Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
3. Analytical Models of Random Phenomena 3.1 Random Variables and Probability Distribution 3.2 Useful Probability Distributions 3.3 Multiple Random Variables 3.4 Concluding Summary 3.1 Random Variables and Probability Distribution 3.1.1 Random Events and Random Variables Random Variable: An event may be identified through the values of a function Sample Space S E1 E1 = ( a < X ≦ b) E2 = ( c < X ≦ d) E2 Random Variable X E1 U E 2 a c b d E1E2 A rule that maps events in a sample space into the real line 3.1.2. Probability Distribution of a Random Variable Probability Distribution: The rule for describing the probability measures associated with all the values of a random variable Discrete Random Variable: Probability is defined for certain discrete values of x Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Continuous Random Variable: Probability is defined for any value of x Probability Density Function (PDF) Cumulative Distribution Function (CDF) X: Discrete Probability Mass Function (PMF) pX(x) pX (xi) = P(X= xi) 1/6 0 ≤ pX ( xi ) ≤ 1 ∑ p( x ) = 1 i 1 2 3 4 5 6 xi Cumulative Distribution Function (CDF) FX(x) Fx(x) = P(X ≤ x) 1 = ∑ all xi ≤ x 1 2 3 4 5 6 (3.1) pX (xi ) (3.2) X: Continuous Probability Density Function (PDF) fX(x) dFX ( x) (3.5) f X ( x) = dx a 0 b x f ( x) ≥ 0 X ∫ ∞ −∞ f X ( x)dx = 1 Cumulative Distribution Function (CDF) FX(x) 1 x Fx(x) = P( X ≤ x) = ∫ f x ( x)dx −∞ (3.4) b Fx(b) Fx(a) 0 P(a < X ≤ b) = ∫ f X (x)dx a x (3.3) = FX (b) − FX (a) (3.6) FX (−∞) = 0 FX (∞) = 1 CDF PMF PX(x) FX(x) PDF fX(x) FX(x) dFX ( x ) f X ( x) = dx Continuous Random Variable Probability Density Function (PDF) Cumulative Distribution Function (CDF) Probabilty Probabilty 1 dx Discrete Random Variable Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Probabilty 1 Probabilty 1/6 1 2 3 4 5 6 1 2 3 4 5 6 PDF & CDF of Normal Distribution PDF CDF 3.1.3 Main Descriptors of a Random Variable 1. Central Value Mean (Expected Value), Mode, Median 2. Measure of Dispersion Variance, Standard Deviation, Coefficient of Variance 3. Skewness Measure Skewness Coefficient 1. Central Value Mean or Expected Value µx = E(X ) = µx = E(X ) = ∑ all xi ∞ ∫ −∞ xi p X ( xi ) (3.7a) xf X ( x ) d x (3.7b) Mathematical Expectation: Mode µ x = E[ g ( X )] = ∑ g ( X i ) p (X i ) X (3.9a) µ x = E[ g ( X )] = g ( X ) f X ( X ) dX (3.9b) all X i ∞ ∫− ∞ ~ x : the most probable value of a random variable Median xm: the value of a random variable at which values above and below it are equally probable Fx (xm ) = 0.5 (3.8) Example: Household Income Distribution 2008 in Japan Mode Mean Median Log-Normal Distribution http://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa08/2-2.html [million yen/household/year] 2. Measure of Dispersion 2 ( x − µ ) ∑ i x px (xi ) Variance: Var ( X ) = E[( X − µx )2 ] = (3.10a) all xi ∞ = ∫ ( x − µx )2 f ( x)dx −∞ Var ( X ) = E ( X 2 ) − µ x 2 (3.10b) (3.11) Standard Deviation: σ x = Var ( x ) = E( X 2 ) − µ x 2 Coefficient of Variation (COV): σx COV = µx (3.12) (3.13) Coefficient of Variation Month January February March April May June July August September October November December Wine 8.9 9.1 10.6 9.2 9.0 7.6 8.8 7.5 6.9 9.8 10.0 25.2 Beer 13.8 16.2 20.3 24.3 28.3 28.4 36.8 33.6 22.8 20.9 19.8 32.2 [liter/household] Mean Wine 10.22 Beer 24.78 SD Wine 4.63 Beer 6.84 COV Wine 0.453 Beer 0.276 Effect of varying parameters (µ & σ) µ ↑ for C fX(x) B σ ↓ for B C A x Characteristics of Mean and Variance E(aX+b) = aE(X) + b E(X+Y) = E(X) + E(Y) E(XY) = E(X) E(Y) X, Y: Independent Var(X) = E(X2) – {E(X)} 2 Var(aX+b) = a2 Var(X) f(X) b f(X+b) Var(X+b) = Var(X) X0 X0+b f(aX) f(X) X0 µ+σ aX0 aµ+aσ µ x = E [ g ( X )] = ∫−∞∞ g ( X ) f X ( X ) dX E(aX+b) = ∫ (aX+b) f(X) dX = ∫ aX f(X) dX + ∫b f(X) dX = a ∫X f(X) dX + b∫ f(X) dX = a E(X) +b E(X+Y) =∬(X+Y) f (X,Y) dYdX =∬X = X f (X,Y) dYdX+ dYdX+∬Y Y f (X,Y) dYdX =∫X f X(X) dX+∫ Y fY (Y) dY = E(X) +E(Y) E(XY) = ∬XY f (X,Y) dYdX = ∬XY f X(X) fY (Y) dYdX = ∫X f X(X) dX ・∫Y fY (Y) dY = E(X) E(Y) X, Y: Independent Var(X) = E[{X-E(X)}2] = E [X 2 -2XE(X)+ { E(X) }2] = E(X 2) –2E(XE(X))+E({ E(X) }2) = E(X 2) –2 E(X) E(X)+ { E(X) }2 = E(X 2) –{ E(X) }2 Var(aX+b) = E [{ aX+b - E(aX+b) }2] = E [{ aX+b - aE(X) -b) }2] = E [a2{ X- E(X) }2] = a2 E [{ X- E(X) }2] = a2 Var(X) Ex. 3.5 fT(t): PDF of tolerance period of welding machine f T ( t ) = λ e − λt FT ( t ) = ∫ t 0 λe (t ≥ 0) − λτ d τ = [− e ] − λx t 0 ∞ −λt = − e − λ t − ( − 1) = 1 −e − λ t ∞ −λt ∞ 0 1 −λt −λt ∞ 0 1 µT = E(T) = ∫ t ⋅ λe dt = −[te ] + ∫ e dt = − [e ] = 0 0 λ λ Var ( T ) = σ 2 ∫ ∞ 0 = λ∫ = 1 ∞ 0 λ t ⋅ λe 2 t ⋅ λe − λt − λt dt − µ = −[ t e 2 T 2 ∞ ] + ∫ 2 t ⋅ e − λ t dt − µ T2 − λt ∞ 0 0 2 1 1 2 1 dt − µ = ( ) − ( ) = 2 Median? 2 T λ λ λ λ Ex. 3.6 P: Probability of projects being completed as schedule X: Number of jobs completed among 6 future jobs P(X=x)=px(xi)=6Cxpx(1-p)6-x 6 6 x =0 x =0 x=0, 1, 2,…., 6 µ x = E(X) = ∑ xp x ( x ) = ∑ x⋅6 C x 0.6 x 0.46− x =16 C1 0.610.45 + 26 C 2 0.620.4 4 +36 C3 0.630.43 + 46 C 4 0.6 40.42 +56 C5 0.650.41 +66 C6 0.66 = 3.6 6 6 Var ( X ) = ∑ x p x ( x) − µ =∑ x 6 C x 0.6 0.4 2 x =0 2 x 2 x 6− x −µ 2 x 0 1 2 x =0 = 1.44 Var(X) 1.44 COV = = = 0.3333 µx 3.6 PMF Mode = 4 0.3500 0.3000 0.2500 0.2000 0.1500 0.1000 0.0500 0.0000 3 4 5 6 3. Measure of Skewness Asymmetry = Third Central Moment E ( X − µ X )3 = ∑ ( X i − µ X )3 p X (X i ) all X i E ( X − µ X ) 3 = ∫−∞∞ ( x − µ X ) 3 f X ( X ) dX Skewness Coefficient: E[( X − µ x ) 3 ] θ= σ 3x (3.14)