Download Chapter 2-4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2.1 Lines and Angles
• Acute angle –
0 < x < 90
• Right angle - 90
• Obtuse angle –
90 < x < 180
• Straight angle - 180
2.1 Lines and Angles
• Complementary
angles – add up to 90
• Supplementary angles
– add up to 180
• Vertical angles – the
angles opposite each
other are congruent
2.1 Lines and Angles
• Intersection – 2 lines
intersect if they have one
point in common.
• Perpendicular – 2 lines are
perpendicular if they
intersect and form right
angles
• Parallel – 2 lines are parallel
if they are in the same plane
but do not intersect
2.1 Lines and Angles
1 2
3 4
5 6
7 8
• When 2 parallel lines are cut by a transversal the
following congruent pairs of angles are formed:
– Corresponding angles:1 & 5, 2 & 6, 3
& 7, 4 & 8
– Alternate interior angles: 4 & 5, 3 & 6
– Alternate exterior angles: 1 & 8, 2 & 7
2.1 Lines and Angles
1 2
3 4
5 6
7 8
• When 2 parallel lines are cut by a transversal the
following supplementary pairs of angles are
formed:
– Same side interior angles: 3 & 5, 4 & 6
– Same side exterior angles: 1 & 7, 2 & 8
2.1 Lines and Angles
• When 3 or more parallel lines are cut by a pair of
transversals, the transversals are divided
proportionally by the parallel lines
AB
DE

BC
EF
A
B
C
D
E
F
2.2 Triangles
• Triangles classified by number of congruent sides
Types of triangles
# sides congruent
scalene
0
isosceles
2
equilateral
3
2.4 The Angles of a Triangle
• Triangles classified by angles
Types of triangles
Angles
acute
All angles acute
obtuse
One obtuse angle
right
One right angle
equiangular
All angles congruent
2.2 Triangles
• In a triangle, the sum of the interior angle
measures is 180º
(mA + mB + mC = 180º)
A
C
B
2.2 Triangles
• The measure of an exterior angle of a triangle
equals the sum of the measures of the 2 nonadjacent interior angles - m1 + m2 = m4
2
1
3
4
2.2 Triangles
• Perimeter of triangle = sum of lengths of sides
• Area of a triangle = ½ base  height
h
b
2.2 Triangles
• Heron’s formula – If 3 sides of a triangle
have lengths a, b, and c, then the area A of a
triangle is given by:
A  s( s  a)( s  b)( s  c) where
s is the semi - perimeter s  12 (a  b  c)
• Why use Heron’s formula instead of
A = ½ bh?
2.2 Triangles
•
Definition: Two Triangles are similar 
two conditions are satisfied:
1. All corresponding pairs of angles are
congruent.
2. All corresponding pairs of sides are
proportional.
Note: “~” is read “is similar to”
2.2 Triangles
•
Given ABC ~ DEF with the following
measures, find the lengths DF and EF:
E
10
5
A
B
D
6
4
C
F
2.3 Quadrilaterals
Quadrilateral
Parallelogram
Rhombus
Rectangle
Square
Trapezoid
Isosceles
Trapezoid
2.3 Quadrilaterals
Polygon
Area
Square
s2
Rectangle
lw
Parallelogram
bh
Triangle
1
2
bh
Trapezoid
1
2
hb1  b2 
2.3 Quadrilaterals
Polygon
Triangle
Perimeter
a + b + c (3 sides)
Quadrilateral
a + b + c + d (4 sides)
Parallelogram
2a + 2b
Rectangle
2l + 2w
Square
4s
2.4 Circumference and Area of a Circle
• Circumference of a circle:
C = d = 2r
  22/7 or 3.14
r
• Area of a circle – A  12 r (2 r )   r 2
Note: Just need area and circumference
formulas from this section
2.6 Solid Geometric Figures
V = volume
A = total surface
area
S = lateral surface
area
Rectangular solid
V=lwh
A=2lw+2lh+2wh
Cube
V=e3
A=6s2
Right circular
cylinder
V=r2h
A=2r2+2rh
S=2rh
Right prism
V=Bh
A=2B+ph
S=ph
Right circular cone V=(1/3) r2h
A=r2+rs
S=rs
Regular pyramid
V=(1/3)Bh
A=B+(1/2)ps
S=(1/2)ps
Sphere
V=(4/3) r3
A=4r2
3.2 More About Functions
Domain:
x-values
(input)
Range:
y-values
(output)
Example: Demand for a product depends on its
price.
Question: If a price could produce more than one
demand would the relation be useful?
3.2 More About Functions
• Function notation:
y = f(x) – read “y equals f of x”
note: this is not “f times x”
• Linear function: f(x) = mx + b
Example: f(x) = 5x + 3
• What is f(2)?
3.2 More About Functions
• Graph of
f ( x)  x
• What is the domain and the range?
3.2 More About Functions - Determining
Whether a Relation or Graph is a Function
• A relation is a function if:
for each x-value there is exactly one y-value
– Function: {(1, 1), (3, 9), (5, 25)}
– Not a function: {(1, 1), (1, 2), (1, 3)}
• Vertical Line Test – if any vertical line
intersects the graph in more than one point,
then the graph does not represent a function
4.1 Angles
• Acute angle –
0 < x < 90
• Right angle - 90
• Obtuse angle –
90 < x < 180
• Straight angle - 180
4.1 Angles
• 45 angle
• Also 360-45 = 315
• 135 angle
• Also 360-135 = 225
4.1 Angles
• Converting degrees to radians (definition):
 rad  180
• Examples:
50 

(50) rad  0.87 rad
180
180
1.3 rad 
(1.3)  74.52

4.1 Angles
• Standard position – always w.r.t. x-axis
θ
4.2 Defining the Trigonometric Functions
• Diagram:
r
y
θ
x
4.2 Defining the Trigonometric Functions
• Definitions:
y
sin( θ ) 
r
y
tan( θ ) 
x
r
sec(θ ) 
x
r 2  x2  y2
x
cos(θ ) 
r
x
cot(θ ) 
y
r
csc(θ ) 
y
r
y
θ
x
4.2 Defining the Trigonometric Functions
• Given one function – find others :
r
4 y
θ
sin( θ )    
5 r 
x
r 2  x 2  y 2  52  x 2  4 2  x 2  25  16  9
x3
x 3
y 4
cos(θ )   , tan( θ )   , etc.
r 5
x 3
y
4.3 Values of the trigonometric functions
• 45-45-90 triangle:
– Leg opposite the 45 angle = a
– Leg opposite the 90 angle = 2a
45
a
2a
90
45
a
4.3 Values of the trigonometric functions
• 30-60-90 triangle:
– Leg opposite 30 angle = a
– Leg opposite 60 angle = 3a
– Leg opposite 90 angle = 2a
60
2a
30
a
90
3a
4.3 Values of the trigonometric functions
• Common angles for trigonometry
r2
r2
  60
y 3
y 1
  30
x 3
r2
x 1
  45
x 2
y 2
4.3 Values of the trigonometric functions
• Some common trig function values:
1
sin( 30) 
2
2
sin( 45) 
2
3
sin( 60) 
2
3
cos(30) 
2
2
cos( 45) 
2
1
cos(60) 
2
1
3
tan( 30) 

3
3
2
tan( 45) 
1
2
3
tan( 60) 
 3
1
4.3 Values of the trigonometric functions
• The inverse trigonometric functions are
defined as the angle giving the result for the
given function (sin, cos, tan, etc.)
• Example: sin( 12)  .21  sin 1 (.21)  12
• Note:
1
sin ( x) is not the same as
sin( x)
1
4.3 Values of the trigonometric functions
• Some common inverse trig function values:
1
3
3
1
1
sin ( )  30 cos ( )  30 tan ( )  30
2
2
3
2
2
1
1
sin ( )  45 cos ( )  45 tan 1 (1)  45
2
2
3
1
1 1
sin ( )  60 cos ( )  60 tan 1 ( 3 )  60
2
2
1
4.4 The Right Triangle
• Solving a triangle: Given 3 parts of a triangle (at least
one being a side), we are to find the other 3 parts.
B
c
A
b
a
C
• Solving a right triangle: Since one angle is 90, we
need to know another angle (the third angle will be the
complement) and a side or we need to know 2 of 3
sides (use the Pythagorean theorem to find 3rd side).
4.4 The Right Triangle
• Given the right triangle oriented as follows:
a
sin( A) 
c
b
cot( A) 
a
b
sin( B) 
c
a
cot( B) 
b
b
cos( A) 
c
c
sec( A) 
b
a
cos( B) 
c
c
sec( B) 
a
a
tan( A) 
b
c
csc( A) 
a
b
tan( B) 
a
c
csc( B) 
b
B
c
A
b
a
C
4.4 The Right Triangle
• Example: Given A = 30, a = 2, solve the triangle.
B
c
C  90, B  90  30  60
a
1
2
tan A  
 b2 3
b
3 b
cos A 
check :
b
3 2 3



c
2
c
A
3c  4 3  c  4

c  a b  4  2  2 3
2
2
2
2
b
2

2
 16  4  12
a
C
4.4 The Right Triangle
B
• Example: Solve the triangle given:
c
a  3 2, c  6
A
b
a
3 2
2
2
 sin A 

 A  sin 1
 45
c
6
2
2
C  90, B  90  45  45
sin A 

c  a b  6  3 2
2
2
2
2
b 2  18  b  3 2

2
 b 2  36  18  b 2
a
C
4.5 Applications of Right Triangles
B
• No new material – applications
of the previous section.
c
A
b
a
C
Related documents