Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Multiple Metal-Carbon Bonds for Catalytic Metathesis Reactions Nobel Lecture December 8, 2005 1 Metal-carbon double and triple bonds in which the transition metal is in a "low oxidation state" were discovered by E. O. Fischer. CO OC Cr δ- CO OCH C δ+ CO CO 3 Br W C OC OC CO CO 1964 "carbene" 1973 "carbyne" 2 Beta hydride elimination in an ethyl complex H H C H H C L1 M L2 H L3 H L1 M L3 + H H C C H H L2 3 Known Group 4 Peralkyl Complexes (M = Ti, Zr, Hf) in 1973. H H H Me β H α CH2 C6H5CH2 C6H5CH2 H M CH2C6H5 β Si α CH2 M Me3SiCH2 Me3SiCH2 Me Me Me CH2SiMe3 β C Me α CH2 Me3CCH2 M Me3CCH2 Me CH2CMe3 All alkyls lack one or more hydrogen atoms on the atom β with respect to the metal. 4 The first relatively stable permethyl complex Me pentane WCl6 + 6 AlMe3 Me Me W Me Me Me 4 Ti Zr Hf 5 6 7 8 V Cr Mn Fe Nb Mo Tc Ru Ta W Re Os A. J. Shortland and G. Wilkinson J. Chem. Soc., Dalton Trans. 1973, 872. “*Note added in proof. Hexamethylrhenium (K. Mertis and G. Wilkinson) and pentamethyl[t]antalum (R. Schrock, DuPont, Wilmington, private communication) have recently been synthesized.” Geoffrey Wilkinson, Nobel Lecture, December 11, 1973 5 Synthesis of tantalum pentaalkyls pentane 2 LiMe TaMe3Cl2 TaCl5 + 1.5 ZnMe2 - 1.5 ZnMe2 H H H C ether (Juvinall) H3C H3C Ta CH3 CH3 Decomposes above 0 °C bimolecularly TaCl5 + 5 Me3SiCH2MgCl 1/2 Me3SiCH2 Me3SiCH2 SiMe3 C CH2SiMe3 Ta Ta CH2SiMe3 C SiMe3 "It is assumed that a penta-alkyl complex cannot exist for steric reasons." (Mowat, W.; Wilkinson, G. J. Chem. Soc, Dalton Trans. 1973, 10, 1120.) 6 Neopentyls yield a stable product of α hydrogen abstraction. 2 LiCH 2CMe3 Ta(CH 2CMe3) 3Cl2 - CMe 4 t-BuCH2 t-BuCH2 t-BuCH2 H Ta C CMe3 J. Am. Chem. Soc. 1974, 96, 6796 Distills in a good vacuum at 75°C. CH2-t-Bu (t-BuCH2)3Ta α hydrogen activation H C H t-Bu δ+ (t-BuCH2)3Ta δCH2-t-Bu H δ+ δ- C H t-Bu δ+ - CMe4 δ+ δ- H (t-BuCH2)3Ta C t-Bu α hydrogen abstraction (deprotonation) 7 Alkylidenes can be deprotonated to yield tantalum-carbon triple bonds. t-BuCH2 t-BuCH2 t-BuCH2 δ+ δ+ δ- Ta C H LiButyl CMe3 - ButylH t-BuCH2 t-BuCH2 t-BuCH2 Li+ Ta C CMe3 Guggenberger, L. J.; Schrock, R. R. J. Am. Chem. Soc. 1975, 97, 2935. 8 Alkylidenes decompose bimolecularly. δ+ Ta 2 Me H C δH Me CH 2 Cp2Ta L TaCp2 CH2 Me Me Ta Me CH2 + Ta L CH2 18 electrons L = CO, C2H4 , PR3 - H+ base [Cp2TaMe3]+ Schrock, R. R. J. Am. Chem. Soc. 1975, 97, 6577. Bimolecular decomposition of alkylidenes, especially methylenes, is difficult to prevent, especially in electron deficient species. 9 Olefin metathesis and the Chauvin mechanism (1971) 2 RCH=CHR' RCH=CHR + R'CH=CHR' + RCH=CHR' - R'CH=CHR' + RCH=CHR' M=CHR R H M R H - RCH=CHR M=CHR' H R' M = Mo, W, or Re 10 Alkyne metathesis and the metalacyclobutadiene mechanism R'C≡CR' + RC≡CR 2 RC≡CR' R RC M CR R CR' - RC M R M R' R CR M CR' R' (suggested by T. Katz; 1975) M = Mo, W 11 Reaction of tantalum alkylidenes with olefins. 2 RCH=CH2 Cl Ta Cl Cl Ta CH2 Cl CHR CH-t-Bu CH-t-Bu βH RCH=CHCH2-t-Bu + RCH2CH=CH-t-Bu βH CH2=CHRCH2-t-Bu + CH3CHR=CH-t-Bu CH2 CpCl2Ta + 4 olefins CHR CH-t-Bu CHR CpCl2Ta CH2 12 Modification of Nb and Ta yields metathesis catalysts M(CH-t-Bu)L2 Cl 3 + H2 C=CHR 4 products of rearrangement of metallacyclobutanes M = Nb or Ta L = PMe3 M(CH-t-Bu)(O-t-Bu)2Cl(PMe3) + olefins also metathesis products (~35 turnovers for cis-2-pentene) Alkoxides "prevent reduction" and "promote metathesis." J. Molec. Catal. 1980, 8, 73; J. Am. Chem. Soc. 1981, 103, 1440. 13 An oxo neopentylidene complex of tungsten t-Bu O C Cl Ta L t-Bu H H Cl Cl + t-BuO t-BuO W C Cl O-t-Bu O-t-Bu t-BuO t-BuO Ta O-t-Bu O-t-Bu L + Cl L W Cl L = a phosphine, e.g. PEt3 t-Bu H C Cl L W Cl L R H C RCH=CHR O - t-BuCH=CHR Cl L W L O Cl (AlCl3 cat) Even R = H 14 L O A sterically demanding diisopropylphenyl imido group might be a desirable "ancillary" ligand. i-Pr X RO RO X = N W CH-t-Bu i-Pr The OR group should be a sterically demanding tertiary alkoxide. 15 A sterically demanding diisopropylphenyl imido group might be a desirable "ancillary" ligand. i-Pr i-Pr N (CF3)2MeCO (CF3)2MeCO W CH-t-Bu Hexafluoro-t-butoxide was chosen as a highly electron withdrawing alkoxide. 16 Synthesis of a tungsten neopentylidyne complex t-Bu Cl MeO MeO C Cl W OMe Cl + 6 ClMgCH2-t-Bu W CH2 t-Bu CH2 CH2 t-Bu t-Bu Volatile yellow crystals. Thermally stable, distilling at 75°C in a good vacuum. (1978) 17 Tungsten-carbon triple bonds and alkyne metathesis t-Bu t-Bu C W CH2 t-Bu 3 HCl in dme CH2 CH2 t-Bu - 3 CMe4 t-Bu C Cl W Me O Cl Cl O Me t-Bu C 3 LiO-t-Bu W O t-Bu O O t-Bu t-Bu purple crystals The tri-t-butoxide compound is a powerful catalyst for the alkyne metathesis reaction. 2 RC≡CR' R'C≡CR' + RC≡CR 18 Metal-metal bonds and "metathesis" reactions. t-BuO t-BuO t-BuO t-BuO O-t-Bu W W t-BuO + O-t-Bu O-t-Bu R-C C-R W CR 2 t-BuO (1982) R R-C X3W WX3 R R C-R X3W WX3 X3W WX3 R 19 Synthesis of a tungsten imido alkylidene complex Ar N Me O Cl Ar H Cl W C-t-Bu O Me Et3N catalyst Me N Cl t-Bu O W C Cl H O Me Ar N 2 LiOR t-Bu W C RO RO H ("14 electron" species) OR = O-t-Bu, OCMe2(CF3), OCMe(CF3)2, and various bulky phenoxides W(NAr)(CH-t-Bu)(OR)2 species are "well-defined" catalysts for the metathesis of olefins and the activity can be varied systematically by varying OR. i-Pr NAr = N i-Pr 20 Structure of syn-W(NAr)(CH-t-Bu)(O-t-Bu)2 1.87Å 169° 1.76Å 000 000 00 000 00 00 000 000 00 00 145° 21 Tungstenacyclobutanes can be isolated, but can be too stable toward loss of olefin. 000000000 000000000 00 Molybdacyclobutane intermediates lose an olefin more readily. 22 Two isomers (anti and syn) are available in any system through rotation about the M=C bond. R' N RO RO R' R' RO RO M C H t-Bu anti N ka/s ks/a R' M C t-Bu H syn (usually favored) 23 Olefin metathesis variations RCM ROM/CM - CH2=CH2 + RCH=CH2 HH H H H H H H H H H R H H ROMP (Ring-Opening Metathesis Polymerization) x Control! 24 Polymerization of bistrifluoromethylnorbornadiene via enantiomorphic site control. R R Ph Me N Si Me CMe3 Mo O O Me H Si Me Ph CF3 CF3 H CF3 H CF3 H CF3 H CF3 H CF3 H CF3 H CF3 H CF3 H CF3 H CF3 x all cis and isotactic through enantiomeric site control when R = CH3 When R = CH(CH3)2 the polymer structure has a relatively random (71% cis) structure. 25 Alkynes are polymerized to yield polyenes. EtO2C EtO2C CO2Et CO2Et H or CO2Et CO2Et H H H head-to-tail H H tail-to-tail Soluble, highly conjugated (purple), and relatively air-stable; both rings observed in polymer made with Mo(NAr)(ORF6)2 catalyst. E E E E E E E E * * E E E E E E >95% 5-membered rings produced with Mo(NAr)(O-t-Bu)2 catalyst. 26 Ring-closing metathesis with Mo catalyst (4-5 mol%) (Catalyst = Mo(NAr)(CHCMe2Ph)[OCMe(CF3)2]2) O O Ph Ph - 2 butene Me Me Me O Ph O Ph O - C2H4 N 15 min, 92% O 15 min, 92% Me O Ph N 2 hr at 50°, 81% Me - C2H4 Ph Ph Me Me Me Me O - propylene Ph 180 min, 93% Me Me Fu, G. C.; Grubbs, R. H. J. Am.Chem. Soc. 1992, 114, 5426; 7324. 27 Synthesis of Fluvirucin-B1 OAc Me OAc Me N(H)COCF3 O Mo cat O C6H6 NH Me Et H2N OH Me N(H)COCF3 HO Me O OAc O AcO Me O Et - CH2=CH2 O O Et Et HN O O Et Et HN 92% yield Fluvirucin-B1 A. F. Houri, Z. M. Xu, D. A. Cogan, A. H. Hoveyda, J. Am. Chem. Soc. 1995, 117, 2943. 28 Mo or W catalyzed alkyne metathesis reactions are useful in organic chemistry. O O Hydrog. W cat - MeC O CMe W cat = W(CCMe3)(OCMe3)3 + H2 H H Civetone (Fürstner) Olefins do not appear to react with M-C triple bonds. 29 Other examples of alkyne metathesis in organic synthesis O H2 N N S N O OH N O H O HO O Motuporamine C PGE2-1,15-lactone O O O MeO W cat Epothilone C O O MeO O HO 1. TsOH O O O 2. 9-I-9- BBN - 2-butyne MeO O OH MeO HO 80% S-(+)-citreofuran 30 An enantiomerically pure Mo catalyst Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041. 31 Asymmetric catalyst design; a modular approach Imido Groups Diolates t-Bu TRIP Mes O Mo O O Mo O TRIP Mes N N O Mo O Mo Mo t-Bu Me Me i-Pr i-Pr Mes CHPh2 O Mo O O Mo O O Mo O t-Bu Mes CHPh2 t-Bu Cl Cl N N Mo Mo 24 catalysts! 32 Asymmetric Ring-Closing Metathesis (ARCM) Me N Me Me Mo O Ph O - propylene O Me Me Me O Me 2 mol % cat Me no solvent, 22 °C, 5 min Me Me H R 99% ee, 93% R = i-Pr i-Pr i-Pr Me2 Si O R i-Pr N O Mo O i-Pr O R Me Ph Me Me - ethylene 2 mol % cat Me2 Si O Me Me no solvent, 60 °C, 4 h H Me >99% ee, 98% i-Pr i-Pr 33 Ring-Opening / Ring-Closing Metathesis i-Pr i-Pr N Me O Mo O Ph Me 5 mol % H O C6H6 O O O H >99% ee, 76% 34 Ring-Opening / Cross Metathesis i-Pr i-Pr N Me O Mo O Ph Me OMOM OMOM 5 mol % + X C6H6 X = H, OMe, CF3 X 95% yield, >98% ee, >98% trans D. S. La; J. G. Ford; E. S. Sattely; P. J. Bonitatebus; R. R. Schrock; A. H. Hoveyda J. Am. Chem. Soc. 1999, 121, 11603. 35 Nitrogen-Containing substrates R 5 mol % O O N Mo R Me Ph Me Ph N 22 °C PhN - ethylene 20 min R = Me >98% ee, 90% yield 36 Enantioselective synthesis of a tertiary ether in a drug R R R R O 5 mol % O N Mo R Me Ph O Me R R R = i-Pr R O O C6H6, 50 °C 95% ee, 95% yield Me OH O H N N CF3 S O2 O Cefalo, D. R.; Kiely, A. F.; Wuchrer, M.; Jamieson, J. Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 3139. Me tipranavir (HIV protease inhibitor) 37 A bis amido alkylidene catalyst precursor. CHPh2 OH OH Ar Ar CHPh2 N CHPh2 Ph2N CH-t-Bu Ph2N Mo O Mo N CH-t-Bu O - 2 Ph2NH CHPh2 In situ Amido ligands deactivate the metal toward metathesis reactions. O In situ catalyst prepared with gives same ee (93-94%) as 5 mol% [Mo] C6D6, 22 oC O H the isolated catalyst. 38 Dineopentyl species were examined as bisalkoxide catalyst precursors. Ar Ar N N Mo t-Bu t-Bu + ROH - CMe4 t-Bu Ar = 2,6-i-Pr2C6H3 t-Bu Mo t-Bu O R OR = OCH(CF3)2 , OAdamantyl, OCMe3, or OAr Preliminary results suggest that monoalkoxides are at least as active as bisalkoxides! (Surprising since dineopentyl species are essentially inactive.) 39 "Well-defined" catalysts can be prepared on a silica surface. Ar N Ar t-Bu N OH t-Bu CH2 t-Bu t-Bu Mo CH2 C H + CH2 O C H Si Si Silica (SiO2) Ar = 2,6-i-Pr2C6H3 - CMe4 t-Bu Mo Silica (SiO2) Bimolecular decomposition of alkylidenes is not possible. Frédéric Blanc, Anne Baudouin, Christophe Copéret, Jean Thivolle-Cazat, Jean-Marie Basset, Anne Lesage, Lyndon Emsley, Amritanshu Sinha, Richard R. Schrock, Angew. Chem. Int. Ed., in press. 40 Well-defined catalysts can be prepared on a silica surface using other "clean" neopentyl sources. R N M t-Bu C t-Bu H H C Ta CH2 t-Bu t-Bu CH2 CH2 t-Bu t-Bu Ta(V) CH2 CH2 t-Bu t-Bu C M CH2 t-Bu t-Bu C t-Bu Re C H CH2 CH2 t-Bu t-Bu CH2 CH2 t-Bu t-Bu Re(VII) M(VI) (M = Mo, W) Cóperet, C.; Chabanas, M.; Saint-Arroman, R. P.; Basset, J.-M. Angew. Chem. Int. Ed. 2003, 42, 156. 41 The principles of high oxidation state alkylidene and alkylidyne chemistry extend to Re(VII) t-Bu R t-Bu N C t-Bu W C H O O R W(VI) Re C R H O O R R Re(VII) Olefins react with the Re=CHR bond selectively, not the Re≡C-t-Bu bond. These Re species are active olefin metathesis catalysts. 42 Present and future challenges 1. Prevent catalyst decomposition completely and/or find ways to regenerate catalysts from decomposition products. 2. Find ways to generate and evaluate all catalysts in situ from one precursor. 3. Synthesize new catalysts and aim for additional selectivity and efficiency in metathesis reactions. 43 44 "Unsupported" M=M bonds are formed in bisalkoxide systems Me Me N N (CF3)Me2CO (CF3)Me2CO Me Me MeCH=CHEt W CH-t-Bu (CF3)Me2CO (CF3)Me2CO W W OCMe2(CF3) OCMe2(CF3) N Me Me A W=W species (W=W = 2.49 Å) that does not contain bridging groups. 45