Download Complex Numbers Review

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1.
2.
3.
4.
3x3  2 x 2  7 x  6  x  1
5 x3  3x 2  6  x  1
1.
2.
3.
3x3  5 x 2  4 x  2  3x  1
Compute (in terms of i)
4.
8
3x  5 x  2 
x 1
4
5x2  2 x  2 
x 1
2
3x 2  6 x  6
_i, -1, -i, 1
i, i 2 , i 3 , i 4
Warm-up
Answers



Complex Number Review
Operations on Complex Numbers
Rationalizing Complex Numbers

Complex Numbers
Real Numbers
Imaginary Numbers
+
Real
a

I
Pure
Imaginary
bi
Standard Form:
a  bi

Add and subtract the real component and the
imaginary component separately.
(5  3i)  (2  4i) (10  2i)  (14  6i)
(3  i )
(4  4i )

Pg. P8 12-15
12.
(3  i)  (4  5i)
13.
(2  4.1i)  (1  6.3i)
14.
(2  3i )  (6  i)
15.
(2  4i)  (5  4i)

Multiply using FOIL (like quadratic factors)
(2  3i)(7  4i)
 14  21i  8i  12i 2
 14  29i  12(1)
 2  29i

Pg. P8 21-24
21.
(3  1)2
22.
(2  i )(4  3i )
23.
(3+5i)(3-5i)
24.
(5+3i)(2+6i)


Complex Conjugates are complex numbers of
the form a + bi and a – bi.
Complex Conjugates can be used to
rationalize a complex denominator.
◦ Multiply numerator and denominator by the
complex conjugate of the denominator.
(5-3i) ● (1+2i)
(1-2i) (1+2i)
5+7i-6(-1)
2
5+10i-3i-6i
=
=
1-4(-1)
1-4i2
11+7i
=
5
=
11 + 7i
5 5

Pg. P8: 12-15, 2124, 28-31
28.
5i
5i
29. 3  2i
4  i
30.
1  2i
2  3i
31.
3  4i
1  5i

Review Complex Numbers
I can add, subtract, multiply and divide
complex numbers.

Homework:

◦ page P8: 12-15, 21-24, 28-31
Related documents