Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The origin of novel proteins by gene duplication: evolution of translation termination factors Galina Zhouravleva Department of Genetics St. Petersburg State University Part 1. Mechanism of translation termination Main steps in eukaryotic translation Start codon 5’ Stop codon UAA AUG CAP 3’ UTR 5’ UTR Initiation mRNA 3’ AAAAAAA Elongation Recycling Termination Main steps in eukaryotic translation Start codon 5’ Stop codon UAA AUG CAP 3’ UTR 5’ UTR Initiation mRNA 3’ AAAAAAA Elongation Termination Translation factors: Prokariota: IF-1, IF-2, IF-3 Eukaryota: eIF1, eIF1A, eIF2, eIF2B, eIF3, eIF4A, eIF4B, eIF4E, eIF4G, eIF5 EF-Tu, EF-Ts, EF-G RF1, RF2, RF3 eEF1А, eEF1В, eEF2 eRF1, eRF3 Translation termination in prokaryotes Stop-codon recognition Е Р А Е Р А RF1 (RF2) + RF3 UGA RF2 + RF3 UGA 3’ 5’ Translation termination factors - RF- factors (Release Factors): Class 1 release factors RF1 (essential) – decodes UAA and UAG RF2 (essential) – decodes UAA and UGA 36% amino acid identity Class 2 release factor RF3 - GTPase; promotes RF1/2 release (non-essential) Translation termination in eukaryotes Stop-codon recognition Е Р А AAA UUU Е Р А eRF1 + eRF3 UGA AAA UUU GTP UGA Peptidyl-tRNA hydrolysis Recycling? Reinitiation? Е Р А AAA UUU UGA 3’ GTP hydrolysis 4G 4E 5’ Е Р А AAA UUU GTP UGA Class 1 release factor eRF1 (essential) – UAA, UAG, UGA Class 2 release factor eRF3 (essential) - GTPase (RF1 + RF2) (RF3) Part 2. Translation termination factors Class 1 release factors Prokaryota Eukaryota RF1 - UAA и UAG eRF1 – UAA, UAG, UGA Archaea aRF1 – all 3 stop codons (?) RF2 - UAA и UGA No sequence similarity Homologous (30% of identity) Class 2 release factors Prokaryota RF3 Eukaryota Archaea eRF3 Absent No sequence similarity The average similarity plot of RF sequences A-G – conserved regions Ito et al., 1996 Comparison of the amino acid sequences of prokaryotic RFs and EF-G of E.coli Ito et al., 1996 tRNA-protein mimicry hypothesis Ito et al., 1996 Phylogenetic tree of aRF1 and eRF1 Mulitcellular eukaryotes Inagaki, Doolittle, 2000 Liu, 2005 Phylogenetic tree of eRF3 The phylogenetic tree showing the origin of paralogs encoding the factors eRF3a and eRF3b in higher eukaryotes eRF3a H. sapiens Duplication eRF3a M. musculus Divergence eRF3b H. sapiens eRF3b M. musculus eRF3 lower eukaryotes Duplication Difference in the organization of GSPT genes GSPT1 – 15 introns GSPT2 – no introns 16 chromosome H.sapiens 16 chromosome M.musculus Х chromosome Х chromosome A model of GSPT2 origin by reverse transcription of a processed GSPT1 transcript and its reintegration in X-chromosome GSPT2 (X chromosome) P2 5’UTR/2 Retroposition Splicing P1 P2 5’UTR/2 5’UTR/1 3’UTR GSPT1 (16 chromosome) P1, P2 – promoter sequences eRF3 family S. cerevisiae Sup35 N M Complementation of S. cerevisiae SUP35 disruption C (1-685) + 57% 14% 13% Amino acid identity between yeast Sup35 and human GSPT1 Human GSPT1 (1-637) - Mouse GSPT1 (1-635) - Human GSPT2 (1-632) Mouse GSPT2 (1-632) + X. laevis Sup35 (1-573) - NT NT N-terminal domain of eRF3 is not conserved in evolution Identity (%) Protein with yeast Sup35 with mouse GSPT1 Q+N (%) G+Y (%) Yeast proteome 10 8 - - ySup35 45 33 100 10 mGSPT1 8 10 10 100 mGSPT2 4 5 7 49 xSup35 18 9 14 11 N-terminal domain of eRF3 is not conserved in evolution G-stretch mGSPT1 -----------------MDPGSGGGGGGGGGGSSSSSDSAPDCWDQTDME----------------------------------ccttccccccccccccccccccccccccccccc-----------------mGSPT2 -----------------MDLGS-------------SNDSAPDCWDQVDME----------------------------------eeecc-------------cccccccccceeeec-----------------xSup35 -----------------ITGTTLFPPTWEVLPTLPTPCLTPSAPLIKQLV----------------------------------ecccccccccceecccccccccccccchhheee-----------------ySup35 MSDSNQGNNQQNYQQYSQNGNQQQGNNRYQGYQAYNAQAQPAGGYYQNYQGYSGYQQGGYQQYNPDAG eccccccccccceeeeccccccccccccccchhhhhhtccccccceecttccttcccttcccccttcc . * : QN-stretch Oligopeptide (PQGGYQQ-YN) repeats mGSPT1 APGPGPCGGG---GSGSGSMAAVAEAQR---ENLSAAFSRQLNVNAKPFVPN--cccccccccc---cccchhhhhhhhhhh---hhhhhhhhhhhcccccccccc--mGSPT2 GPGSAPSGDGIAPAAMAAAEAAEAEAQR---KHLSLAFSSQLNIHAKPFVPS--cccccccccccchhhhhhhhhhhhhhhh---hhhhhhhhhhccccccccccc--xSup35 YPNPTHPEMDASDSAPDSWEQADMEATE---AQLNNSMA-ALNVNAKPFVPN--ccccccccccccccccchhhhhhhhhhh---hhhhhhhh-hhhccccccccc--ySup35 YQQQYNPQGGYQQYNPQGGYQQQFNPQGGRGNYKNFNYNNNLQGYQAGFQPQSQG ceeecccttccccccttccceeeccccccccceeeecccccccchettccccctt . . :. . *: * *. Oligopeptide (PQGGYQQ-YN) repeats Pab1interacting region Alpha helix – h, extended strand – e, random coil – c, beta turn - t SOPM (Self-Optimized Prediction Method) - secondary structure prediction method (Geourjon and Deleage, 1994) http://npsa-pbil.ibcp.fr/cgi-bin/ Part 3. Prionization of translation termination factor eRF3 in yeast Composition of yeast eRF3 (Sup35) 1 124 N 254 685 M PFD C Translation termination EF1-A-like domain 6 33 97 PFD R1 R2 R3 R4 R5 R6 QN OR QN: the N-terminal QN-rich stretch. OR: R1-R6 – oligopeptide repeats of the consensus sequence PQGGYQQ-YN (P – proline, Q – glutamine, G – glycine, Y – tyrosine, N – asparagine) Evolutionary comparison of the N-terminal domains of Sup35 proteins from budding and fission yeast N-domain QN Debaryomyces QN-stretch Q(%) N(%) OR Saccharomyces Zygosaccharomyces Yarrowia Ascomycota Saccharomycodes Candida Schizosaccharomyces D. hansenii 39 15 (GYQNYNQ)5.5 K. lactis 43 17 (QGYNNAQQ)6 161 P. methanolica 35 30 (NRGGYSNYN)5 P. pastoris 16 22 (QGYQXY)4 S. cerevisiae 37 26 (PQGGYQQ-YN)5.5 Z. rouxii 40 12 (GGYGGY)5 38 9 132 137 Kluyveromyces Pichia OR-region 106 123 103 157 Y. lipolytica (QGGYQGGYQGGY)5 121 S. ludwigii 45 14 (GYQAYQQYNAQPQQQ)4.5 129 C. albicans 52 15 (GGYQQNYN)6.5 144 C. maltosa 39 7 112 S. pombe No QN-stretch (GGYQQNYNNR)4.5 No repeats Evolutionary origin of eRF3 EF-G eEF-2 Eukarya aEF-2 Archaea EF-G EF-G RF3 Ancient GTPase Eubacteria EF-Tu aEF-1A EF-Tu Archaea eEF-1A eEF-1A eRF3 Eukarya EF – elongation factor, RF- release factor. (1-465) Giardia intestinalis Sup35 (1-685) Saccharomyces cerevisiae Sup35 N M C Part 4. Molecular mimicry: translation termination factors as tRNA tRNA-protein mimicry hypothesis Ito et al., 1996 Molecular Mimicry EF-Tu tRNA tRNA-EF-Tu-GTP EF-G-GTP (Ramakrishnan 2002) Macromolecular mimicry in termination and ribosome recycling Human eRF1 E. coli RF2 Yeast tRNAPhe Part 5. Duplication in the evolutionary history of translation elongation and termination factors A scheme for the evolution of elongation and release factors in Bacteria, Archaea, and Eukarya. (Inagaki and Ford, 2000) The evolutionary origin of translation termination factors EF-G RF3 EF-G EF - elongation factors RF – termination (release) factors eEF-2 RF1 Hbs1 EF RF2 eRF1 EF-Tu Hbs1 EF-Tu eRF3 eEF-1A Duplication Divergence e - eukaryotic