Download Algebra Expressions and Real Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 7.5
Complex Numbers in Polar Form:
DeMoive’s Theorem
The Complex Plane
Example
Determine the absolute value of each of the following:
a. z=2+4i
b. z=1-6i
c. z=7i
Polar Form of a
Complex Number
Example
Plot z=3-2i in the complex plane. Then write z
Imaginary
in polar form.
Axis
Real
Axis
Example
Write z = 2 (cos 3000 + i sin3000 ) in rectangular form.
Imaginary
Axis
Real
Axis
Products and Quotients in Polar
Form
Example
Find the product z1z 2 if z1  3 (cos 450  i sin 450 ),
and z 2  2 (cos1350  i sin1350 ).
Example
z2
Find the quotient
if z1  3 (cos 450  i sin 450 ),
z1
and z 2  2 (cos1350  i sin1350 ).
Example
z2
Find the quotient
if z1  10 (cos 600  i sin  600 ),
z1
and z 2  5 (cos1500  i sin1500 ).
Powers of Complex Numbers in
Polar Form
Example
Find z if z  3(cos 45  i sin 45 ).
5
0
0
Example
Find z if z  2(cos 60  i sin 60 ).
3
0
0
Roots of Complex Numbers in
Polar Form
Example
Find all 5th roots of 1=1 (cos 00  i sin 00 )
y
x





Example
Find all 4th roots of -8+8i 3=16 (cos1200  i sin 1200 )
y
x





Write the complex number z=- 3  i in polar form.
0
0
z

2(cos
30
+i
sin30
)
(a)
(b) z  2(cos150 +i sin150 )
0
0
(c) z  2(cos 600 +i sin600 )
(d) z  2(cos 2100 +i sin2100 )
Write z=2(cos 3000  i sin 3000 ) in rectangular form.
(a) z  1  i 2
1
i 3
2
(c) z  1  i 3
(b) z 
(d) z  2  i 3
Related documents