Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 7.6 Inverse Trigonometric Functions THE INVERSE SINE FUNCTION Definition: The inverse sine or arcsine function. For −1 ≤ x ≤ 1, sin 1 x y if, and only if, sin y x and 2 y 2 COMPOSITION OF SINE AND INVERSE SINE sin 1 sin x x for x 2 2 1 sin sin x x for 1 x 1 DIFFERENTIATION OF INVERSE SINE d 1 1 sin x 2 dx 1 x 1 x 1 THE INVERSE COSINE FUNCTION Definition: The inverse cosine or arccosine function. For −1 ≤ x ≤ 1, cos 1 x y if, and only if, cos y x and 0 y COMPOSITION OF COSINE AND INVERSE COSINE cos 1 cos x x 1 for 0 x cos cos x x for 1 x 1 DIFFERENTIATION OF INVERSE COSINE d 1 1 cos x 2 dx 1 x 1 x 1 THE INVERSE TANGENT FUNCTION Definition: The inverse tangent or tangent function. For all real x, 1 tan x y if, and only if, tan y x and 2 y 2 COMPOSITION OF TANGENT AND INVERSE TANGENT tan 1 tan x x for 2 1 tan tan x x for all x x 2 DIFFERENTIATION OF INVERSE TANGENT d 1 1 tan x 2 dx 1 x THE INVERSE SECANT FUNCTION Definition: The inverse secant or arcsecant function. For | x | ≥ 1, 1 sec x y if, and only if, sec y x and y 0, 3 , 2 2 COMPOSITION OF SECANT AND INVERSE SECANT sec sec x x for x 0, 1 2 1 sec sec x x for | x | 1 , 3 2 DIFFERENTIATION OF INVERSE SINE d 1 1 sec x 2 dx x x 1 | x | 1 The definitions for inverse cosecant and inverse cotangent are on page 458 of the text. The derivatives of inverse cosecant and inverse cotangent are also on page 459 of the text. ANTIDERIVATIVE FORMULAS INVOLVING INVERSE TRIG. FUNCTIONS 1 1 dx sin x C 1 x2 1 dx tan 1 x C 1 x2 1 1 dx sec xC x x2 1 GENERALIZED ANTIDERIVATIVE FORMULAS INVOLVING INVERSE TRIG. FUNCTIONS 1 1 x dx sin C a a2 x2 1 dx 1 tan 1 x C 2 2 a x a a 1 1 1 x dx sec C a a x x2 a2