Download Contents

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Contents
Preface
Acknowledgements
PART A
A1
DRIVE TYPES AND CORE TECHNOLOGY
Industrial motors
A1.1 Introduction and basic electromagnetic principles
A1.1.1 Magnetic circuits
A1.1.2 Electromechanical energy conversion
A1.1.2.1 The alignment of magnetic force/flux lines
A1.1.2.2 The interaction between a magnetic field
and a current-carrying conductor
A1.2 D.C. motors
A1.2.1 General
A1.2.2 Operating principles
A1.2.3 Fundamental equations of steady-state performance
A1.2.3.1 The separately excited d.c. motor
A1.2.3.2 The series d.c. motor
A1.2.3.3 The shunt d.c. motor
A1.2.3.4 The compound d.c. motor
A1.2.4 Permanent magnet d.c. motor
A1.2.5 Construction of the d.c. motor
A1.2.5.1 D.C. motor frame
A1.2.5.2 D.C. motor armature
A1.2.5.3 Brush gear
A1.2.5.4 Degree of protection and mounting
A1.2.5.5 DCPM design
A1.3 A.C. induction motors
A1.3.1 General
A1.3.2 Operating principles
A1.3.2.1 Rotating magnetic field
A1.3.2.2 Torque production
xxv
xxxix
1
11
11
11
16
16
18
20
20
21
25
25
29
30
30
31
32
32
33
34
34
35
36
36
36
37
38
vi
Contents
A1.3.3
A1.4
A1.5
A1.6
A1.7
A1.8
A2
Fundamental equations of steady-state performance
A1.3.3.1 Direct on line (DOL) starting current
and torque
A1.3.3.2 Starting current and torque when the
motor is connected to a variable-frequency
and/or variable-voltage supply
A1.3.4 Voltage – frequency relationship
A1.3.5 Slip-ring induction motor
A1.3.6 Speed-changing motors
A1.3.7 A.C. induction motor construction
A.C. synchronous motors
A1.4.1 General
A1.4.2 Operating principles
A1.4.3 Fundamental equations of steady-state performance
A1.4.3.1 General
A1.4.3.2 Brushless PM servo motor
A1.4.4 Limits of operation
A1.4.5 Synchronous motor construction
A1.4.5.1 Permanent-magnet servo motors
A1.4.5.2 Permanent-magnet industrial motors
A1.4.5.3 Wound-rotor synchronous motors
A1.4.6 Starting of synchronous motors
Reluctance motors
A.C. commutator motors
Motors for special applications
A1.7.1 Geared motors
A1.7.2 Brake motors
A1.7.3 Torque motors
Motors for hazardous locations
A1.8.1 General
A1.8.2 CENELEC
A1.8.3 North American standards
A1.8.4 Testing authorities
Drive converter circuit topologies
A2.1 Introduction
A2.2 A.C. to d.c. power conversion
A2.2.1 General
A2.2.2 Converters for connection to a single-phase supply
A2.2.2.1 Uncontrolled converters
A2.2.2.2 Controlled converters
A2.2.2.3 Sine-wave input converters
A2.2.2.4 Summary of characteristics
43
43
45
45
48
50
50
52
52
53
54
54
55
57
58
58
60
61
61
62
63
64
64
64
64
65
65
65
69
69
71
71
72
72
73
73
74
76
76
Contents
vii
Converters for connection to a three-phase supply
A2.2.3.1 Uncontrolled converters
A2.2.3.2 Controlled converters
A2.2.3.3 Summary of characteristics
A2.2.4 Converters for d.c. motor drive systems
A2.2.4.1 Single-converter drives
A2.2.4.2 Dual-converter drives
A2.2.4.3 Field control
D.C. to d.c. power conversion
A2.3.1 General
A2.3.2 Step down d.c. to d.c. converters
A2.3.2.1 Single-quadrant d.c. to d.c. converter
A2.3.2.2 Two-quadrant d.c. to d.c. converter
A2.3.2.3 Four-quadrant d.c. to d.c. converter
A2.3.3 Step-up d.c. to d.c. converters
A.C. to a.c. power converters with intermediate d.c. link
A2.4.1 General
A2.4.2 Voltage source inverters
A2.4.2.1 General characteristics
A2.4.2.2 Six-step/quasi-square-wave inverter
A2.4.2.3 Pulse-width modulated inverter
A2.4.2.4 Multi-level inverter
A2.4.3 Current source inverters
A2.4.3.1 General characteristics
A2.4.3.2 Converter-fed synchronous machine (LCI)
A2.4.3.3 Converter-fed induction motor drive
A2.4.3.4 Forced commutated induction motor drive
A2.4.3.5 Static Kramer drive
Direct a.c. to a.c. power converters
A2.5.1 General
A2.5.2 Soft starter/voltage regulator
A2.5.3 Cycloconverter
A2.5.4 Matrix converter
A2.5.5 Static Scherbius drive
78
78
78
79
82
83
84
85
86
86
87
87
88
89
90
91
91
91
91
94
96
97
99
99
100
101
101
102
103
103
103
104
106
107
A2.2.3
A2.3
A2.4
A2.5
A3
Power semiconductor devices
A3.1 General
A3.2 Diode
A3.2.1 PN diode
A3.2.2 PIN diode
A3.2.3 Transient processes (reverse and forward recovery)
A3.2.3.1 Reverse recovery
A3.2.3.2 Forward recovery
A3.2.4 Diode types
109
109
114
114
116
118
118
120
121
viii
Contents
A3.3
A3.4
A3.5
A3.6
A3.7
A3.8
Thyristor (SCR)
A3.3.1 Device description
A3.3.2 Transient processes
A3.3.2.1 Turn-on
A3.3.2.2 Turn-off
A3.3.3 Thyristor gating requirements
A3.3.4 Thyristor types
Triac
Gate turn-off thyristor (GTO)
A3.5.1 Device description
A3.5.2 Switching characteristics and gate drive
A3.5.2.1 Turn-on
A3.5.2.2 Turn-off
A3.5.3 Voltage and current ratings
Integrated gate commutated thyristor (IGCT)
A3.6.1 Device description
A3.6.2 Switching behaviour and gate drive
A3.6.3 Voltage and current ratings
MOSFET
A3.7.1 Device description
A3.7.2 Principal features and applications
A3.7.3 D.C. characteristics
A3.7.4 Switching performance
A3.7.5 Transient characteristics
A3.7.5.1 Switching waveforms
A3.7.5.2 Turn-on
A3.7.5.3 Turn-off
A3.7.6 Safe operating area (SOA)
A3.7.6.1 Forward-bias safe operating area (FBSOA)
A3.7.6.2 Reverse-bias safe operating area (RBSOA)
A3.7.7 Parasitic diode
A3.7.8 MOSFET gate drive requirements
A3.7.8.1 Speed limitations
A3.7.8.2 Driving paralleled MOSFETs
A3.7.9 Voltage and current ratings
Insulated gate bipolar transistor (IGBT)
A3.8.1 Device description
A3.8.2 Principal features and applications
A3.8.3 D.C. characteristics
A3.8.4 Punch-through versus non-punch-through
structures (PT and NPT)
A3.8.5 Switching performance
A3.8.6 Transient characteristics
A3.8.6.1 Switching waveforms
A3.8.6.2 Turn-on
A3.8.6.3 Turn-off
122
122
124
125
126
127
127
130
130
130
132
133
134
135
135
135
136
137
137
137
137
139
140
141
141
142
143
143
143
144
144
145
146
147
147
147
147
148
149
150
151
151
152
152
154
Contents
ix
Safe operating area (SOA)
A3.8.7.1 Forward-bias safe operating area (FBSOA)
A3.8.7.2 Reverse-bias safe operating area (RBSOA)
A3.8.8 Parasitic thyristor
A3.8.9 IGBT gate drive requirements
A3.8.9.1 IGBT switching speed limitations
A3.8.9.2 Series and parallel operation
A3.8.9.3 IGBT short-circuit performance
A3.8.10 Voltage and current ratings
A3.9 Bipolar junction transistor (BJT)
A3.10 Other power devices and materials
A3.10.1 MOS controlled thyristor (MCT)
A3.10.2 MOS turn-off thyristor
A3.10.3 Junction field-effect transistors (JFETs)
A3.11 Materials
A3.12 Power device packaging
A3.12.1 General
A3.12.2 Pressure contact packages
A3.12.2.1 Construction
A3.12.2.2 Features
A3.12.3 Large wire-bonded packages for power modules
A3.12.3.1 Construction
A3.12.3.2 Package types
A3.12.3.3 Features
A3.12.4 Small wire-bonded packages for discrete devices
A3.12.4.1 Construction
A3.12.4.2 Package types
A3.12.4.3 Features
155
155
156
157
157
157
158
159
159
159
160
160
161
162
162
163
163
165
165
166
166
166
167
168
168
169
169
169
Torque, speed and position control
A4.1 General principles
A4.1.1 The ideal control system
A4.1.2 Open-loop control
A4.1.3 Closed-loop control
A4.1.4 Criteria for assessing performance
A4.2 Controllers in a drive
A4.2.1 General
A4.2.2 Torque control
A4.2.3 Flux control
A4.2.4 Speed control
A4.2.4.1 Basic speed control
A4.2.4.2 Setting speed controller gains
A4.2.4.3 Speed control with torque feed-forward
A4.2.5 Position control
A4.2.5.1 Basic position control
A4.2.5.2 Position control with speed feed-forward
171
171
171
171
172
173
175
175
176
179
179
179
183
185
186
186
190
A3.8.7
A4
x
Contents
A4.3
A4.4
A5
D.C. motor drives
A4.3.1 General
A4.3.2 Torque control
A4.3.3 Flux control
A.C. motor drives
A4.4.1 Torque and flux control
A4.4.1.1 Introduction
A4.4.1.2 D.C. motor torque and flux control
A4.4.1.3 Permanent magnet motor torque
and flux control
A4.4.1.4 Induction motor torque and flux control
A4.4.1.5 Open-loop induction motor drive
A4.4.2 Direct torque control
A4.4.3 Performance summary
A4.4.3.1 Permanent-magnet motor drives
A4.4.3.2 Induction motor drives with
closed-loop current control
A4.4.3.3 Open-loop induction motor drives
Position and speed feedback
A5.1 General
A5.1.1 Feedback quantity required
A5.1.2 Absolute position feedback range
A5.1.3 Position resolution
A5.1.4 Position accuracy
A5.1.5 Speed resolution
A5.1.6 Speed accuracy
A5.1.7 Environment
A5.1.8 Maximum speed
A5.1.9 Electrical noise immunity
A5.1.10 Distance between the feedback device and the drive
A5.1.11 Additional features
A5.2 Speed feedback sensors
A5.2.1 D.C. tacho-generator
A5.3 Position feedback sensors
A5.3.1 Resolver
A5.3.2 Incremental encoder
A5.3.3 Incremental encoder with commutation signals
A5.3.4 Incremental encoder with commutation signals only
A5.3.5 SINCOS encoder
A5.3.6 Absolute SINCOS encoder
A5.3.7 Absolute encoders
A5.3.8 SINCOS encoders with serial communications
A5.3.8.1 EnDat
A5.3.8.2 Hiperface
192
192
192
194
195
195
195
196
197
203
205
206
208
209
210
210
211
211
211
212
212
214
214
214
215
215
215
216
216
216
216
218
218
221
223
224
224
226
227
228
228
229
Contents
A5.3.8.3 SSI
A5.3.8.4 Summary
A5.3.9 Serial communications encoders
A5.3.9.1 BiSS
A5.3.9.2 EnDat
A5.3.10 Wireless encoders
xi
229
230
230
230
230
231
A6
Motion control
A6.1 General
A6.1.1 Position, speed, acceleration and jerk
A6.1.1.1 Speed
A6.1.1.2 Acceleration
A6.1.1.3 Jerk
A6.1.2 Possible configurations
A6.2 Time-based profile
A6.3 CAM profile
A6.4 Electronic gearbox
A6.5 Practical systems
A6.5.1 Control Techniques’ Advanced Position Controller
A6.5.2 Control Techniques’ Indexer
233
233
234
234
234
235
236
239
243
248
249
249
250
A7
Voltage source inverter: four-quadrant operation
A7.1 General
A7.2 Controlled deceleration
A7.2.1 Performance and applications
A7.2.1.1 Advantages
A7.2.1.2 Disadvantages
A7.3 Braking resistor
A7.3.1 Performance and applications
A7.3.1.1 Advantages
A7.3.1.2 Disadvantages
A7.4 Active rectifier
A7.4.1 Performance and applications
A7.4.1.1 Advantages
A7.4.1.2 Disadvantages
253
253
254
255
256
256
256
257
257
257
257
259
259
260
A8
Switched reluctance and stepper motor drives
A8.1 General
A8.2 Switched reluctance motors and controllers
A8.2.1 Basic principle of the switched reluctance motor
A8.2.1.1 Operation as a motor
A8.2.1.2 Operation as a brake or generator
A8.2.1.3 Summary so far
A8.2.1.4 Relationship between torque polarity
and motoring and generating
261
261
261
261
264
265
265
267
xii
Contents
A8.2.2
A8.3
Control of the machine in practice
A8.2.2.1 Low-speed operation
A8.2.2.2 What happens as speed is increased?
A8.2.2.3 Medium-speed operation
A8.2.2.4 How is performance maintained as
speed increases?
A8.2.2.5 High-speed operation
A8.2.2.6 Summary of typical/practical control
A8.2.2.7 Control of speed and position
A8.2.3 Polyphase switched reluctance machines
A8.2.4 Losses in the switched reluctance motor
A8.2.5 Excitation frequency
A8.2.6 Power electronics for the switched reluctance motor
A8.2.6.1 Power supply and ‘front end’ bridge
A8.2.6.2 Power switching stage
A8.2.6.3 Single-switch-per-phase circuits
A8.2.6.4 Multiple-phase operation
A8.2.6.5 Single-switch circuit using bifilar winding
A8.2.6.6 Two-switch asymmetrical bridge
A8.2.7 Advantages of the switched reluctance system
A8.2.7.1 Rotor construction
A8.2.7.2 Stator construction
A8.2.7.3 Electronics and system-level benefits
A8.2.8 Disadvantages of the switched reluctance system
A8.2.8.1 Torque ripple
A8.2.8.2 Acoustic noise
Stepper motor drives
A8.3.1 Stepping motor principles
A8.3.1.1 The permanent-magnet motor
A8.3.1.2 The VR motor
A8.3.1.3 The hybrid motor
A8.3.2 Stepping motor drive circuits and logic modes
A8.3.2.1 General
A8.3.2.3 Unipolar switching
A8.3.2.3 Bipolar switching
A8.3.2.4 High-speed stepping: L/R drives
A8.3.2.5 Chopper drives
A8.3.2.6 Bilevel drives
A8.3.3 Application notes
A8.3.3.1 Effect of inertia
A8.3.3.2 Resonance
A8.3.3.3 Stepper/encoders
267
267
267
268
269
269
270
271
272
273
274
275
275
275
275
277
278
278
279
279
280
280
282
282
283
284
284
284
285
286
287
287
288
290
290
292
292
293
293
293
294
Contents
PART B
B1
THE DRIVE IN ITS ENVIRONMENT
The a.c. supply
B1.1 General
B1.2 Supply harmonics and other low-frequency disturbances
B1.2.1 Overview
B1.2.2 Regulations
B1.2.2.1 Regulations for installations
B1.2.2.2 Regulations and standards for equipment
B1.2.3 Harmonic generation within variable-speed drives
B1.2.3.1 A.C. drives
B1.2.3.2 D.C. drives
B1.2.4 The effects of harmonics
B1.2.5 Calculation of harmonics
B1.2.5.1 Individual drives: d.c.
B1.2.5.2 Individual drives: a.c.
B1.2.5.3 Systems
B1.2.5.4 Isolated generators
B1.2.6 Remedial techniques
B1.2.6.1 Connect the equipment to a point
with a high fault level (low impedance)
B1.2.6.2 Use three-phase drives where possible
B1.2.6.3 Use additional inductance
B1.2.6.4 Use a lower value of d.c. smoothing
capacitance
B1.2.6.5 Use a higher pulse number
(12 pulse or higher)
B1.2.6.6 Use a drive with an active input converter
B1.2.6.7 Use a harmonic filter
B1.2.7 Typical harmonic current levels for a.c.
drive arrangements
B1.2.8 Additional notes on the application of
harmonic standards
B1.2.8.1 The effect of load
B1.2.8.2 Choice of reference current:
application of IEEE Std 519-1992
B1.2.9 Interharmonics and emissions up to 9 kHz
B1.2.10 Voltage notching
B1.2.11 Voltage dips and flicker
B1.3 Power factor
B1.4 Supply imperfections
B1.4.1 General
xiii
297
299
299
299
299
300
301
301
302
302
304
306
307
307
308
308
310
310
311
311
311
315
316
318
318
319
319
319
321
321
322
323
324
326
326
xiv
Contents
B1.4.2
B1.4.3
B1.4.4
Frequency variation
Voltage variation
Temporary and transient over-voltages between
live conductors and earth
B1.4.5 Voltage unbalance
B1.4.6 Harmonic voltage
B1.4.7 Supply voltage dips and short interruptions
B1.4.8 Interharmonics and mains signalling
B1.4.9 Voltage notching
B1.4.10 EMC standards
B2
B3
326
326
327
327
329
329
330
331
333
Interaction between drives and motors
B2.1 General
B2.2 Drive converter effects upon d.c. machines
B2.3 Drive converter effects upon a.c. machines
B2.3.1 Introduction
B2.3.2 Machine rating: thermal effects
B2.3.3 Machine insulation
B2.3.3.1 Current source inverters
B2.3.3.2 Voltage source inverters
B2.3.4 Bearing currents
B2.3.4.1 Root causes of bearing currents
B2.3.4.2 Good practices to reduce the risk
of bearing currents
B2.3.5 Overspeed
B2.4 Motors for hazardous (potentially flammable or
explosive) locations
335
335
335
336
336
336
337
337
337
349
349
Physical environment
B3.1 Introduction
B3.2 Enclosure degree of protection
B3.2.1 General
B3.2.2 Motor
B3.2.2.1 General
B3.2.2.2 US practice
B3.2.3 Drive
B3.3 Mounting arrangements
B3.3.1 Motor
B3.3.1.1 General
B3.3.1.2 IEC 60034-7 standard enclosures
B3.3.1.3 NEMA standard enclosures
B3.3.2 Drive
B3.3.3 Integrated motor drive
B3.4 Terminal markings and direction of rotation
B3.4.1 Motor
B3.4.1.1 General
355
355
355
355
356
356
356
356
360
360
360
360
360
360
363
363
363
363
351
352
353
Contents
xv
B3.4.1.2 IEC 60034-8/EN 60034-8
B3.4.1.3 NEMA
B3.4.2 Drive
B3.5 Ambient temperature
B3.5.1 Motor
B3.5.2 Drive
B3.5.2.1 Maximum operating temperature
B3.5.2.2 Minimum operating temperature
B3.6 Humidity and condensation
B3.6.1 Motor
B3.6.2 Drive
B3.7 Noise
B3.7.1 Motor
B3.7.2 Drive
B3.7.3 Motor noise when fed from a drive converter
B3.8 Vibration
B3.8.1 Motor
B3.8.2 Drive
B3.9 Altitude
B3.10 Corrosive gases
B3.10.1 Motors
B3.10.2 Drives
364
366
371
371
371
372
372
372
373
373
373
373
373
376
376
378
378
380
380
380
380
381
B4
Thermal management
B4.1 Introduction
B4.2 Motor cooling
B4.2.1 General
B4.2.2 D.C. motors
B4.2.2.1 Air filters
B4.2.3 A.C. industrial motors
B4.2.4 High-performance/servo motors
B4.2.4.1 Intermittent/peak torque limit
B4.2.4.2 Forced-air (fan) cooling
B4.3 Drive cooling: the thermal design of enclosures
B4.3.1 General
B4.3.2 Calculating the size of a sealed enclosure
B4.3.3 Calculating the air-flow in a ventilated enclosure
B4.3.4 Through-panel mounting of drives
383
383
383
383
385
386
386
386
388
388
389
389
389
391
392
B5
Drive system power management: common d.c. bus topologies
B5.1 Introduction
B5.2 Power circuit topology variations
B5.2.1 General
B5.2.2 Simple bulk uncontrolled external rectifier
B5.2.3 A.C. input and d.c. bus paralleled
B5.2.4 One host drive supplying d.c. bus to slave drives
393
393
396
396
396
397
398
xvi
Contents
B5.2.5
B5.3
B5.4
B6
A bulk four-quadrant controlled rectifier
feeding the d.c. bus
B5.2.6 Active bulk rectifier
Fusing policy
Practical systems
B5.4.1 Introduction
B5.4.2 Variations in standard drive topology
B5.4.3 Inrush/charging current
B5.4.4 Continuous current
B5.4.5 Implementation: essential knowledge
B5.4.5.1 A.C. and d.c. terminals connected:
drives of the same current rating only
B5.4.5.2 A.C. and d.c. terminals connected:
drives of different current ratings
B5.4.5.3 One host drive supplying d.c. bus
to slave drives
B5.4.5.4 Simple bulk uncontrolled external rectifier
B5.4.6 Practical examples
B5.4.6.1 Winder/unwinder sharing energy
via the d.c. bus
B5.4.6.2 Four identical drives with a single
dynamic braking circuit
B5.4.7 Note on EMC filters for common d.c. bus systems
Electromagnetic compatibility (EMC)
B6.1 Introduction
B6.1.1 General
B6.1.2 Principles of EMC
B6.1.3 EMC regulations
B6.2 Regulations and standards
B6.2.1 Regulations and their application to drive modules
B6.2.2 Standards
B6.3 EMC behaviour of variable-speed drives
B6.3.1 Immunity
B6.3.2 Low-frequency emission
B6.3.3 High-frequency emission
B6.4 Installation rules
B6.4.1 EMC risk assessment
B6.4.2 Basic rules
B6.4.2.1 Cable segregation
B6.4.2.2 Control of return paths, minimising
loop areas
B6.4.2.3 Earthing
B6.4.3 Simple precautions and ‘fixes’
B6.4.4 Full precautions
399
400
402
402
402
403
404
404
406
406
407
407
408
408
408
409
409
411
411
411
411
412
412
412
413
414
414
414
415
416
416
417
417
417
417
420
420
Contents
B6.5
B6.6
Theoretical background
B6.5.1 Emission modes
B6.5.2 Principles of input filters
B6.5.3 Screened motor cables
B6.5.4 Ferrite ring suppressors
B6.5.5 Filter earth leakage current
B6.5.6 Filter magnetic saturation
Additional guidance on cable screening for sensitive circuits
B6.6.1 Cable screening action
B6.6.2 Cable screen connections
B6.6.3 Recommended cable arrangements
xvii
422
422
424
425
425
426
426
426
426
428
431
B7
Protection
B7.1 Protection of the drive system and power supply infrastructure
B7.1.1 General
B7.1.2 Fuse types
B7.1.3 Application of fuses to drive systems
B7.1.4 Earth faults
B7.1.5 IT supplies
B7.1.6 Voltage transients
B7.2 Motor thermal protection
B7.2.1 General
B7.2.2 Protection of line-connected motor
B7.2.3 Protection of inverter-driven motor
B7.2.4 Multiple motors
B7.2.5 Servo motors
433
433
433
433
434
435
435
436
438
438
438
439
440
440
B8
Mechanical vibration, critical speed and torsional dynamics
B8.1 General
B8.2 Causes of shaft vibrations independent of
variable-speed drives
B8.2.1 Sub-synchronous vibrations
B8.2.2 Synchronous vibrations
B8.2.3 Super-synchronous vibrations
B8.2.4 Critical speeds
B8.3 Applications where torque ripple excites a resonance in
the mechanical system
B8.4 High-performance closed-loop applications
B8.4.1 Limits to dynamic performance
B8.4.2 System control loop instability
B8.5 Measures for reducing vibration
441
441
B9
Installation and maintenance of standard motors and drives
B9.1 Motors
B9.1.1 General
443
443
443
444
444
444
446
446
446
446
449
449
449
Contents
xviii
B9.2
PART C
B9.1.2 Storage
B9.1.3 Installation
B9.1.4 Maintenance guide
B9.1.5 Brush gear maintenance
Electronic equipment
B9.2.1 General
B9.2.2 Location of equipment
B9.2.3 Ventilation systems and filters
B9.2.4 Condensation and humidity
B9.2.5 Fuses
449
450
451
452
454
454
454
455
455
455
PRACTICAL APPLICATIONS
457
C1
Application and drive characteristics
C1.1 General
C1.2 Typical load characteristics and ratings
C1.3 Drive characteristics
C1.3.1 General
461
461
461
472
472
C2
Duty cycles
C2.1 Introduction
C2.2 Continuous duty: S1
C2.3 Short-time duty: S2
C2.4 Intermittent duty: S3
C2.5 Intermittent duty with starting: S4
C2.6 Intermittent duty with starting and electric braking: S5
C2.7 Continuous operation periodic duty: S6
C2.8 Continuous operation periodic duty with electric
braking: S7
C2.9 Continuous operation periodic duty with related load
speed changes: S8
C2.10 Duty with non-periodic load and speed variations: S9
C2.11 Duty with discrete constant loads: S10
477
477
477
478
479
480
481
481
Interfaces, communications and PC tools
C3.1 Introduction
C3.2 Overview of interface types
C3.3 Analogue signal circuits
C3.3.1 General
C3.3.2 Hardware implementations and wiring advice
C3.3.2.1 General guidance on connecting
analogue signal circuits
C3.3.2.2 Single-ended circuits
C3.3.2.3 Differential circuits
C3.3.2.4 The case for 4 – 20 mA and other
current loop circuits
485
485
485
486
486
487
C3
482
482
482
483
487
490
491
496
Contents
xix
The use of capacitors for connecting
cable screens
C3.3.3 Typical specifications for analogue inputs and outputs
Digital signal circuits
C3.4.1 Positive and negative logic
C3.4.2 Digital input
C3.4.3 Digital output
C3.4.4 Relay contacts
Digital serial communications
C3.5.1 Introduction
C3.5.2 Serial network basics
C3.5.2.1 Physical layer
C3.5.2.2 Data link layer
C3.5.2.3 Application layer
C3.5.2.4 Device profile
C3.5.3 RS-232/RS-485 Modbus: A simple Fieldbus system
Fieldbus systems
C3.6.1 Introduction to Fieldbus
C3.6.2 Centralised versus distributed control networks
C3.6.2.1 Centralised network
C3.6.2.2 Distributed network
C3.6.2.3 Hybrid networks
C3.6.3 Open and proprietary Fieldbus systems
C3.6.3.1 Open networks
C3.6.3.2 Proprietary networks
C3.6.4 OPC technology
C3.6.5 Industrial Fieldbus systems (non Ethernet)
C3.6.5.1 Profibus DP
C3.6.5.2 DeviceNet
C3.6.5.3 CANopen
C3.6.5.4 Interbus
C3.6.5.5 LonWorks
C3.6.5.6 BACnet
C3.6.5.7 SERCOS II
C3.6.6 Ethernet-based Fieldbuses
C3.6.6.1 General
C3.6.6.2 Modbus TCP/IP
C3.6.6.3 EtherNet IP
C3.6.6.4 PROFINET
C3.6.6.5 EtherCAT
C3.6.6.6 Powerlink
C3.6.7 Company-specific Fieldbuses
C3.6.7.1 CTNet
C3.6.7.2 CTSync
C3.6.8 Gateways
496
497
499
499
500
501
501
501
501
502
503
506
508
508
508
510
510
512
512
513
514
516
516
516
517
517
517
518
519
520
520
521
522
523
523
523
524
525
525
526
526
526
527
528
C3.3.2.5
C3.4
C3.5
C3.6
xx
Contents
C3.7
PC tools
C3.7.1
C3.7.2
C3.7.3
C3.7.4
C3.7.5
Engineering design tools
Drive commissioning and setup tools
Application configuration and setup tools
System configuration and setup tools
Monitoring tools
528
529
529
530
530
531
C4
Typical drive functions
C4.1 Introduction
C4.2 Speed or frequency reference/demand
C4.3 Ramps
C4.4 Frequency slaving
C4.5 Speed control
C4.6 Torque and current control
C4.6.1 Open loop with scalar V/f control
C4.6.2 Closed-loop and high-performance open loop
C4.7 Automatic tuning
C4.8 Second parameter sets
C4.9 Sequencer and clock
C4.10 Analogue and digital inputs and outputs
C4.11 Programmable logic
C4.12 Status and trips
C4.13 Intelligent drive programming: user-defined functionality
C4.14 Functional safety
C4.14.1 Principles
C4.14.2 Technical standards
C4.14.3 Possible safety functions for drives
C4.14.3.1 Safe torque off (STO)
C4.14.3.2 Advanced drive-specific functions
C4.14.3.3 Other machinery safety functions
C4.14.3.4 Safety bus interfaces
C4.14.3.5 Integration into a machine
C4.15 Summary
533
533
533
534
535
535
535
535
536
536
537
537
537
537
538
539
543
543
544
546
546
547
548
549
549
549
C5
Common techniques
C5.1 General
C5.2 Speed control with particular reference to linear motion
C5.2.1 Linear to rotary speed reference conversion
C5.3 Torque feed-forward
C5.4 Virtual master and sectional control
C5.5 Registration
C5.6 Load torque sharing
C5.6.1 General
C5.6.2 Open-loop systems
C5.6.3 Paired d.c. motors
C5.6.4 Paired a.c. motors
551
551
552
555
555
556
562
567
567
568
570
572
Contents
C5.7
C5.8
C5.9
C5.10
C5.11
C6
C5.6.4.1 Parallel motors
C5.6.4.2 Frequency slaving
C5.6.4.3 Current slaving
C5.6.5 Torque slaving systems
C5.6.6 Speed-controlled helper with fixed torque
C5.6.7 Speed-controlled helper with shared torque
C5.6.8 Full closed-loop systems
Tension control
Sectional control
Winding
C5.9.1 General
C5.9.2 Drum winders
C5.9.3 Centre-driven winders
High-frequency inverters
C5.10.1 General
C5.10.2 Frequency control of a.c. induction motors
C5.10.3 Purpose-designed high frequency motors
C5.10.4 High-frequency inverters
C5.10.5 High-frequency applications
Special d.c. loads
C5.11.1 Traction motor field control
C5.11.2 Battery charging
C5.11.3 Electrolytic processes
C5.11.4 Electric heating and temperature control
Industrial application examples
C6.1 Introduction
C6.2 Centrifugal pumps
C6.2.1 Single-pump systems
C6.2.2 Multiple pump systems (duty-assist control)
C6.2.2.1 Note on parallel operation of pumps
C6.3 Centrifugal fans and compressors
C6.4 Heating, ventilation, air conditioning and refrigeration (HVAC/R)
C6.4.1 Introduction
C6.4.2 Commercial buildings
C6.4.2.1 Building automation systems
C6.4.2.2 HVAC applications
C6.4.3 Retail facilities
C6.4.3.1 Refrigeration applications
C6.4.4 Original equipment manufacturers
C6.5 Cranes and hoists
C6.5.1 General
C6.5.2 Overhead cranes
C6.5.3 Port cranes
C6.5.3.1 Ship-to-shore container cranes: grab
ship unloaders
xxi
572
573
573
574
575
576
577
578
579
580
580
581
582
589
589
590
592
593
594
594
595
595
596
596
599
599
599
599
605
605
606
607
607
608
608
609
614
615
616
616
616
617
617
617
xxii
Contents
C6.5.3.2 Rubber-tyred gantry cranes
C6.5.3.3 Rail-mounted gantry cranes
C6.5.4 Automated warehousing
C6.5.5 Notes on crane control characteristics
C6.5.5.1 Hoisting control
C6.5.5.2 Slewing control
C6.5.6 Retrofit applications
C6.6 Elevators and lifts
C6.6.1 Lift system description
C6.6.2 Speed profile generation
C6.6.3 Load weighing devices
C6.6.4 Block diagram of lift electrical system
C6.7 Metals and metal forming
C6.7.1 Introduction
C6.7.2 Steel
C6.7.2.1 Main mill drives
C6.7.2.2 Auxiliary drives
C6.7.2.3 Strip rolling mills
C6.7.2.4 Continuous casting
C6.7.3 Wire and cable manufacture
C6.7.3.1 Wire drawing machine
C6.7.3.2 Twin carriage armourer
C6.8 Paper making
C6.8.1 General
C6.8.2 Sectional drives
C6.8.3 Loads and load sharing
C6.8.4 Control and instrumentation
C6.8.5 Winder drives
C6.8.6 Brake generator power and energy
C6.8.7 Unwind brake generator control
C6.8.8 Coating machines
C6.9 Plastics extrusion
C6.9.1 General
C6.9.2 Basic extruder components
C6.9.3 Overall extruder performance
C6.9.4 Energy considerations
C6.9.5 Motors and controls
C6.10 Stage scenery: film and theatre
C6.10.1 The Control Techniques orchestra
PART D
D1
618
618
620
620
620
620
621
622
622
625
626
627
627
627
627
628
629
630
633
635
635
637
638
638
639
640
642
644
645
647
648
649
649
652
653
654
656
657
657
APPENDICES
661
Symbols and formulae
D1.1 SI units and symbols
D1.1.1 SI base units
D1.1.2 Derived units
663
663
663
664
Contents
D1.2
D1.3
D1.4
Electrical formulae
D1.2.1 Electrical quantities
D1.2.2 A.C. three-phase (assuming balanced symmetrical
waveform)
D1.2.3 A.C. single-phase
D1.2.4 Three-phase induction motors
D1.2.5 Loads (phase values)
D1.2.6 Impedance
D1.2.7 A.C. vector and impedance diagrams
D1.2.8 Emf energy transfer
D1.2.9 Mean and rms values, waveform
D1.2.9.1 Principles
D1.2.9.2 Mean d.c. value
D1.2.9.3 rms value
D1.2.9.4 Form factor
Mechanical formulae
D1.3.1 Laws of motion
D1.3.1.1 Linear motion
D1.3.1.2 Rotational or angular motion
D1.3.1.3 Relationship between linear and
angular motion
D1.3.1.4 The effect of gearing
D1.3.1.5 Linear to rotary speed reference conversion
D1.3.1.6 Friction and losses
D1.3.1.7 Fluid flow
Worked examples of typical mechanical loads
D1.4.1 Conveyor
D1.4.2 Inclined conveyor
D1.4.3 Hoist
D1.4.4 Screw-feed loads
xxiii
665
665
666
666
667
667
667
667
669
670
670
671
672
674
674
674
676
677
678
679
680
681
682
684
684
689
689
693
D2
Conversion tables
D2.1 Mechanical conversion tables
D2.2 General conversion tables
D2.3 Power/torque/speed nomogram
695
695
700
706
D3
World industrial electricity supplies (<1 kV)
707
Bibliography
715
Index
717
Related documents