Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
COMPLEX NUMBER P.M./Complex/p.1 Define i 2 = -1 . A complex number z can be expressed in the form z = x + iy where x, y  R and x - real part of z (Re z) ; y - imaginary part of z (Im z) : imaginary axis i - purely imaginary unit . The complex number z = x + iy is represented by the point (x, y) on the complex plane / Gaussian plane /Argand × (x , y) diagram. 0 Note : real axis  1. For a real number x (x = x + i 0), it is represented by a point lying on the real axis in complex plane. 2. A complex number z is purely imaginary iff Re z = 0 , and the point representing z lies on the imaginary axis. 3. Let P be the point representing the complex number z = x + iy on the complex plane. y (i) modulus of z : imaginary axis x2 + y2 z = (ii) argument or amplitude of z : x (x, y) z arg z = the angle  counted from the positive real axis  to the vector OP 0 (anti-clockwise : +ve ; clockwise : -ve) = tan -1 ☼ 4. y x Principle range of  is (-π, π]. z = x + iy - standard form = r (cos  + i sin  ) or r cis  = r  e i where r = z - polar form - exponential form where ei = cos  + i sin  - Euler's Formula ex = (  xr x2 x3  r ! = 1 + x + 2 ! + 3 ! + ... r=0  eix = 1 + ix + ∴ (ix ) 2 (ix ) 3 + + ... 2! 3!  cos x + i sin x = 1    x2 x4  + cos x = 1 2! 4!    x2 x4 + - ...  + i 2! 4!    - ...  and sin x =    x    x    x3 x5 + - ...  3! 5!    x3 x5 + - ...  . ) 3! 5!   x real axis Example P.M./Complex/p.2 -1 = _____________________________________________________ ln (-1) = __________________________________________________ ∴ ln (-8) = __________________________________________________ Express the following complex numbers in the polar form : (a) 2i (b) (1 + i)i (c) 1 + i 2 - i (d) (4 + i)(3 - i) Solution (a) ______________________________________________________________ ______________________________________________________________ (b) ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ (c) ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ (d) ______________________________________________________________ ______________________________________________________________ (e) ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Five Arithmetic Operations (a) Addition/ Subtraction : z1 = x1 + i y1 and z 2 = x 2 + i y 2 where x1 , y1 , x 2 , y 2 R  z1  z2 = (x1  x2 ) + i(y1  y2 ) (b) Multiplication : z1  z2 = (x1 + iy 1)(x2 + iy 2 ) (x1x2 - y1y2 ) + i(x1y2 + y1x2 ) i i z1  z2 = r1e 1  r2e 2 i(  ) = r1r2e 1 2 =  z1z2 = r1r2 and arg z 1z2 = arg z1 + arg z 2 n and arg z n = n arg z Note : z1n = z1 1 1  z1z2 = z1 z2 for any integer n. (e) i Division : P.M./Complex/p.3 z1 x + iy 1 x2 - iy 2 = 1  z2 x2 + iy 2 x2 - iy 2  = (x1x2 + y1y2 ) + i(x2 y1 - y2 x1 ) x22 + y22 = (x1x2 + y1y2 ) (x y - y2 x1 ) + i 2 1 x22 + y22 x22 + y22 z1 1 = (x1x2 + y1y2 )2 + (x2 y1 - y2 x1 )2 2 2 z2 x2 + y2 = = 1 1 2 z 2 = (x1x2 )2 + (y1y2 )2 + (x2 y1)2 + (y2 x1)2 x2 2 + y2 2 (x 2 + y 2)(x 2 + y 2 ) 2 2 1 1 z1 z2 i   r e 1 z   arg  1  = arg  1 z  i    2 r e 2  2   r i ( -  )  = arg  1 e 1 2  = arg z1 - arg z 2 r   2  (c) Conjugation : z = x + iy  conjugate of z , z = x - iy Properties : x2 + (-y)2 = z (i) z = (ii) arg z = tan -1 (iii) z = (x - iy) = x + iy = z (iv) z = 0  -y = - arg z x (-y) = 0  x = 0  x = y = 0 ∴ (v) (vi) (vii) z = 0 iff z = 0  y = -y z = z  x + iy = x - iy ∴ z is self-conjugate , i.e. z = z iff z is real . z  z = (x + iy )(x - iy ) = x2 + y2 = z 2 z  z = z  z 1 2 1 2 (viii) z  z = z  z 1 2 1 2 (ix) (x) z  z  1 = 1 z  z  2 2  z + z = 2 Re z   z - z = 2i Im z   n  n  z1  = z1    y = 0 z +z 1 2 Proof : 2  z1 + z2 z1 + z2 Triangular Inequality :   = z +z z +z 1 2 1 2 = P.M./Complex/p.4  z1 + z2  z1 + z2  = z z +z z +z z +z z 11 1 2 2 1 2 2 ∴ 2   + 2 Re z z + z 1 2 2 z 1  z 1 = z 1 = z1 2 + 2 z1 z2 + z2 2 2 2 +2 z z + z 1 2 2   2 = ( z z = z z ) 1 2 1 2 2 +2 z z + z 1 2 2 2 =  z + z   1 2 2  z1 + z2 z1 + z2 OR imaginary axis z1 + z 2 z2 z1 0 z1 - z 2 Claim : real axis  z1 + z 2 Proof __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Example 1. Let z1 , z2 , ... , zn be arbitrary complex numbers .  z1z2 + z1z2 . (a) Prove that z1 z1 + z2 z2 (b) Using (a), or otherwise, show that z1 2 + z2 2 + ... + z n 2  Re z1 z 2 + z 2 z 3 + ... + z n-1 z n + z n z1  _________________________________________________________________ P.M./Complex/p.5 ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 2. (a) Suppose u, v are 2 non-zero complex numbers such that u + v + 1 = 0. Show that u = v = 1 iff 1 1 + + 1 = 0. u v Hence, or otherwise, show that u = v = 1 iff u2 + v2 + 1 = 0 . (b) Let A, B and C be 3 distinct non-collinear points on the complex plane representing the complex numbers z1 , z2 , z3 respectively. By using the result of (a) to show that △ABC is an equilateral △ iff z12 + z2 2 + z32 = z1z3 + z3z2 + z2 z1 . Solution : (a) ' Only if ' assume u = v = 1 , then _____________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1 1 ' If ' assume + + 1 = 0 u v ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ (u + v + 1)2 = 0  _____________________________________________ 1 1 + + 1 = 0 u v  _____________________________________________  _____________________________________________  _____________________________________________  _____________________________________________ (b) P.M./Complex/p.6 imaginary axis z1 = x1 + iy 1 and z 2 = x2 + iy 2 z1 - z2 = (x1 - x2 ) + i(y1 - y2 ) z1 - z2 = C (x1 - x2 )2 + (y1 - y2 )2 B = the distance between the points A representing z1 and z 2 3. 0 real axis ∴ A, B and C form an equilateral △ iff __________________________________________________________________ iff __________________________________________________________________ iff __________________________________________________________________ iff __________________________________________________________________ iff __________________________________________________________________ In the Argand diagram, PQR is an equilateral △ whose circumcentre is at the origin. If P represents the complex number 4 + i, find the complex numbers represented by Q and R. Solution : imaginary axis By definition, ∠POQ = ∠QOR = ∠ROP = __________ 4 + i = 17 e i the complex number represented by Q = ____________________________________________ P(4,1) Q 0 real axis = ____________________________________________ = ____________________________________________ = ____________________________________________ R the complex number represented by R = ____________________________________________ = ____________________________________________ = ____________________________________________ Classwork (99 II Q.5) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Geometrical Applications of Complex Numbers 1. z1 = x1 + iy 1 and z 2 = x2 + iy 2 P.M./Complex/p.7 imaginary axis  z1 + z2 = (x1 + x2 ) + i(y1 + y2 ) z1 - z2 = z1 + (-z2 ) z2 arg  z2 - z1  z1 arg ( z2 - z1) arg z1 - z2  = the angle the vector from z1 to z 2 makes with real axis + ve real axis arg ( z1 - z2 ) = the angle the vector from z2 to z1 makes with + ve real axis Note : (i) (ii) 2  -ve arg ( z1 - z2 ) =   +ve if counted clockwisely if counted anti-clockwisely arg ( z1 - z2 ) = arg ( z2 - z1) +   = arg (z1 - z2 ) imaginary A(z1) axis  = arg (z3 - z2 ) C(z3) ∠ABC =  -  B(z 2) = arg (z1 - z2 ) - arg (z3 - z2 ) z -z  = arg  1 2  z - z   3 2 Note :  = Case 1 :  =   z - z  arg  2 4  z -z   1 4  Case 2 :  z - z  and  = arg  2 3  z -z   1 3 imaginary axis z4 z3 z - z  z - z  arg  2 4  - arg  2 3  = 0 z -z  z -z   1 3  1 4 z - z   arg  2 4  z -z   1 4 z - z   2 4 z -z   1 4 real axis 0 z -z   1 3 =0 z - z   2 3 z2 z1 0 real axis z -z   1 3  is real and positive z - z   2 3  + (-) =  z - z  arg  2 4  z -z   1 4 imaginary axis z4 z -z   1 3 =π z - z   2 3 z - z  z - z  4   1 3  is real and negative   2  z - z  z - z   1 4   2 3 z2 - z3 z1 0 real axis Note : For the distinct points representing z1 , z2 , z3 , z4 to form a cyclic quadrilateral, z - z  z - z   2 4  1 3  z - z  z - z   1 4   2 3 must be real and non-zero. 3. z is a variable complex number moving on the complex plane in such a way that P.M./Complex/p.8  z + 1  . arg  =  z - 1 3 What is the locus of z ? Solution : ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 4. Circle with centre representing z0 and radius r : _________________________________________________ 5. Perpendicular bisector of two fixed points representing z1 and z 2 : _________________________________________________ 6. Ellipse with two fixed points representing z1 and z 2 as two foci : _________________________________________________ _________________________________________________ 7. Hyperbola with two fixed points representing z1 and z 2 as two foci : _________________________________________________ Example 1. Find the locus of the variable point P which represents the complex number z such that 2 z - 2 = z - 6i . Solution : ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 2. Find the locus of the point P representing the complex number z such that z = a + b(1 + it ) 1 - it P.M./Complex/p.9 where a, b are real constants and t is a real variable. Solution : ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Classwork 3. (01) ___________________________________________________ ___________________________________________________ ___________________________________________________ ___________________________________________________ ___________________________________________________ ___________________________________________________ ___________________________________________________ ___________________________________________________ Transformation Suppose two complex variables w and z are connected by a functional relation. Then if the point P representing z describes a curve in an Argand diagram (called the z-plane), the point representing w will describe a related curve in another Argand diagram (called the w-plane). Such a relation from a figure on the z-plane to a figure on the w-plane is called a transformation. Example 1. Let z be a complex variable with z = 1. If w = 3z + 1 , find the locus of the points representing z w. ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ _____________________________________________________________ P.M./Complex/p.10 ________________________________________________________________________ ________________________________________________________________________ 2. ________________________________________________________________________ (90 I Q.10) 1 Let f : C\0  C be defined by f (z) = z + . z Let z = r(cos  + i sin ) and f(z) = u + iv where r > 0 and  , u , v  R, (a) express u and v in terms of r and  . (b) Find and sketch the image of each of the following circles under f : (i) z = 1 ; (ii) z = a where 0 < a < 1 . (a) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ (b) (i) ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ (ii) ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ 3. (89 I Q.12) The function f : C\-1  C\-i is defined by f(z) = (b) i(1 - z) . 1+z Find and sketch the image, under f, of each of the following : (i) the upper half of the imaginary axis (including the origin) ; (ii) the positive real axis . Solution : (i) ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ P.M./Complex/p.11 ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ (ii) ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ W.34 Q.6, 7 H.W. : W.34 Q.1 – 5 De Moivre's Theorem If z = r(cos  + i sin  ) where r = z , for any rational number n, then zn = r n(cos  + i sin  )n = r n(cos n + i sin n ) . Proof : Case 1 : Let n be a positive integer. When n = 1, the statement is obviously true. Assume zk = r k (cos k + i sin k ) . ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Case 2 : Let n be a positive rational number, i.e. n = p and q. Let z p q p q = r (cos  + i sin  ) p for some positive relatively prime integers q where - <    . ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Case 3 : Let n be a negative rational number, then (-n) is a positive rational number. P.M./Complex/p.12 ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ∴ The De Moivre's Theorem is true for all rational numbers n. Classwork 1. 5 3 + i sin 3  cos  - i sin   Prove that = cos 13 - i sin 13  . 5 5  cos 5 + i sin 5  cos 2 - i sin 2  cos 3 Solution : ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 2.  1 + sin  + i cos   Show that    1 + sin  - i cos   n     = cos n -   + i sin n -   . 2  2  Solution : ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Remarks : zn = 1. ∴ 2. z n cos n zn = z + i sin n  = z n cos n + i sin n n if 0  z < 1 , then lim n zn = lim n z n =0 P.M./Complex/p.13  lim n zn = 0 imaginary axis x z x z2 where z n is the distance of the point representing z n x from the origin . n x z 0 x z3 real axis Application of De Moivre's Theorem to Trigonometry I. 1 - zn 1 + z + z2 + ... + z n -1 = 1- z   if z < 1 , then zr = r=0 1 1 - z  (i.e.  zr converges if z < 1 ) r=0 Example   1 To find    r=0  2  r cos r . Consider ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ II. Express cosine or sine of multiple angles in terms of cos  , sin  , i.e. cos m = f (cos, sin ) sin m  = f (cos, sin ) . Example (a) Prove that cos 5 = 16 cos5  - 20 cos3  + 5 cos  . 2 4 6 8 1 (b) Hence, deduce that cos  cos  cos  cos = 5 5 5 5 16 Solution : (a) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ _____________________________________________________________ P.M/Complex/p.14 ________________________________________________________________________ ________________________________________________________________________ (b) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ _____________________________________________ _____________________________________________ _____________________________________________ 4 5 2 5 unit circle 0 _____________________________________________ _____________________________________________ 6 5 _____________________________________________ 8 5 ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Classwork (a) Prove that cos 6 = 32 cos6  - 48 cos4  + 18 cos2 - 1. (b) Hence, show that the roots of the equation 64x3 - 96x2 + 36x - 3 = 0 are  5 7  5 7 and deduce that sec2 cos2 , cos2 , cos2 + sec2 + sec2 = 12 . 18 18 18 18 18 18 (a) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ (b) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ III. Express a power of sin  or cos  in terms of sines or cosines of multiple angles. P.M/Complex/p.15 1. De Moivre's Theorem 2. Binomial Theorem 3. Let z = cos  + i sin  z n = cos n + i sin n  cos n = z n + z-n 2   z = z = 1  n ; z -n = z and 1 z = cos n - i sin n sin n  = z n - z-n 2i Example Show that 32 cos6 = cos 6 + 6 cos 4 + 15 cos 2 + 10 . Solution : 64 cos6 = _______________________________________________________________ = _______________________________________________________________ = _______________________________________________________________ = _______________________________________________________________ = _______________________________________________________________ Advantage : easier to evaluate e.g. 32  cos 6 d  cosn x dx = _________________________________________________________ = _________________________________________________________ Classwork (a) Show that 16 sin 5 = sin 5 - 5 sin 3 + 10 sin  . (b) Hence, solve the equations (i) 16 sin 5 = sin 5 ; 1 (ii) . cos 5 + 5 cos 3 + 10 cos  = 2 Solution : (a) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ (b)(i)________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ (ii) _______________________________________________________________ P.M/Complex/p.16 ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ W.35 Ex.A Q.4 H.W. Ex.A Q.2 , 3 , 5 The n th Roots of Unity zn - 1 = 0 - a polynomial of degree n , so there should be n roots 1 = cos 2k + i sin 2k where k is any integer  2k   2k  Consider z = cos  + i sin    . k  n   n  Raising both sides to power n, we get   2k   2k   z = cos  + i sin    k  n   n    n n = cos 2k + i sin 2k = 1  z k is a solution of z n - 1 = 0 . Since k can be any integer, there seems to be an infinite number of roots (more than n roots) for the give equation. However, if n is used to divide k, then k = nq + r  for some integer q and r = 0, 1, 2, ... , n-1 .  2k   2k   2(nq + r)   2(nq + r)  cos   + i sin    + i sin   = cos       n   n  n n 2r  2r    = cos  2q +  + i sin  2q +    n  n   2r   2r  = cos   + i sin    n   n  As r = 0, 1, 2, ... , n-1 , it shows that there are only n roots (n values of zk ) for the given equation.  2k   2k  + i sin   z = cos    k  n   n  or i e 2 k n z 3 z 2 n 2 2 n 2 n for k = 0, 1, 2, ... , n-1 . n th roots of a complex number : z 2 n 1 z 0 z n-1 P.M./Complex/p.17 The n th roots of a complex number w are the n values of z which satisfy the equation zn - w = 0  (*) Let w = r (cos  + i sin ) . 1    + i sin  . Consider z' = r n  cos  n n  (z' ) n = r cos  + i sin   = w ∴ z' is a solution of the equation (*) . Let z0 , z1 , ... , zn-1 be the n th roots of 1. The roots of z n - w = 0 are z' z0 , z' z1 , ... , z' zn-1 .  ( z' z k ∴  n = (z' ) n ( z k ) n = w  1 = w ) The n th roots of w are 2 k 1  i i n n r e e n for k = 0, 1, 2, ... , n-1   2 k 1 i n = r e n 1 = rn   2k +    2k +     + i sin   cos   n   n   Equation reducible to the form z n - w = 0 : (z + 1)11 - (z - 1)11 = 0 e.g. Solution : ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________  (z + 1)11 - (z - 1)11 = _______________________________________________________ = _______________________________________________________ = _______________________________________________________ = _______________________________________________________ Example : Factorize z2n + z2n-1 + ... + z + 1 into real quadratic factors. P.M/Complex/p.18 Solution : z2n+1 - 1 z2n + z2n-1 + ... + z + 1 = z - 1 Suppose z2n + z2n-1 + ... + z + 1 = 0 ,  z2n+1 - 1 = 0 and z  1  z = ___________________________________________________________ z2n + z2n-1 + ... + z + 1 ∴ = _______________________________________________________________ = _______________________________________________________________ = _______________________________________________________________ Example : Let n be a positive integer. By solving the equation x2n + 1 = 0 , show that x n + x -n = n  (2k - 1)    x+ x -1 - 2 cos 2n  . k=1 n  (2k - 1)  Hence, deduce that 22n-1   sin 2  = 1 and 4n  k=1  cos n = n   (2k - 1)   1 - sin 2 2 csc 2 4n  . k=1 Solution : ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ∴ x2n + 1 = ______________________________________________________________ = ______________________________________________________________ = ______________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ (b) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ______________________________________________________________ P.M/Complex/p.19 ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Note : n th roots of unity :  2k   2k   z = cos  + i sin    k  n   n  zn = 1 i Let w = e 2 n or i e 2 k n for k = 0, 1, 2, ... , n-1  zk = w k .  The n th roots of unity are 1 , w, w 2 , ... , w n-1. For z n - 1 = 0 , sum of roots = - coefficient of z n -1 coefficient of z n  1 + w + w 2 + ... + w n-1 = 0 . Example : x3 - 1 = 0 Let w = e i 2 3 .  1 + w + w2 = 0 Example : n C0 Solution : i + n C3x3 + n C6 x6 + ... = ? 2 3  1 + w + w2 = 0 and w 3 = 1 Let w = e (1 + x) n = n C0 + n C1x + n C2 x2 + n C3x3 + n C4 x4 + ... _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ Therefore, nC0 + n C3 + n C6 + ... = __________________________________________________________________ = __________________________________________________________________ = __________________________________________________________________ = __________________________________________________________________ = __________________________________________________________________ Classwork P.M/Complex/p.20 nC2 + n C5 + n C8 + ... = ? (1 + x) n = n C0 + n C1x + n C2 x2 + n C3x3 + n C4 x4 + ... _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ Therefore, n C 2 + n C 5 + n C 8 + ... = __________________________________________________________________ = __________________________________________________________________ = __________________________________________________________________ = __________________________________________________________________ = __________________________________________________________________ W.35 Ex.B Q.2, 4, 5 H.W. : Ex.B Q.1, 7, 9 Ex.C Q.2 Primitive Root An n th root of unity z is said to be primitive if there doesn't exist a positive integer m less than n for which z m = 1 . z9 = 1 e.g. Consider z3 = 2 i For z3 = e 3 ∴  2 i 3 zk = e , i e 2k 9 and z 5 = z33 = ei2  for k = 0, 1, 2, ... , 8 10  i 9 . e = 1. There exists a positive integer n less than 9 such that z Let n be a positive integer such that z5n = 1    10   10  cos   n + i sin   n=1  9   9    10  cos   n =1  9    10    n = 2k  9   5n = k 9 ∴ 9 divides n. ∴ 9<n and e n 3  10  i n  9  =1 . =1  10  sin  n = 0  9  for some integer k  z5 is a primitive root of unity. Theorem : e i 2k n is a primitive n th root of 1 if k, n are relatively prime to each other . P.M./Complex/p.21  2k  i Assume 1 =  e n     cos      2km = 1 n m = and 2km is an even integer n e i 2km 2km n = cos n sin  2km . n + i sin 2km = 0 n km is also an integer n If k, n are relatively prime to each other, then n divides m.  n  m Therefore, if k and n are relatively prime to each other, then W.35 Ex.C Q.1,3 W.36 Q.1 W.36.5 Q.4 , 9 - 11 , 15 H.W. : W.36 Q.2, 3 W.36.5 Q. 5 ,6 , 7 , 12 , 13 , 14 ,17 END e i 2k n is a primitive n th root of 1 .