ,, B3 mutually exclusive, collectively exhaustive: A1 B1 B3 B2 1. Pr( A1 B j ) Pr( B j | A1 ) Pr( A1 ) Pr( A1 | B j ) Pr( B j ) 2. Pr( B j | A1 ) Pr( A1 | B j ) Pr( B j ) Pr( A1 ) 3. Pr( A1 ) Pr( A1 | B1 ) Pr( B1 ) Pr( A1 | B2 ) Pr( B2 ) Pr( A1 | B3 ) Pr( B3 ) 4. Pr( B j | A1 ) Pr( A1 | B j ) Pr( B j ) Pr( A1 | B1 ) Pr( B1 ) Pr( A1 | B2 ) Pr( B2 ) Pr( A1 | B3 ) Pr( B3 ) Instructor: Dr. J. Rene van Dorp Session 3 - Page 37 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Example: Oil Wildcatter Problem Max Profit Dry (?) Drill at Site 1 -100K Low (?) High (?) Dry (0.2) 150K 500K -200K Drill at Site 2 Low (0.8) 50K Payoff at site 1 is uncertain. Dominating factor in eventual payoff is the presence of a dome or not. Pr(Dome) 0.600 Outcome Dry Low High Pr(Outcome|Dome) 0.600 0.250 0.150 Pr(No Dome) 0.400 Outcome Dry Low High Pr(Outcome|No Dome) 0.850 0.125 0.025 Law of Total Probability Pr( Dry ) Pr( Dry | Dome) Pr( Dome) Pr( Dry | NoDome) Pr( NoDome) Pr( Dry ) 0.600 0.600 0.850 * 0.400 0.700 Pr( Low) Pr( Low | Dome) Pr( Dome) Pr( Low | NoDome) Pr( NoDome) Pr( Low) 0.250 0.600 0.125 * 0.400 0.200 Pr( High ) Pr( High | Dome) Pr( Dome) Pr( High | NoDome) Pr( NoDome) Pr( Low) 0.150 0.600 0.025 * 0.400 0.100 Instructor: Dr. J. Rene van Dorp Session 3 - Page 38 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Dry (0.600) Dome (0.600) -100K Low (0.250) 150K High (0.150) Dry (0.850) No Dome (0.400) 500K -100K Low (0.125) 150K High (0.025) 500K LAW OF TOTAL PROBABILITY Dry (0.600 0.600 + 0.850 0.400 = 0.70) Low (0.250 0.600 + 0.125 0.400 = 0.20) High (0.150 0.600 + 0.025 0.400 = 0.10) -100K 150K 500K Bayes Theorem We drilled at site 1 and the well is a high producer. Given this new information what are the chances the a dome exists? Pr( Dome | High ) Pr(High|Dome) Pr(Dome) Pr(High) 3. Pr( Dome | High ) Pr(High|Dome) Pr( Dome) Pr(High|Dome) Pr( Dome) Pr( High|NoDome) Pr( NoDome) 4. .150*0.600 Pr( Dome | High ) 0.150*00.600 0.0250*0.400 0.90 1. 2. Pr( High ) Pr( High | Dome) Pr( Dome) Pr( High | NoDome) Pr( NoDome) Pr(Dome) - Prior Probability Pr(Dome|Data) - Posterior Probability Instructor: Dr. J. Rene van Dorp Session 3 - Page 39 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making Dry (0.600) Dome (0.600) 4/29/17 -100K Low (0.250) 150K High (0.150) Dry (0.850) No Dome (0.400) Low (0.125) High (0.025) BAYES THEOREM Dome (?) -100K 150K 500K -100K Dry (0.7) No Dome (?) -100K Dome (?) 150K Low (0.2) No Dome (?) 150K Dome (0.90) 500K High (0.10) No Dome (?) 500K When we reverse the order of chance nodes in a decision tree we need to apply Bayes Theorem Calculating posterior probabilities using a Table Pr(Dome) Pr(No Dome) 0.600 0.400 X Pr(X|Dome) Pr(X|No Dome) Dry 0.600 0.850 Low 0.250 0.125 High 0.150 0.025 Check 1.000 1.000 Pr(X Dome) Pr(X No Dome) Pr(X) Pr(Dome|X) Pr(No Dome|X) Check Instructor: Dr. J. Rene van Dorp Session 3 - Page 40 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Example: Game Show Suppose we have a game show host and you. There are three doors and one of them contains a prize. The game show host knows the door containing the prize but of course does not convey this information to you. He asks you to pick a door. You picked door 1 and are walking up to door 1 to open it when the game show host screams: STOP. You stop and the game show host shows door 3 which appears to be empty. Next, the game show asks. "DO YOU WANT TO SWITCH TO DOOR 2?" WHAT SHOULD YOU DO? Assumption 1: The game show host will never show the door with the prize. Assumption 2: The game show will never show the door that you picked. Di ={Prize is behind door i }, i=1,…,3 Hi ={Host shows door i containing no prize after you selected Door 1}, i=1,…,3 Initially: Pr( Di ) 3 1 3 1 1 2 3 1 3 1 3 1. Pr( H 3 ) Pr( H 3 | Di ) Pr( Di ) * 1 * 0 * i 1 2. 3. 1 2 1 1 * Pr( H 3 | D1 ) Pr( D1 ) 2 3 1 Pr( D1 | H 3 ) 1 Pr( H 3 ) 3 2 1 2 Pr( D2 | H 3 ) 1 Pr( D1 | H 3 ) 1 . 3 3 So Yes, you should switch! Instructor: Dr. J. Rene van Dorp Session 3 - Page 41 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Uncertain Quantities & Random Variables Event A with possible outcomes A1,, An A : {Number of Raisins in an oatmeal cookie} Ai : {i Raisins in an oatmeal cookie}, i=1,2, …., n n i1 Ai : Total Event or Sample Space A Random Variable Y {=Uncertain Quantity} is a function from R Define: Y :=# Raisins in a oatmeal cookie Then: Y ( Ai ) yi i often abbreviated to Y yi . When number of outcomes of the event A is finite, Y is a discrete random variable. Discrete Probability Distribution: The collection of probabilities associated with each possible outcome of Y is called the discrete probability distribution. Thus, if we denote Pr(Y yi ) pi Discrete probability distribution of Y : { p1 , pn } Instructor: Dr. J. Rene van Dorp Session 3 - Page 42 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making n Note: p i 1 i 4/29/17 1, pi 0. Other common notation: fY ( yi ) pi , i 1,, n fY ( y ) 0, y yi , i 1,, n D iscrete Probability D istribution 0.4 0.3 Pr(Y= y) 0.2 0.1 0 Pr(Y = y) 1 2 3 4 5 0.1 0.15 0.3 0.35 0.1 Y Cumulative Probability Distribution (CDF): FY ( y) Pr(Y y) C um ula tive D is tribution F unc tion 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 P r(Y <=y ) 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 5 6 7 Y Instructor: Dr. J. Rene van Dorp Session 3 - Page 43 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 In Decision Analysis a CDF is referred to as a CUMMULATIVE RISK PROFILE Expected Value of Y: n n i 1 i 1 EY [Y ] yi Pr(Y yi ) yi pi 1 Raisin (0.10) 3.20 2 Raisins (0.15) 3 Raisins (0.30) 1 2 3 4 Raisins (0.35) 4 5 Raisins (0.10) 5 #Raisins #Raisins*Pr(Y=#Raisins) 1 1*0.10=0.10 2 2*0.15=0.30 3 3*0.30=0.90 4 4*0.35=1.40 5 5*0.10=0.50 3.20 Interpretation: E[Y] is “best guess” of Y If you were able to observe many outcomes of Y the calculated average of all the outcomes would be close to E[Y]. Calculation Rules: 1. Let Z be a function of Y, i.e. Z=g(Y). As Y is a random variable, Z is a random variable and: n n i 1 i 1 EZ [ Z ] g ( yi ) Pr(Y yi ) g ( yi ) pi 2. g (Y ) a Y b EZ [Z ] a EY [Y ] b Instructor: Dr. J. Rene van Dorp Session 3 - Page 44 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 3. Let X, Y be two random variables and Z=X+Y, then: EZ [Z ] EX [ X ] EY [Y ] Variance and Standard Deviation of Y: Variance: Var(Y ) Y2 E[Y E[Y ] ] 2 E[Y 2 2 Y E[Y ] E 2 [Y ]] E[Y 2 ] 2 E[Y ] E[Y ] E 2 [Y ] E[Y 2 ] E 2 [Y ] Standard Deviation : Y2 Y Interpretation: Standard deviation is the best guess distance from the mean for an arbritrary outcome Calculation Rules: 1. Let Z, Y be random variables such that: Z=g(Y) g (Y ) a Y b Var( Z ) a 2 Var(Y ) 2. Let Xi , i=1,…,n be a collection of independent random variables. n n i 1 i 1 Y ai X i bi Var(Y ) ai Var( X i ) 2 Instructor: Dr. J. Rene van Dorp Session 3 - Page 45 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Example: Max Profit (0.24) $35.75 A (0.47) $20 $35 (0.29) $50 (0.25) $35.75 B (0.35) (0.40) -$9 $0 $95 Alternative A Prob Profit 0.24 0.47 0.29 Profit^2 20 35 50 Prob*Profit 400 1225 2500 4.80 16.45 14.50 E [Y ] Prob*(Profit^2) Variance St. Dev 96.00 575.75 725.00 35.75 1278.0625 E [Y ] 2 1396.75 E [Y ] 2 118.69 10.89438 E [Y 2 ] E 2 [Y ] Y Alternative B Prob Profit 0.25 0.35 0.4 Profit^2 -9 0 95 81 0 9025 Prob*Profit -2.25 0.00 38.00 Prob*(Profit^2) Variance St. Dev 20.25 0.00 3610.00 35.75 1278.0625 3630.25 2352.19 48.49936 Notes: B has high possible yield, but also high risk Pr( Profit 0 | A) 0; Pr( Profit 0 | B ) 0.6 Instructor: Dr. J. Rene van Dorp Session 3 - Page 46 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Example: Oil Wildcatter Problem Max Profit Dry (0.7) -100K 10K Low (0.2) Drill at Site 2 150K High (0.1) 500K Dry (0.2) 0K -200K Drill at Site 2 Low (0.8) 50K D r ill at S ite 1 Pr o fit Prob -10 0 15 0 50 0 0.7 0.2 0.1 P r o b * (P r o fit ^ 2) V ar ianc e S t. De v P r o b * Pr o fit P r o fit^ 2 -70 .0 0 30 .0 0 50 .0 0 1 000 0 2 250 0 25 000 0 7000 .0 0 4500 .0 0 25000 .0 0 10 .0 0 10 0 36500 .0 0 36400 .0 0 190.787 8 D r ill at S ite 2 P r o fit Prob -200 50 0.2 0.8 P r o b * (P r o fit^ 2) V ar ian ce S t. D ev P r o b * P r o fit P r o fit^ 2 40000 2500 -40.00 40.00 8000.00 2000.00 0.00 0 10000.00 10000.00 100 Max Profit Dry (0.60) -100K EMV=52.50K Low (0.25) Dome (0.6) 150K EMV=10K Drill at Site 1 High (0.15) Prob Pro fit Prob *Pro fit 0.6 00 52. 50 31. 50 0.4 00 -53. 75 -21. 50 10. 00 Dry (0.850) 500K -100K EMV=-53.75K Dome (0.4) Low (0.125) 150K High (0.025) Prob Profit Prob*Profit 0.600 -100.00 -60.00 0.250 150.00 37.50 0.150 500.00 75.00 52.50 Prob Profit Prob*Profit 0.850 -100.00 -85.00 0.125 150.00 18.75 0.025 500.00 12.50 -53.75 500K Dry (0.2) -200K EMV=0K Prob Profit Prob*Profit 0.200 -200.00 -40.00 0.800 50.00 40.00 0.00 Drill at Site 2 Low (0.8) 50K Instructor: Dr. J. Rene van Dorp Session 3 - Page 47 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Continuous Random Variables Event A with possible outcomes [0, ) A : {A components failure} At [0, ) : {component fails at time t} : Total Event or Sample Space A Random Variable Y {=Uncertain Quantity} is a function from R Define: Y :=# failure time of the component Then: Y ( At ) t often abbreviated to Y t. When the number of outcomes of the event A is infinite and uncountable, Y is a continuous random variable. Continuous Probability Density function: Pr(Y y ) 0 for any value of y in the range of Y. Pr(Y [a, b]) 0 , if a b, and [a, b] falls within the range of Y. Probability Density Function fY ( y ) 0 f Y ( y )dy 1 0 b f ( y )dy 0 a Y Instructor: Dr. J. Rene van Dorp Session 3 - Page 48 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 Informally: dy is a very small imnterval at y fY ( y)dy Pr( y Y y dy) f Y ( y )dy Pr( y Y y dy ) y Cumulative Probability Distribution (CDF): y FY ( y ) Pr(Y y ) fY (u)du 0 1.00 1.00E+00 0.80 8.00E-01 0.60 6.00E-01 0.40 4.00E-01 0.20 2.00E-01 0.00 0.00E+00 1 11 21 31 41 51 61 71 81 91 f(y) Pr(Y<=y) Note: CDF is always always a non-decreasing function. Examples: fY ( y) exp( y) 1 Weibull Distribution : fY ( y ) y exp( y ) Exponential Distribution: Beta Distribution: f Y ( y ) ( ) 1 y (1 y ) 1 ( ) ( ) Instructor: Dr. J. Rene van Dorp Session 3 - Page 49 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 All formulas for Expectation and Variance carry over from discrete case to the continuous case Dominance and making decisions DETERMINISTIC DOMINANCE Assume random Variable X Uniformly Distributed on [A,B] Assume random Variable Y Uniformly Distributed on [C,D] PDF X Y 0 CDF A B C D 1 X Y 0 A B C D STOCHASTIC DOMINANCE Assume random Variable X Uniformly Distributed on [A,B] Assume random Variable Y Uniformly Distributed on [C,D] PDF X Note: Pr(Y<z) < Pr(X< z) for all z Y 0 CDF A C B D 1 Y X 0 A C B D Instructor: Dr. J. Rene van Dorp Session 3 - Page 50 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen EMSE 269 - Elements of Problem Solving and Decision Making 4/29/17 CHOOSE ALTERNATIVE WITH BEST EMV Assume random Variable X Uniformly Distributed on [A,B] PDF Assume random Variable Y Uniformly Distributed on [C,D] X E(X) E(Y) Y 0 CDF CA 1 0 B D X Y CA B D MAKING DECISIONS & RISK LEVEL DETERMINISTIC DOMINANCE PRESENT STOCHASTIC DOMINANCE PRESENT Chances of unlucky outcome Increases CHOOSE ALTERNATIVE WITH BEST EMV Instructor: Dr. J. Rene van Dorp Session 3 - Page 51 Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen