Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 1 Financial Returns: Basic Concepts and Returns Financial Econometrics Summer Term 2012 Nikolaus Hautsch Humboldt-Universität zu Berlin 1. Introduction and Motivation Outline I 1. Introduction and Motivation 2. Financial Time Series 2.1 Illustrations 2.2 Returns on Financial Assets 3. Distributional Properties 3.1 Conditional & Marginal Distrib’s 3.2 Evaluating Marginal Distributions 3.3 Empirical Evidence 3.4 Distributions for Returns Financial Econometrics – Chapter 1 2 | 55 1. Introduction and Motivation 3 | 55 Financial Econometrics - What is it? I Combining finance theory with statistical theory. I Transferring a theoretical (financial) model into a (financial) econometric model. I Modelling financial data. I Predicting financial variables as well as relations thereof. Financial Econometrics – Chapter 1 1. Introduction and Motivation Financial Econometrics – Chapter 1 4 | 55 1. Introduction and Motivation 4 | 55 Why to Study Financial Econometrics? I Financial econometrics has become one of the most active areas of research in econometrics. I Financial econometrics attracted substantial attention in recent years in both academia as well as financial practice. I 2003: Nobel prize for Robert F. Engle. I 2003: Foundation of the ”Journal of Financial Econometrics”. I 2007: Foundation of the ”Society for Financial Econometrics (SoFiE)”. Financial Econometrics – Chapter 1 1. Introduction and Motivation 5 | 55 Financial Econometrics - Why is it important? I ”Financial economics is a highly empirical discipline, perhaps the most empirical among the branches of economics and even among the social sciences in general.” (Campbell/Lo/MacKinlay, 1997) I Financial theory without measurement is ”l’art pour l’art”. I Financial econometrics bridges the gap between financial economics, statistics and mathematical finance. I The demand for quantitatively well educated people in the financial industry is permanently increasing – also after the financial crisis! Financial Econometrics – Chapter 1 1. Introduction and Motivation Themes in Financial Econometrics I Asset price dynamics I Time-varying volatility and correlation I Prediction I Information processing I Valuation I Liquidity I High-frequency finance Financial Econometrics – Chapter 1 6 | 55 1. Introduction and Motivation 7 | 55 Goal of the Course I Covering main (however, not all) parts of the spectrum of modern financial econometrics. I Empirical application of financial theory using econometric techniques. I Discussion of important results in the empirical finance literature. I Doing own empirical work using econometric software and real financial data. I Raising the sensitivity for problems and pitfalls in empirical studies. Interpretation of empirical results. Financial Econometrics – Chapter 1 1. Introduction and Motivation Course Outline 1. Financial Returns: Basic Concepts and Properties 2. Foundations in Time Series Analysis 3. Modelling Time-Varying Volatility 4. Estimating and Testing Asset Pricing Models 5. Modelling High-Frequency Financial Data Financial Econometrics – Chapter 1 8 | 55 1. Introduction and Motivation 9 | 55 Books I Taylor, S. J. (2005): ”Asset Price Dynamics, Volatility, and Prediction”, Princeton University Press. I Tsay, R. S. (2005): ”Analysis of Financial Time Series: Financial Econometrics”, Wiley, 2nd edition. I Cochrane, J. H. (2005): ”Asset Pricing”, revised edition, Princeton University Press. I Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997): ”The Econometrics of Financial Markets”, Princeton University Press. I Hamilton, J. D. (1994): ”Time Series Analysis”, Princeton University Press. Financial Econometrics – Chapter 1 1. Introduction and Motivation 10 | 55 Books ctd. I Hautsch, N. (2012): ”Econometrics of Financial High-Frequency Data”, Springer. I Hasbrouck, J. (2007): ”Empirical Market Microstructure: The Institutions, Economics and Econometrics of Securities Trading”, Oxford University Press. I Härdle, W., Hautsch, N., and Overbeck L. (2008): ”Applied Quantitative Finance”, 2nd ed., Springer I Franses, P. H., and D. van Dijk (2000): ”Non-Linear Time Series Models in Empirical Finance”, Cambridge University Press. Financial Econometrics – Chapter 1 1. Introduction and Motivation Organizational Issues I Lectures: . Monday 10:15-11:45, SPA 1, 203 . Monday 12:00-13:30, SPA 1, 203 I Tutorials: . Partly directly imbedded in lecture . Partly in room 025 (will be announced) . Computer problems . Theoretical problems I Course website: Moodle Financial Econometrics – Chapter 1 11 | 55 2. Financial Time Series Outline I 1. Introduction and Motivation 2. Financial Time Series 2.1 Illustrations 2.2 Returns on Financial Assets 3. Distributional Properties 3.1 Conditional & Marginal Distrib’s 3.2 Evaluating Marginal Distributions 3.3 Empirical Evidence 3.4 Distributions for Returns Financial Econometrics – Chapter 1 12 | 55 2. Financial Time Series | 2.1 Illustrations 13 | 55 Daily Prices, S&P500, 1980-2007 800 200 400 600 Price 1000 1200 1400 S&P 500 Index, Daily 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.1 Illustrations 14 | 55 Daily Returns, S&P500, 1980-2007 −0.05 −0.10 −0.20 −0.15 Log−return 0.00 0.05 S&P 500 Log−return, Daily 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.1 Illustrations 15 | 55 Quarterly Dividends, IBM, 1980-2007 0.30 IBM Stock Dividend ●●●●●●●●●●●●●●● ●●●● 0.25 ●●●●●●●●●●●●●●●●●●● ●●●●● 0.20 ●●●● ●●●● ●●●● 0.15 Dividend ●●●●●●●●●●●●● ●●●● ●●●● ●● ●●●● ●●●● 0.10 ●●●● ●●● ●●●● ●●●●●●●●●●● 1980 1982 1984 Time Financial Econometrics – Chapter 1 1986 1988 2. Financial Time Series | 2.1 Illustrations 16 | 55 Daily Volumes, S&P500, 1980-2007 2e+09 0e+00 1e+09 Trading Volume 3e+09 4e+09 S&P 500 Trading Volume, Daily 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.1 Illustrations 17 | 55 Daily 3-Month Interest Rates, Germany, 1975-2007 8 2 4 6 Interest Rate 10 12 14 German Three−month Market Rate, Daily 1975 1980 1985 1990 Time Financial Econometrics – Chapter 1 1995 2000 2005 2. Financial Time Series | 2.1 Illustrations 18 | 55 Daily FX Rates U.S. Dollar vs. EURO, 1975-2007 1.2 0.8 1.0 Exchange Rate 1.4 Daily Exchange Rate, USD/EURO 1975 1980 1985 1990 Time Financial Econometrics – Chapter 1 1995 2000 2005 2. Financial Time Series | 2.1 Illustrations Data Frequencies I Yearly I Quarterly I Monthly I Weekly I Daily I Intradaily (1h, 10min, 5min, 1min etc.) I Transaction level I Order level Financial Econometrics – Chapter 1 19 | 55 2. Financial Time Series | 2.1 Illustrations 20 | 55 Yearly Returns, S&P500, 1980-2007 0.1 0.0 −0.2 −0.1 Log−return 0.2 0.3 S&P 500 Log−return, Yearly 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.1 Illustrations 21 | 55 Quarterly Returns, S&P500, 1980-2007 0.0 −0.2 −0.1 Log−return 0.1 0.2 S&P 500 Log−return, Quarterly 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.1 Illustrations 22 | 55 Monthly Returns, S&P500, 1980-2007 Log−return −0.2 −0.1 0.0 0.1 S&P 500 Log−return, Monthly 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.1 Illustrations 23 | 55 Weekly Returns, S&P500, 1980-2007 0.00 −0.05 −0.10 Log−return 0.05 S&P500 Log−return, Weekly 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.1 Illustrations 24 | 55 Daily Returns, S&P500, 1980-2007 −0.05 −0.10 −0.20 −0.15 Log−return 0.00 0.05 S&P 500 Log−return, Daily 1980 1985 1990 1995 Time Financial Econometrics – Chapter 1 2000 2005 2. Financial Time Series | 2.2 Returns on Financial Assets 25 | 55 Simple Returns I Asset price at t: Pt I Dividend paid at the end of period t: Dt . I One-period simple return: Pt + Dt 1 + Rt := Pt−1 Pt + Dt Pt − Pt−1 + Dt Rt := −1= Pt−1 Pt−1 simple gross return simple net return I k-period simple return (for Dt−k = ... = Dt = 0): Pt 1 + Rt (k) := Pt−k Pt − Pt−k Rt (k) := Pt−k Financial Econometrics – Chapter 1 2. Financial Time Series | 2.2 Returns on Financial Assets 26 | 55 Annualized Returns I Annualized returns for short-term periods, which are available over many years: Assume mt equi-distant periods (0, 1], (1, 2], . . . , (mt−1 , mt ] within year t and k years. Then: 1/k k−1 Y a Rta (k, m) := (1 + Rt−j (mt−j )) − 1 j=0 k−1 Y = j=0 mt−j Y 1 + Rit−j !1/k − 1, i=1 where m := (mt , mt−1 , . . . , mt−k+1 ) and Rit denotes the simple return in period i in year t. Financial Econometrics – Chapter 1 2. Financial Time Series | 2.2 Returns on Financial Assets 27 | 55 Log Returns I Continuously compounded (gross) return (log return): rt := ln(1 + Rt ) = ln Pt + Dt = ln(Pt + Dt ) − ln Pt−1 . Pt−1 I In case of no dividends, the log return is easily computed as rt = pt − pt−1 , where pt := ln Pt . I Multi-period continuously compounded return: rt (k) := ln(1 + Rt (k)) = ln [(1 + Rt )(1 + Rt−1 ) · · · (1 + Rt−k+1 )] = ln(1 + Rt ) + . . . + ln(1 + Rt−k+1 ) = rt + rt−1 + . . . + rt−k+1 Financial Econometrics – Chapter 1 2. Financial Time Series | 2.2 Returns on Financial Assets 28 | 55 Continuous Compounding I EUR 1000 Deposit for one year Interest payment 10% p.a. 5% semiannually 2.5% quarterly 0.1 m % every m-th period continuously I General: limm→∞ (1 + r m m) Financial Econometrics – Chapter 1 Net value of deposit 1100 1102.5 1103.81 m 1000·(1 + 0.1 m ) 1000 · limm→∞ (1 + mr )m = 1000 · exp(r ) = exp(r ) 2. Financial Time Series | 2.2 Returns on Financial Assets Log Returns vs. Simple Returns I Return on a portfolio of N assets with weights wi , i = 1, . . . , N: Rp,t := N X wi Rit i=1 P ⇒ Note: rp,t = ln(1 + Rp,t ) 6= N i=1 wi rit . PN ⇒ But if rit ≈ 0, then rp,t ≈ i=1 wi rit . Financial Econometrics – Chapter 1 29 | 55 3. Distributional Properties | Outline I 1. Introduction and Motivation 2. Financial Time Series 2.1 Illustrations 2.2 Returns on Financial Assets 3. Distributional Properties 3.1 Conditional & Marginal Distrib’s 3.2 Evaluating Marginal Distributions 3.3 Empirical Evidence 3.4 Distributions for Returns Financial Econometrics – Chapter 1 30 | 55 3. Distributional Properties | 3.1 Conditional & Marginal Distrib’s 31 | 55 Conditional and Marginal Distributions I Consider N assets at time t with (log) return rit , t = 1, . . . , T ; i = 1, . . . , N. I Joint distribution function: Fr (r11 , . . . , rN1 ; r12 , . . . , rN2 ; . . . ; r1T , . . . , rNT ; θ), where θ are parameters. I Marginal distribution functions: Fi· (ri1 , . . . , riT ; θ) marginal distribution of return i F·t (r1t . . . , rNt ; θ) cross-sectional distribution of all returns at t Financial Econometrics – Chapter 1 3. Distributional Properties | 3.1 Conditional & Marginal Distrib’s 32 | 55 Conditional Distribution Functions I Conditional distribution functions: Fi·|X (ri1 , . . . , riT |X1 , . . . , XT ; θ) cond. distribution of i given X Fi·|j· (ri1 , . . . , riT |rj1 , . . . , rjT ; θ) cond. distribution of i given j I (Dynamic) partitioning of distributions: Fi· (ri1 , . . . , riT ; θ) = Fi1 (ri1 ) · Fi2 (ri2 |ri1 ) · Fi3 (ri3 |ri2 , ri1 ) · · · FiT (riT |ri,T −1 , . . . , ri1 ) Financial Econometrics – Chapter 1 3. Distributional Properties | 3.2 Evaluating Marginal Distributions Sample Statistics µ bi := T 1 X rit T sample mean t=1 T σ bi2 1 X := (rit − µbi )2 T −1 Sbi := Kbi := 1 T σbi 3 1 T σbi 4 t=1 T X (rit − µbi )3 sample variance sample skewness t=1 T X (rit − µbi )4 t=1 Financial Econometrics – Chapter 1 sample kurtosis 33 | 55 3. Distributional Properties | 3.2 Evaluating Marginal Distributions 34 | 55 Kolmogorov-Smirnov Test I H0 : The true distribution of x = rit is FX (x). I Empirical distribution for n i.i.d. observations xi is given by n 1X l1{Xi ≤xi } , n i=1 ( 1 if Xi ≤ xi , = 0 otherwise. Fn (xi ) = where l1{Xi ≤xi } I The Kolmogorov-Smirnov test statistic is given by Dn = sup |Fn (x) − F (x)|. x I Critical values are tabulated. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.2 Evaluating Marginal Distributions 35 | 55 Pearson’s χ2 -Goodness-of-Fit Test I H0 : The true distribution of rit is F (rit , θ), where θ is a vector of (distribution) parameters. I Idea: Categorizing the realizations of rit and comparing the empirical frequencies in each category with their theoretical counterparts under F (rit , θ). I Number of categories of rit : k I Number of observations in the j-th category: Nj , j = 1, . . . , k. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.2 Evaluating Marginal Distributions 36 | 55 I Estimated probability for an observation in category j: b c it ∈ kj |F (rit ; θ)) pj = Pr(r I Number of parameters to be estimated (the dimension of θ): s I Then, an asymptotic χ2 -test is given by k X (Nj − Npj )2 a 2 ∼ χk−s−1;1−α , χ = Npj 2 j=1 where α denotes the significance level. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.2 Evaluating Marginal Distributions 37 | 55 Probability Integral Transform I H0 : The true distribution of rit is F (rit , θ), where θ is a vector of (distribution) parameters. I Probability integral transform: Z rit qit := f (s)ds = F (rit ; θ) −∞ I Rosenblatt (1952): Under the null hypothesis, qit ∼ i.i.d. U[0; 1]. I Sequence of qit ’s is tested against the i.i.d. uniform distribution. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.2 Evaluating Marginal Distributions 38 | 55 Further Tests ... I Jarque-Bera test against normality: 1 T −s 2 2 Si + (Ki − 3) ∼ χ22 , JB := 6 4 where s denotes the number of estimated parameters. I Quantile-quantile-plots (QQ-plots): Plotting the theoretical quantiles against the empirical quantiles. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.3 Empirical Evidence 39 | 55 Daily DAX and FTSE 100 log returns 2800 Series: LOG_RETURN Sample 2 11015 Observations 11014 2400 2000 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 1600 1200 800 400 Jarque-Bera Probability 0 -0.05 0.00 0.000288 0.000000 0.075527 -0.070394 0.011284 -0.053655 7.652943 9940.776 0.000000 0.05 3200 Series: LOG_RETURN Sample 2 7602 Observations 7601 2800 2400 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 2000 1600 1200 800 400 Jarque-Bera Probability 0 -0.050 -0.025 0.000 Financial Econometrics – Chapter 1 0.025 0.050 0.000352 0.000000 0.067883 -0.065073 0.009454 -0.007661 9.544347 13564.21 0.000000 3. Distributional Properties | 3.3 Empirical Evidence 40 | 55 Daily Dow Jones and S&P 500 log returns 5000 Series: LOG_RETURN Sample 2 14667 Observations 14666 4000 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 3000 2000 0.000288 6.04E-05 0.061547 -0.074549 0.008620 -0.129662 8.148105 1000 0 -0.075 Jarque-Bera Probability -0.050 -0.025 0.000 0.025 16236.62 0.000000 0.050 3500 Series: LOG_RETURN Sample 2 11277 Observations 11276 3000 2500 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 2000 1500 1000 500 0 -0.075 Jarque-Bera Probability -0.050 -0.025 0.000 Financial Econometrics – Chapter 1 0.025 0.050 0.000283 0.000100 0.055732 -0.071127 0.008974 -0.066483 7.329116 8813.567 0.000000 3. Distributional Properties | 3.3 Empirical Evidence QQ-plots of daily DAX and FTSE 100 log returns 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 -.08 -.04 .00 .04 .08 .04 .08 LOG_RETURN 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 -.08 -.04 .00 LOG_RETURN Financial Econometrics – Chapter 1 41 | 55 3. Distributional Properties | 3.3 Empirical Evidence QQ-plots of daily Dow Jones and S&P 500 log returns 6 Normal Quantile 4 2 0 -2 -4 -6 -.08 -.04 .00 .04 .08 .04 .08 LOG_RETURN 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 -.08 -.04 .00 LOG_RETURN Financial Econometrics – Chapter 1 42 | 55 3. Distributional Properties | 3.3 Empirical Evidence 43 | 55 Monthly DAX and FTSE 100 log returns 120 Series: LRETURN Sample 2 507 Observations 506 100 80 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 60 40 20 Jarque-Bera Probability 0 -0.3 -0.2 -0.1 0.0 0.1 0.005202 0.007277 0.193738 -0.293327 0.056199 -0.679271 5.870356 212.6166 0.000000 0.2 100 Series: LRETURN Sample 2 350 Observations 349 80 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 60 40 0.007514 0.011992 0.134771 -0.301699 0.046952 -1.175222 8.467757 20 Jarque-Bera Probability 0 -0.3 -0.2 -0.1 Financial Econometrics – Chapter 1 0.0 0.1 515.0796 0.000000 3. Distributional Properties | 3.3 Empirical Evidence 44 | 55 Monthly DJ and S&P 500 log returns 200 Series: LRETURN Sample 2 675 Observations 674 160 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 120 80 0.005819 0.009913 0.123256 -0.270986 0.040354 -0.637989 6.549530 40 Jarque-Bera Probability 0 -0.2 -0.1 0.0 399.5494 0.000000 0.1 160 Series: LRETURN Sample 2 519 Observations 518 140 120 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 100 80 60 40 20 Jarque-Bera Probability 0 -0.2 -0.1 0.0 Financial Econometrics – Chapter 1 0.1 0.005659 0.008650 0.151043 -0.245428 0.042494 -0.614376 5.785449 200.0464 0.000000 3. Distributional Properties | 3.3 Empirical Evidence QQ-plots of monthly DAX and FTSE 100 log returns 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 -.3 -.2 -.1 .0 .1 .2 LRETURN 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 -.4 -.3 -.2 -.1 LRETURN Financial Econometrics – Chapter 1 .0 .1 .2 45 | 55 3. Distributional Properties | 3.3 Empirical Evidence 46 | 55 QQ-plots of monthly Dow Jones and S&P 500 log returns 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 -.3 -.2 -.1 .0 .1 .2 .1 .2 LRETURN 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 -.3 -.2 -.1 .0 LRETURN Financial Econometrics – Chapter 1 3. Distributional Properties | 3.3 Empirical Evidence 47 | 55 Stylized Facts I Overkurtosis: K > 3. I Fat tails compared to the standard normal distribution: Large returns occur more often than expected. I More probability mass in the middle of the distribution compared to the the standard normal distribution. I For lower aggregation levels (e.g. daily data) (log-)normality assumption clearly rejected. I Aggregated returns tend to normality. I Left-skewness: S < 0 ⇒ large returns are often negative. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.4 Distributions for Returns 48 | 55 Log-Normal Distribution I If rit ∼ N(µi , σi2 ), then e rit = 1 + Rit is log normally distributed with density function (ln z − µi )2 1 1 √ exp − , f1+Rit (z) = z 2πσi 2σi2 where the mean and the variance are given by E[Ri,t ] = e µi + σi2 2 − 1; 2 2 V[Ri,t ] = e 2µi +σi (e σi − 1). I If Ri,t ∼ N(mi , si2 ), then E[ri,t ] = ln mi + 1 2 ; si 1 + mi +1 Financial Econometrics – Chapter 1 V[ri,t ] = ln 1 + si mi + 1 2 ! . 3. Distributional Properties | 3.4 Distributions for Returns Fat-Tailed Distributions I Mixtures of normal distributions I Student-t-distributions I Hyperbolic distributions I Scale mixtures of normal distributions I Gamma distributions I Extreme value distributions I Stable Paretian distributions Financial Econometrics – Chapter 1 49 | 55 3. Distributional Properties | 3.4 Distributions for Returns 50 | 55 Stable Distributions I Generalizations of the normal distribution. I Stability: Distribution family does not depend on the time interval over which the returns are measured. I Higher order moments often do not exist. Example: Cauchy distribution: frit (z) = Financial Econometrics – Chapter 1 γ 1 π γ 2 +(z−δ)2 , γ > 0. 3. Distributional Properties | 3.4 Distributions for Returns 51 | 55 The t-Distribution I The t-distribution has the density 1 frit (z) = n 1 √ B 2, 2 n where B(n, m) := Γ(n)Γ(m) Γ(n+m) z2 1+ n and Γ(n) := − n+1 2 R∞ 0 , x n−1 e −x dx, n > 0. I Properties: . E[rit ] = 0, (n > 2), n . V[rit ] = n−2 (n > 2), . for n → ∞: convergence to the normal distribution. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.4 Distributions for Returns 52 | 55 A Mixture of Normal Distributions I rit originates with probability (1 − α) from X ∼ N(µ1 , σ12 ) and with probability α from Y ∼ N(µ2 , σ22 ) with X and Y independent. I Then: rit ∼ (1 − α)N(µ1 , σ12 ) + αN(µ2 , σ22 ), 0≤α≤1 with . . . . E[rit ] = (1 − α)µ1 + αµ2 , V[rit ] = (1 − α)σ12 + ασ22 , K (rit ) ≥ 3, K (rit ) large for low values of α and large values of σ22 . Financial Econometrics – Chapter 1 3. Distributional Properties | 3.4 Distributions for Returns 53 | 55 Scale Mixtures I Idea: Variances are stochastic and follow some distribution: rt |ωt ∼ N(µ, f (ωt )), where σt2 = f (ωt ), ωt denotes the mixing variable and f is some function. I Clark (1973): r t = σ t εt εt ∼ N(0, 1) ln(σt2 ) ∼ N(0, σσ2 ), where εt and σt are independent. I If σt2 follows an inverse gamma distribution, then the resulting returns are t-distributed. Financial Econometrics – Chapter 1 3. Distributional Properties | 3.4 Distributions for Returns QQ-plots of Daily Dax Index Returns ... against the normal and mixed normal (α = 0.05, σ22 = 10, V[rt ] = 1) 4 3 Normal Quantile 2 1 0 -1 -2 -3 -4 10 -8 -6 -4 -2 0 2 4 6 8 4 6 8 Quantile of MIXNORM LOG_RETURN 5 0 -5 -10 -8 -6 -4 -2 0 2 Quantile of LOG_RETURN_ST Financial Econometrics – Chapter 1 54 | 55 3. Distributional Properties | 3.4 Distributions for Returns 55 | 55 QQ-plots of Daily Dow Jones Index Returns ... against the normal and mixed normal (α = 0.05, σ22 = 10, V[rt ] = 1) 6 Normal Quantile 4 2 0 -2 -4 -6 12-12 -8 Quantile of MIXNORM -4 0 4 8 4 8 LOG_RETURN 8 4 0 -4 -8 -12 -12 -8 -4 0 Quantile of LOG_RETURN Financial Econometrics – Chapter 1