Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 7.5 Complex Numbers in Polar Form: DeMoive’s Theorem The Complex Plane Example Determine the absolute value of each of the following: a. z=2+4i b. z=1-6i c. z=7i Polar Form of a Complex Number Example Plot z=3-2i in the complex plane. Then write z Imaginary in polar form. Axis Real Axis Example Write z = 2 (cos 3000 + i sin3000 ) in rectangular form. Imaginary Axis Real Axis Products and Quotients in Polar Form Example Find the product z1z 2 if z1 3 (cos 450 i sin 450 ), and z 2 2 (cos1350 i sin1350 ). Example z2 Find the quotient if z1 3 (cos 450 i sin 450 ), z1 and z 2 2 (cos1350 i sin1350 ). Example z2 Find the quotient if z1 10 (cos 600 i sin 600 ), z1 and z 2 5 (cos1500 i sin1500 ). Powers of Complex Numbers in Polar Form Example Find z if z 3(cos 45 i sin 45 ). 5 0 0 Example Find z if z 2(cos 60 i sin 60 ). 3 0 0 Roots of Complex Numbers in Polar Form Example Find all 5th roots of 1=1 (cos 00 i sin 00 ) y x Example Find all 4th roots of -8+8i 3=16 (cos1200 i sin 1200 ) y x Write the complex number z=- 3 i in polar form. 0 0 z 2(cos 30 +i sin30 ) (a) (b) z 2(cos150 +i sin150 ) 0 0 (c) z 2(cos 600 +i sin600 ) (d) z 2(cos 2100 +i sin2100 ) Write z=2(cos 3000 i sin 3000 ) in rectangular form. (a) z 1 i 2 1 i 3 2 (c) z 1 i 3 (b) z (d) z 2 i 3