Download Photomultiplier Tubes

Document related concepts
no text concepts found
Transcript
Photomultiplier Tubes
PHOTOMULTIPLIER TUBES AND RELATED PRODUCTS
Opening The Future with Photonics
Human beings obtain more than 70 percent of the information visually by
using their eyes. However, there are vast sums of information and unknown
possibilities hidden within light not visible to the naked eye. This kind of light
includes ultraviolet, infrared, X-ray and ultra-low level light impossible for
human eyes to detect.
Since its founding over 50 years ago, Hamamatsu Photonics has been
investigating not only light seen by the human eye but also light that far
exceeds this level. As a leading manufacturer specializing in the field of
photonics, Hamamatsu Photonics has marketed dozens of photosensitive
devices, light sources and related products. Through these state-of-the-art
products, Hamamatsu Photonics has committed itself to pioneering industrial
and academic research work in still unexplored areas in many fields.
Hamamatsu Photonics will continue to deliver innovative breakthroughs in a
diverse range of fields, always striving to make human life fuller and richer by
"researching the many ways to use light".
CONTENTS
Index by Type Number ...............................................................................
2
About Photomultiplier Tube
Construction and Operating Characteristics ............................................... 4
Connections to External Circuits ................................................................ 14
Selection Guide by Applications ................................................................. 16
Side-on Type Photomultiplier Tubes
13 mm Dia. Types ......................................................................................
28 mm Dia. Types with UV to Visible Sensitivity ........................................
28 mm Dia. Types with UV to Near IR Sensitivity ......................................
13 mm Dia. Types, 28 mm Dia. Types with Solar Blind Response ............
22
24
26
28
Head-on Type Photomultiplier Tubes
10 mm Dia. Types, 13 mm Dia. Types .......................................................
19 mm Dia. Types ......................................................................................
25 mm Dia. Types ......................................................................................
28 mm Dia. Types ......................................................................................
38 mm Dia. Types ......................................................................................
51 mm Dia. Types with Plastic Base ..........................................................
51 mm Dia. Types with Glass Base ...........................................................
76 mm Dia. Types, 127 mm Dia. Types .....................................................
30
32
34
36
38
40
42
46
Special Purpose Photomultiplier Tubes
Hemispherical Envelope Type ....................................................................
Special Envelope Types .............................................................................
Metal Package Photomultiplier Tubes ........................................................
For High Magnetic Environments
.....................................................
Position Sensitive Types ............................................................................
Microchannel Plate-Photomultiplier Tubes (MCP-PMTs) ...........................
48
48
50
54
56
58
Gain Characteristics
60
Voltage Distribution Ratio
62
Replacement Information
63
Photomultiplier Tube Assemblies
64
Accessories for Photomultiplier Tubes
Socket Assemblies ..................................................................................... 72
Amplifier Units ............................................................................................. 94
High Voltage Power Supplies ..................................................................... 96
Thermoelectric Coolers ............................................................................... 101
Magnetic Shield Cases ............................................................................... 106
Housings, Power and Signal Cables, Connector Adapters.......................... 107
Related Products for Photon Counting ....................................................... 108
Electron Multipliers
110
Cautions and Warranty
112
Typical Photocathode Spectral Response
113
Typical Photocathode Spectral Response
114
Index by Type Number
Type No.
Product
R105 ..............................
R212 ..............................
R329-02 .........................
R331-05 .........................
R374 ..............................
R375 ..............................
R464 ..............................
R474 ..............................
R515 ..............................
R550 ..............................
R580 ..............................
R595 ..............................
R596 ..............................
R636-10 .........................
R647...............................
R649 ..............................
R669 ..............................
E717 Series ...................
R759 ..............................
R821 ..............................
E849 Series ...................
E850 Series ...................
R877 ..............................
R928 ..............................
R943-02 .........................
R955 .............................
R972 ..............................
E974 Series ..................
R980 ..............................
E989 Series ...................
E990 Series ...................
R1080 ............................
R1081 ............................
R1166 ............................
E1168 Series .................
E1198 Series .................
R1250 ............................
R1288A .........................
R1306 ............................
R1307 ............................
E1341-01 .......................
R1387 ............................
E1435-02 .......................
R1450 ............................
R1463 ............................
R1513 ............................
R1527 ............................
R1548-07 .......................
R1584 ............................
R1617 ............................
R1635 ............................
R1705 ............................
E1761 Series .................
R1828-01 .......................
R1878 ............................
R1893 ............................
R1894 ............................
R1924A .........................
R1925A .........................
H1949-51 .......................
R2066 ............................
R2078 ............................
R2083 ............................
R2154-02 .......................
E2183 Series .................
R2228 ............................
R2248 ............................
E2253 Series .................
R2257 ............................
R2362 ............................
R2368 ............................
H2431-50 .......................
R2486-02 .......................
R2496 ............................
R2557 ............................
E2624 Series .................
R2658 ............................
R2693 ............................
E2924 Series .................
Side-on PMT ..............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Electron Multiplier ......................................
Electron Multiplier ......................................
Head-on PMT .............................................
Head-on PMT .............................................
Electron Multiplier ......................................
Electron Multiplier ......................................
Side-on PMT ...............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly .......................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly .......................................
Socket Assembly .......................................
Head-on PMT .............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Side-on PMT .............................................
Head-on PMT .............................................
Socket Assembly .......................................
Head-on PMT .............................................
Magnetic Shield Case ................................
Socket Assembly .......................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Power and Signal Cable .............................
Socket Assembly .......................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Housing ......................................................
Head-on PMT .............................................
Socket Assembly .......................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Rectangular Dual PMT ..............................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly .......................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
PMT Assembly ...........................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly ........................................
Head-on PMT .............................................
Rectangular PMT .......................................
Socket Assembly .......................................
Head-on PMT .............................................
Electron Multiplier ......................................
Side-on PMT ..............................................
PMT Assembly ...........................................
Position-Sensitive PMT ..............................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly .......................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Socket Assembly .......................................
2
Page
24
24
42
42
36
44
42
110
110
40
38
110
110
26
30
42
44
78
30
32
78
78
46
26
44
26
32
78
38
106
78
30
30
32
107
79
46
34
40
46
107
38
79
32
30
46
24
48
46
32
30
38
78
40
32
30
30
34
34
64
38
34
42
40
78
36
48
78
44
110
26
64
56
30
30
78
26
24
78
Type No.
Product
R2949 ............................
E2979 Series .................
H3164-10 .......................
H3165-10 .......................
H3178-51 .......................
R3234-01 .......................
R3292-02 .......................
R3310-02 .......................
R3478 ............................
R3550A .........................
H3695-10 .......................
R3788 ............................
R3809U Series ..............
R3810 ............................
R3811 ............................
C3830 Series .................
R3886 ............................
R3896 ............................
R3991A .........................
R3998-02 .......................
R4124 ............................
R4143 ............................
R4177-01 .......................
A4184 Series .................
R4220 ............................
R4607-01 .......................
R4632 ............................
C4710 Series .................
C4720 Series .................
C4840 ............................
C4877 ............................
C4878 ............................
C4900 Series .................
R4998 ............................
A5026 Series .................
R5070A..........................
A5074 ............................
R5108 ............................
R5150-10 .......................
R5505-70 .......................
C5594 ............................
R5610A .........................
R5611A-01 ....................
E5780.............................
E5859 Series .................
R5900U-00-L16 .............
R5900U-01 ....................
R5900U-01-M4 ..............
R5900U-01-L16 .............
R5900U-20 ....................
R5900U-20-M4 ..............
R5900U-20-L16 .............
R5912 ............................
R5916U Series...............
R5924-70 .......................
R5929 ............................
R5983 ............................
R5984 ............................
E5996 ............................
R6091 ............................
R6094 ............................
R6095 ............................
E6133-04 .......................
H6152-70 .......................
H6156-50 .......................
R6231 ............................
R6233 ............................
R6234 ............................
R6235 ............................
R6236 ............................
R6237 ............................
C6270 ............................
C6271 ............................
E6316 Series .................
R6350 ............................
R6351 ...........................
R6352 ............................
R6353 ............................
R6354 ............................
Side-on PMT ..............................................
Socket Assembly .......................................
PMT Assembly ...........................................
PMT Assembly ...........................................
PMT Assembly ...........................................
Head-on PMT .............................................
Position-Sensitive PMT .............................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
PMT Assembly ...........................................
Side-on PMT ..............................................
MCP-PMT ..................................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Power Supply ............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Connector Adapter .....................................
Side-on PMT ..............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Power Supply .............................................
Power Supply .............................................
Power Supply .............................................
Thermoelectric Cooler ...............................
Thermoelectric Cooler ...............................
Power Supply .............................................
Head-on PMT .............................................
Signal Cable ..............................................
Head-on PMT .............................................
Relay Adapter .............................................
Side-on PMT ..............................................
Electron Multiplier ......................................
Head-on PMT for Highly Magnetic Field .......
Amplifier Unit .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Socket Assembly .......................................
Socket Assembly .......................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Hemispherical PMT ...................................
MCP-PMT ..................................................
Head-on PMT for Highly Magnetic Field .......
Head-on PMT ............................................
Side-on PMT .............................................
Side-on PMT .............................................
Socket Assembly .......................................
Head-on PMT ............................................
Head-on PMT ............................................
Head-on PMT ............................................
Socket Assembly .......................................
PMT Assembly ...........................................
PMT Assembly ...........................................
Head-on PMT ............................................
Head-on PMT ............................................
Hexagonal PMT .........................................
Hexagonal PMT .........................................
Rectangular PMT .......................................
Rectangular PMT .......................................
Socket Assembly .......................................
Socket Assembly .......................................
Socket Assembly .......................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Page
26
79
64
64
64
40
56
44
32
34
64
24
58
22
22
99
38
26
32
36
30
46
30
107
24
42
26
98
99
100
102
102
97
34
107
34
107
26
110
54
94
32
32
79
79
52
52
52
52
52
52
52
48
58
54
36
24
26
79
46
36
36
79
64
64
40
46
48
48
48
48
92
92
79
22
22
22
22
28
Type numbers shown in "Notes"
Type No.
Product
R6355 ............................
R6356-06 .......................
R6357 ............................
R6358 ............................
H6410 ............................
R6427 ............................
C6438 ............................
R6504-70 .......................
H6520 ............................
H6524 ............................
H6527 ............................
H6528 ............................
H6533 ............................
H6559 ............................
H6612 ............................
H6614-70 .......................
E6736 ............................
R6834 ............................
R6835 ............................
R6836 ............................
R6925 ............................
E7083 ............................
R7111 ............................
R7154 ............................
H7195 ............................
R7205-01 .......................
R7206-01 .......................
C7246 Series .................
C7247 Series .................
H7260-20 ......................
R7311 ............................
C7319 ............................
R7400U .........................
R7400U-01 ....................
R7400U-02 ....................
R7400U-03 ....................
R7400U-04 ....................
R7400U-06 ....................
R7400U-09 ....................
R7400U-20 ....................
R7401 ............................
R7402 ............................
H7415 ............................
R7447 ...........................
R7511 ............................
E7514 ............................
R7518 ............................
H7546B .........................
R7600U..........................
R7600U-00-M4 .............
R7639 ............................
E7693 ............................
E7694 Series .................
R7761-70 .......................
R7899 ............................
A7992 ............................
H8318-70 .......................
H8409-70 .......................
R8486 ............................
R8487 ............................
H8500 ............................
R8520U-00-C12.............
H8711 ............................
C8855 ............................
C8991 ............................
M9003 ...........................
R9110 ............................
C9143 ............................
C9144 ............................
R9220 ............................
H9500 ............................
H9530-20 .......................
C9663 ............................
C9744 ...........................
1P21 ..............................
1P28 ..............................
931A ..............................
931B ..............................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
PMT Assembly ...........................................
Head-on PMT .............................................
Amplifier Unit .............................................
Head-on PMT for Highly Magnetic Field .......
PMT Assembly ..........................................
PMT Assembly ..........................................
PMT Assembly ..........................................
PMT Assembly ..........................................
PMT Assembly ..........................................
PMT Assembly ..........................................
PMT Assembly ..........................................
PMT Assembly ..........................................
Socket Assembly ......................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Socket Assembly .......................................
Head-on PMT .............................................
Side-on PMT .............................................
PMT Assembly ...........................................
Head-on PMT ............................................
Head-on PMT ............................................
Socket Assembly .......................................
Socket Assembly .......................................
PMT Assembly ...........................................
Side-on PMT ..............................................
Amplifier Unit .............................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Metal Package PMT ..................................
PMT Assembly ...........................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Socket Assembly .......................................
Side-on PMT ..............................................
PMT Assembly ...........................................
Metal Package PMT ..................................
Metal Package PMT ..................................
Side-on PMT ..............................................
Socket Assembly .......................................
Socket Assembly .......................................
Head-on PMT for Highly Magnetic Field .......
Head-on PMT .............................................
Relay Adapter .............................................
PMT Assembly ...........................................
PMT Assembly ...........................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Flatpanel PMT Assembly ............................
Metal Package PMT ..................................
PMT Assembly ...........................................
Counting Unit .............................................
Socket Assembly .......................................
Counting Board ..........................................
Side-on PMT ..............................................
Thermoelectric Cooler ................................
Thermoelectric Cooler ................................
Side-on PMT ..............................................
Flatpanel PMT Assembly ............................
PMT Assembly ...........................................
Amplifier Unit .............................................
Photon Counting Unit .................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Page
22
22
22
22
64
36
94
54
64
64
64
64
64
64
64
64
79
36
36
36
24
79
36
28
64
36
36
90
90
64
28
94
50
50
50
50
50
50
50
50
50
50
64
24
28
79
24
64
52
52
28
79
79
54
34
107
64
64
28
28
64
52
64
109
92
109
26
104
104
26
64
64
94
108
24
24
24
24
Type No.
Product
R331 .............................
R585 .............................
R647P............................
R750 .............................
R758-10 ........................
R760 .............................
R877-01 ........................
R960 .............................
R976 .............................
R1080P .........................
R1104 ...........................
R1166P .........................
R1288A-01 ....................
R1450-13 ......................
R1463P .........................
R1464 ...........................
R1508 ...........................
R1509 ...........................
R1527P .........................
R1635P .........................
R1924P .........................
R1926A .........................
R2027 ...........................
R2059 ...........................
R2076 ...........................
R2256-02 ......................
R2295 ...........................
H2431-50 ......................
R2557P .........................
R2658P .........................
R2693P .........................
R3235-01 ......................
R3256 ............................
H3378-50 ......................
R3479 ...........................
R3550P .........................
R3810P .........................
R3878 ............................
R4141 ............................
R4220P .........................
R4332 ............................
R5113-02 ......................
R5320 ...........................
R5610P..........................
R5611 ...........................
R5900U-03-L16 .............
R5900U-04 ....................
R5900U-04-M4 ..............
R5900U-04-L16 .............
R5900U-06-L16 .............
R5900U-07-L16 .............
R5983P .........................
R6095P .........................
H6152-70 .......................
R6350P .........................
R6353P .........................
R6358-10 .......................
H6533 ...........................
H6614-70 .......................
R7056 ...........................
R7207-01 ......................
R7400P .........................
R7402-02 .......................
R7402-20 .......................
R7446 ...........................
R7449 ...........................
R7459 ...........................
R7518P..........................
R7600U-03 ....................
R7600U-03-M4 ..............
R7899-01 ......................
H8318-70 .......................
H8409-70 .......................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
PMT Assembly ...........................................
Head-on PMT..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
PMT Assembly ...........................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Head-on PMT .............................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Side-on PMT ..............................................
Head-on PMT .............................................
PMT Assembly ...........................................
Side-on PMT ..............................................
Side-on PMT ..............................................
Side-on PMT ..............................................
PMT Assembly ...........................................
PMT Assembly ...........................................
Head-on PMT .............................................
Head-on PMT .............................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Side-on PMT ..............................................
Head-on PMT .............................................
Head-on PMT .............................................
Side-on PMT ..............................................
Metal Package PMT ...................................
Metal Package PMT ...................................
Head-on PMT .............................................
PMT Assembly ...........................................
PMT Assembly ...........................................
Page
43
43
31
33
27
31
47
31
33
31
37
33
35
33
31
33
39
39
25
31
35
35
33
41
33
43
33
43
31
27
25
41
41
43
33
35
23
31
31
25
25
43
35
33
33
53
53
53
53
53
53
25
37
55
23
23
23
35
55
37
37
51
51
51
25
37
37
25
53
53
35
55
55
3
Construction and Operating Characteristics
INTRODUCTION
Figure 3: Types of Photocathode
Among photosensitive devices in use today, the photomultiplier
tube (or PMT) is a versatile device providing ultra-fast response
and extremely high sensitivity. A typical photomultiplier tube consists of a photoemissive cathode (photocathode) followed by focusing electrodes, an electron multiplier and an electron collector (anode) in a vacuum tube, as shown in Figure 1.
When light enters the photocathode, the photocathode emits
photoelectrons into the vacuum. These photoelectrons are then
directed by the focusing electrode voltages towards the electron
multiplier where electrons are multiplied by a secondary emission process. The multiplied electrons then are collected by the
anode as an output signal.
Because of secondary-emission multiplication, photomultiplier
tubes provide extremely high sensitivity and exceptionally low
noise compared to other photosensitive devices currently used
to detect radiant energy in the ultraviolet, visible, and near infrared regions. The photomultiplier tube also features fast time response and a choice of large photosensitive areas.
This section describes the prime features of photomultiplier tube
construction and basic operating characteristics.
a) Reflection Mode
REFLECTION MODE
PHOTOCATHODE
DIRECTION OF LIGHT
PHOTOELECTRON
TPMSC0029EA
b) Transmission Mode
SEMITRANSPARENT
PHOTOCATHODE
DIRECTION
OF LIGHT
PHOTOELECTRON
TPMHC0084EB
Figure 1: Cross-Section of Head-On Type PMT
FOCUSING ELECTRODE
PHOTOELECTRON
SECONDARY
ELECTRON
LAST DYNODE
STEM PIN
VACUUM
(10 -4 Pa)
DIRECTION
OF LIGHT
e-
FACEPLATE
ELECTORON MULTIPLIER
(DYNODES)
ANODE
PHOTOCATHODE
STEM
TPMHC0006EA
CONSTRUCTION
The photomultiplier tube generally has a photocathode in either
a side-on or a head-on configuration. The side-on type receives
incident light through the side of the glass bulb, while the headon type receives light through the end of the glass bulb. In general, the side-on type photomultiplier tube is relatively low priced
and widely used for spectrophotometers and general photometric systems. Most side-on types employ an opaque photocathode (reflection-mode photocathode) and a circular-cage structure electron multiplier (see description of "ELECTRON MULTIPLIER") which has good sensitivity and high amplification at a
relatively low supply voltage.
The head-on type (or the end-on type) has a semitransparent
photocathode (transmission-mode photocathode) deposited
upon the inner surface of the entrance window. The head-on
type provides better uniformity (see page 9) than the side-on
type having a reflection-mode photocathode. Other features of
head-on types include a choice of photosensitive areas ranging
from tens to hundreds of square centimeters.
Variants of the head-on type having a large-diameter hemispherical window have been developed for high energy physics experiments where good angular light reception is important.
ELECTRON MULTIPLIER
The superior sensitivity (high current amplification and high S/N
ratio) of photomultiplier tubes is due to the use of a low-noise
electron multiplier which amplifies electrons by a cascade secondary emission process. The electron multiplier consists of 8 to
19 stages of electrodes called dynodes.
There are several principal types in use today.
1) Circular-cage type
The circular cage is generally used for the side-on type of
photomultiplier tube. The prime features of the circular-cage
are compactness, fast response and high gain obtained at a
relatively low supply voltage.
Side-On Type
Head-On Type
TPMOC0077EB
2) Box-and-grid type
This type consists of a train of quarter cylindrical dynodes
and is widely used in head-on type photomultiplier tubes because of good electron collection efficiency and excellent uniformity.
Figure 2: External Appearance
a) Side-On Type
b) Head-On Type
TPMOC0078EA
PHOTOSENSITIVE
AREA
PHOTOSENSITIVE
AREA
3) Linear-focused type
The linear-focused type features extremely fast response
time and is widely used in applications where time resolution
and pulse linearity are important. This type also has the advantage of providing a large output current.
TPMOC0079EA
4
TPMSF0039
TPMHF0192
4) Venetian blind type
The venetian blind type has a large dynode area and is primarily used for tubes with large photocathode areas. It offers
better uniformity and a larger output current. This structure is
usually used when time response is not a prime consideration.
7) Metal Channel type
The metal channel dynode has a compact dynode construction manufactured by our unique fine machining techniques.
It delivers high-speed response due to a space between each
dynode stage that is much smaller than other types of conventional dynodes. The metal channel dynode is also ideal
for position sensitive measurement.
ELECTRON
TPMOC0080EA
5) Mesh type
The mesh type has a structure of fine mesh electrodes
stacked in close proximity. There are two mesh types of dynode: a coarse mesh type and a fine mesh type. Both types
provide improved pulse linearity and high resistance to magnetic fields. The mesh type also has position-sensitive capability when used with cross-wire anodes or multiple anodes.
The fine mesh type is particularly suited for use in applications where high magnetic fields are present.
TPMOC0084EA
Hybrid dynodes combining two of the above dynodes are also
available. These hybrid dynodes combine the best features of
each dynode type.
SPECTRAL RESPONSE
1 mm
COARSE MESH TYPE
ELECTRON
ELECTRON
13 µm
FINE-MESH TYPE
TPMOC0081EB
6) Microchannel plate (MCP) (see page 58)
The MCP is a thin disk consisting of millions of microglass
tubes (channels) fused in parallel with each other. Each
channel acts as an independent electron multiplier. The MCP
offers much faster time response than other discrete dynodes. It also features good immunity from magnetic fields
and two-dimensional detection ability when multiple anodes
are used.
TPMOC0082EA
Figure 4: Typical Spectral Response of Bialkali Photocathode
(HEAD-ON TYPE, BIALKALI PHOTOCATHODE)
100
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
ELECTRON
The photocathode of a photomultiplier tube converts energy
from incident light into electrons. The conversion efficiency (photocathode sensitivity) varies with the wavelength of the incident
light. This relationship between photocathode sensitivity and wavelength is called the spectral response characteristic. Figure 4
shows the typical spectral response of a bialkali photomultiplier
tube. The spectral response on long wavelengths is determined
by the photocathode material and on short wavelengths by the
window material. Typical spectral response characteristics for
various types of photomultiplier tubes are shown on pages 114
and 115. In this catalog, the long-wavelength cutoff of the spectral response characteristic is defined as the wavelength at
which the cathode radiant sensitivity is 1 % of the maximum sensitivity in bialkali and Ag-O-Cs photocathodes, and 0.1 % of the
maximum sensitivity in multialkali photocathodes.
Spectral response characteristics shown at the end of this catalog are typical curves for representative tube types. Actual data
may be different from tube to tube.
10
CATHODE
RADIANT
SENSITIVITY
1
QUANTUM
EFFICIENCY
0.1
0.01
200
400
600
800
WAVELENGTH (nm)
TPMOB0070EA
5
Construction and Operating Characteristics
The photocathode is a photoemissive surface usually consisting
of alkali metals with very low work functions. The photocathode
materials most commonly used in photomultiplier tubes are as
follows:
1) Ag-O-Cs
The transmission-mode photocathode using this material is
designated S-1 and sensitive from the range of visible light to
infrared radiation (300 mm to 1000 nm). The reflection mode
covers a slightly narrower range from 300 mm to 1100 nm.
Since Ag-O-Cs has comparatively high thermionic dark emission (refer to "ANODE DARK CURRENT" on page 8), photomultiplier tubes of this photocathode material are chiefly used
for detection in the infrared region with the photocathode
cooled.
2) GaAs
GaAs activated in cesium is also used as a photocathode.
The spectral response of this photocathode material usually
covers a wider spectral response range than multialkali, from
ultraviolet to 930 nm, which is comparatively flat over the
range between 300 mm and 850 nm.
3) InGaAs
This photocathode material has greater extended sensitivity
in the infrared range than GaAs. Moreover, in the range between 900 mm and 1000 nm, InGaAs has a much higher S/N
ratio than Ag-O-Cs.
4) Sb-Cs
Sb-Cs has a spectral response in the ultraviolet to visible
range and is mainly used in reflection-mode photocathodes.
5) Bialkali (Sb-Rb-Cs, Sb-K-Cs)
These materials have a spectral response range similar to
the Sb-Cs photocathode, but have higher sensitivity and lower dark current than Sb-Cs. They also have a blue sensitivity
index matching the scintillation flashes of NaI scintillators,
and so are frequently used for radiation measurement using
scintillation counting.
6) High temperature bialkali or low noise bialkali (Na-K-Sb)
This is particularly useful at higher operating temperatures
since it can withstand up to 175 °C. One major application is
in the oil well logging industry. At room temperatures, this
photocathode operates with very low dark current, making it
ideal for use in photon counting applications.
7) Multialkali (Na-K-Sb-Cs)
The multialkali photocathode has a high, wide spectral response from the ultraviolet to near infrared region. It is widely
used for broad-band spectrophotometers and photon counting applications. The long wavelength response can be extended to 930 nm by special photocathode activation processing.
8) Cs-Te, Cs-I
These materials are sensitive to vacuum UV and UV rays but
not to visible light and are therefore referred to as solar blind.
Cs-Te is quite insensitive to wavelengths longer than 320 nm,
and Cs-I to those longer than 200 nm.
WINDOW MATERIALS
Window materials commonly used in photomultiplier tubes are
described below. The window material must carefully be selected according to the application because the window material
determines the spectral response short wavelength cutoff.
1) Borosilicate glass
This is the most frequently used window material. Borosilicate glass transmits radiation from the infrared to approximately 300 nm. It is not suitable for detection in the ultraviolet
region. For some applications, a combination of a bialkali
photocathode and a low-noise borosilicate glass (so called Kfree glass) is used. The K-free glass contains very low potassium (40K) which can cause unwanted background counts.
Tubes designed for scintillation counting often employ K-free
glass not only for the faceplate but also for the side bulb to
minimize noise pulses.
6
2) UV-transmitting glass (UV glass)
This glass as the name implies is ideal for transmitting ultraviolet radiation and is used as widely as a borosilicate glass.
The UV cutoff is approximately 185 nm.
3) Synthetic silica
The synthetic silica transmits ultraviolet radiation down to 160
nm and offers lower absorption in the ultraviolet range compared to fused silica. Since the synthetic silica has a different
thermal expansion coefficient than Kovar, which is used for
the tube leads, it is not suitable as the tube stem material
(see Figure 1 on page 4). Borosilicate glass is used for the
stem, and a graded seal using glass with gradually different
thermal expansion coefficients is connected to the synthetic
silica window. The graded seal structure is vulnerable to
shock so the tube should be handled carefully.
4) MgF2 (magnesium fluoride)
Crystals of alkali halide are superior in transmitting ultraviolet
radiation, but have the disadvantage of deliquescence.
Among these crystals, MgF2 is known as a practical window
material because it offers low deliquescence and transmits
ultraviolet radiation down to 115 nm.
Figure 5: Typical Transmittance of Various Window Materials
100
TRANSMITTANCE (%)
PHOTOCATHODE MATERIALS
UVTRANSMITTING
GLASS
10
BOROSILICATE
GLASS
MgF2
SYNTHETIC
SILICA
1
100
120
160
200
240
300
WAVELENGTH (nm)
400
500
TPMOB0076EB
RADIANT SENSITIVITY AND QUANTUM EFFICIENCY
As Figure 4 shows, spectral response is usually expressed in
terms of radiant sensitivity or quantum efficiency as a function of
wavelength. Radiant sensitivity is the photoelectric current from
the photocathode, divided by the incident radiant power at a given wavelength, expressed in A/W (amperes per watt). Quantum
efficiency (QE) is the number of photoelectrons emitted from the
photocathode divided by the number of incident photons. Quantum efficiency is usually expressed as a percent. Quantum efficiency and radiant sensitivity have the following relationship at a
given wavelength.
QE= S × 1240 × 100
λ
where S is the radiant sensitivity in A/W at the given wavelength
and λ is the wavelength in nm (nanometers).
LUMINOUS SENSITIVITY
Since measuring the spectral response characteristic of photomultiplier tubes requires a sophisticated system and a great deal
of time, we instead provide figures for anode or cathode luminous sensitivity and only provide spectral response characteristics when specially required by the customer.
Cathode luminous sensitivity is the photoelectric current from the
photocathode per incident light flux (10-5 to 10-2 lumens) from a
tungsten filament lamp operated at a distribution temperature of
2856K. Anode luminous sensitivity is the anode output current
(amplified by the secondary emission process) per incident light
flux (10-10 to 10-5 lumens) on the photocathode. Although the
same tungsten lamp is used, the light flux and the applied voltage are adjusted to an appropriate level. These parameters are
particularly useful when comparing tubes having the same or
similar spectral response range. Hamamatsu final test sheets
accompanying the tubes usually indicate these parameters except for tubes with Cs-I or Cs-Te photocathodes insensitive to
tungsten lamp light. (Radiant sensitivity at a specific wavelength
is listed for those tubes using CsI or Cs-Te.)
The cathode luminous sensitivity is expressed in uA/lm (microamperes per lumen) and anode luminous sensitivity is expressed in A/lm (amperes per lumen). Note that the lumen is a
unit used for luminous flux in the visible region and therefore
these values may be meaningless for tubes that are sensitive
beyond the visible light region.
Figure 6: Typical Human Eye Response
and Spectral Distribution of 2856K Tungsten Lamp
100
TUNGSTEN
LAMP
AT 2856 K
60
Photoelectrons emitted from a photocathode are accelerated by
an electric field so as to strike the first dynode and produce secondary electron emissions. These secondary electrons then impinge upon the next dynode to produce additional secondary
electron emissions. Repeating this process over successive dynode stages achieves a high current amplification. A very small
photoelectric current from the photocathode can therefore be observed as a large output current from the anode of the photomultiplier tube.
Gain is simply the ratio of the anode output current to the photoelectric current from the photocathode. Ideally, the gain of a photomultiplier tube having n dynode stages and an average secondary emission ratio δ per stage is δn. While the secondary
electron emission ratio δ is given by δ=A·Eα
where A is the constant, E is the interstage voltage, and α is a
coefficient determined by the dynode material and geometric
structure. This usually has a value of 0.7 to 0.8.
When a voltage V is applied between the cathode and the anode
of a photomultiplier tube having n dynode stages, the gain µ, becomes
40
µ = δn = (A · Eα)n = A ·
VISUAL SENSITIVITY
20
=
400
600
800
1000
1200
1400
WAVELENGTH (nm)
TPMOB0054EC
BLUE SENSITIVITY INDEX AND RED/WHITE RATIO
The cathode blue sensitivity index and the red/white ratio are often used as a simple comparison of photomultiplier tube spectral
response.
The cathode blue sensitivity index is the photoelectric current
from the photocathode produced by a light flux of a tungsten
lamp at 2856K passing through a blue filter (Corning CS 5-58
polished to half stock thickness), measured under the same conditions as the cathode luminous sensitivity measurement. The
light flux, once transmitted through the blue filter cannot be expressed in lumens. The blue sensitivity index is an important
parameter in scintillation counting using an NaI scintillator since
the NaI scintillator produces emissions in the blue region of the
spectrum, and may be the decisive factor in energy resolution.
The red/white ratio is used for photomultiplier tubes with a spectral response extending to the near infrared region. This parameter is defined as the quotient of the cathode sensitivity measured
with a light flux of a tungsten lamp at 2856K passing through a
red filter (Toshiba IR-D80A for the S-1 photocathode or R-68 for
others) divided by the cathode luminous sensitivity measured
without filters under the same conditions as in cathode luminous
sensitivity measurement.
Figure 7: Transmittance of Various Filters
V
n+1
α n
)
An
· Vαn = K · Vαn
(n+1)αn
(K: constant)
Since photomultiplier tubes generally have 9 to 12 dynode stages, the anode output has a 6th to 10th power gain proportional
to the input voltage. So just a slight fluctuation in the applied voltage will appear as magnified 6 to 10 times in the photomultiplier
tube output. This means the photomultiplier tube is extremely
susceptible to fluctuations in the power supply voltage, so the
power supply must be extremely stable and provide a minimum
ripple, drift and temperature coefficient. Various types of wellregulated high-voltage power supplies designed for these requirements are available from Hamamatsu (see page 96).
Figure 8: Typical Gain vs. Supply Voltage
104
109
103
ANODE LUMINOUS SENSITIVITY (A / lm)
0
200
(
108
ANODE LUMINOUS
SENSITIVITY
102
107
101
106
100
105
10-1
104
GAIN
RELATIVE VALUE (%)
80
GAIN (CURRENT AMPLIFICATION)
100
GAIN
TOSHIBA R-68
TRANSMITTANCE (%)
80
60
10-2
200
CORNING
CS 5-58
(1/2 STOCK
THICKNESS)
300
500
700
SUPPLY VOLTAGE (V)
1000
103
1500
TPMOB0058EB
40
TOSHIBA
IR-D80A
20
0
200
400
600
800
WAVELENGTH (nm)
1000
1200
TPMOB0055EB
7
Construction and Operating Characteristics
ANODE DARK CURRENT
A small amount of current flows in a photomultiplier tube even
when the tube is operated in a completely dark state. This output
current is called the anode dark current, and the resulting noise
is a critical factor in determining the lower limit of light detection.
As Figure 9 shows, dark current is greatly dependent on the supply voltage.
Figure 9: Typical Dark Current vs. Supply Voltage
(AFTER 30 MINUTE STORAGE)
ANODE DARK CURRENT (nA)
101
100
10-1
10-2
10-3
400
600
800
1000
1200
1400
APPLIED VOLTAGE (V)
TPMOB0071EB
Major sources of dark current may be categorized as follows:
1) Thermionic emission of electrons
The materials of the photocathode emit tiny quantities of thermionic electrons even at room temperature. Most dark currents originate from the thermionic emissions, especially
those from the photocathode since they are successively
multiplied by the dynodes. Cooling the photocathode is most
effective in reducing thermionic emission and is particularly
useful in applications where low dark current is essential
such as in photon counting.
Figure 10 shows the relationship between dark current and
temperature for various photocathodes. Photocathodes which
have high sensitivity in the red to infrared region, especially
S-1, show higher dark current at room temperature. Photomultiplier tubes using these photocathodes are usually
cooled during operation.
Hamamatsu provides thermoelectric coolers (C9143, C9144,
C4877, C4878) designed for various sizes of photomultiplier
tubes (see page 102).
Figure 10: Anode Dark Current vs. Temperature
10-5
10-6
ANODE DARK CURRENT (A)
R316-02
(HEAD-ON TYPE, Ag-O-Cs)
The anode dark current decreases with time after the tube is
placed in a dark state. In this catalog, anode dark currents are
measured after 30 minutes of storage in a dark state.
ENI (EQUIVALENT NOISE INPUT)
ENI indicates the photon-limited signal-to-noise ratio. ENI refers
to the amount of light in watts necessary to produce a signal-tonoise ratio of unity in the output of a photomultiplier tube. The
value of ENI is given by:
ENI =
where
2q · Idb · g · ∆f
S
(watts)
q = electronic charge (1.60 × 10-19 coul.)
Idb = anode dark current in amperes after 30minute
storage in darkness
g = gain
∆f = bandwidth of the system in hertz (usually 1 hertz)
S = anode radiant sensitivity in amperes per watt
at the wavelength of interest
10-7
10-8
For tubes listed in this catalog, the value of ENI may be calculated by the above equation. Usually it has a value between 10-15
and 10-16 watts (at the peak sensitivity wavelength).
R374
(HEAD-ON TYPE,
MULTIALKALI)
10-9
MAGNETIC FIELD EFFECTS
10-10
10-11
R3550A
(HEAD-ON TYPE,
LOW-NOISE BIALKALI)
10-12
R6095
(HEAD-ON TYPE, BIALKALI)
10-13
-60
-40
-20
0
TEMPERATURE (°C)
8
2) Ionization of residual gases (ion feedback)
Residual gases inside a photomultiplier tube can be ionized
by collision with electrons. When these ions strike the photocathode or earlier stages of dynodes, secondary electrons
may be emitted. These secondary electrons result in relatively large output noise pulses. These noise pulses are usually
observed as afterpulses following the primary signal pulses
and may be a problem in detecting short light pulses. Present
photomultiplier tubes are designed to minimize afterpulses.
3) Glass scintillation
When electrons deviating from their normal trajectories strike
the glass envelope, scintillations may occur and a dark pulse
may result. To eliminate this type of dark pulse, photomultiplier tubes may be operated with the anode at a high voltage
and the cathode at ground potential. But this is not always
possible during tube operation. To obtain the same effect
without difficulty, Hamamatsu developed an "HA coating" in
which the glass bulb is coated with a conductive paint making
the same electrical potential as the cathode (see "GROUND
POLARITY AND HA COATING" on page 11).
4) Leakage current (ohmic leakage)
Leakage current resulting from imperfect insulation of the
glass stem base and socket may be another source of dark
current. This is predominant when the photomultiplier tube is
operated at a low voltage or low temperature. The flatter
slopes in Figure 9 and 10 are mainly due to leakage current.
Contamination from dirt and moisture on the surface of the
tube stem, base or socket may increase the leakage current,
and should therefore be avoided.
5) Field emissions
When a photomultiplier tube is operated at a voltage near the
maximum rated value, electrons might be emitted from electrodes by the strong electric field and cause dark pulses. So
operating the photomultiplier tube at a voltage 20 to 30% lower than the maximum rating is recommended.
20
40
TPMOB0065EB
Most photomultiplier tubes are affected by the presence of magnetic fields. Magnetic fields may deflect electrons from their normal trajectories and cause a loss of gain. The extent of the gain
loss depends on the type of photomultiplier tube and its orientation in the magnetic field. Figure 11 shows typical effects of magnetic fields on some types of photomultiplier tubes. In general,
tubes having a long path from the photocathode to the first dynode (such as large diameter tubes) tend to be more adversely
affected by magnetic fields.
Figure 11: Typical Effects by Magnetic Fields Perpendicular
to Tube Axis
28 mm dia.
SIDE - ON TYPE
110
100
90
80
70
60
13 mm dia.
HEAD-ON TYPE
LINEAR-FOCUSED
TYPE DYNODE
50
(
40
)
30
38 mm dia.
HEAD-ON TYPE
CIRCULAR CAGE
TYPE DYNODE
20
(
10
Figure 13: Examples of Spatial Uniformity
)
1) Head-On Type
0
0.1
0.2 0.3
MAGNETIC FLUX DENSITY (mT)
TPMOB0086EC
When a photomultiplier tube has to be operated in magnetic
fields, it may be necessary to shield the tube with a magnetic
shield case. (Hamamatsu provides a variety of magnetic shield
cases. See page 106). The magnetic shielding factor is used to
express the effect of a magnetic shield case. This is the ratio of
the strength of the magnetic field outside the shield case or
Hout, to that inside the shield case or Hin. The magnetic shielding factor is determined by the permeability µ, the thickness t
(mm) and inner diameter r (mm) of the shield case as follows.
Hout
=
Hin
3 µt
4r
Note that the magnetic shielding effect decreases towards the
edge of the shield case as shown in Figure 12. Covering the
tube with a shield case longer than the tube length by at least
half the tube diameter is recommended.
Figure 12: Edge Effect of Magnetic Shield Case
EDGE EFFECT
t
LONGER than r
2r
2) Side-On Type
(R6231-01 for gamma camera)
0.4 0.5
PHOTOMULTIPLIER TUBE
L
1000
PHOTOCATHODE
(TOP VIEW)
Reflection-mode photocathode
ANODE
SENSITIVITY (%)
0
-0.5 -0.4 -0.3 -0.2 -0.1
SHIELDING FACTOR (Ho/Hi)
Although the focusing electrodes of a photomultiplier tube are
designed so that electrons emitted from the photocathode or dynodes are collected efficiently by the first or following dynodes,
some electrons may deviate from their desired trajectories causing lower collection efficiency. The collection efficiency varies
with the position on the photocathode from which the photoelectrons are emitted and influences the spatial uniformity of a photomultiplier tube. The spatial uniformity is also determined by the
photocathode surface uniformity itself.
In general, head-on type photomultiplier tubes provide better
spatial uniformity than side-on types because of the photocathode to first dynode geometry. Tubes especially designed for
gamma camera applications have excellent spatial uniformity,
because uniformity is the decisive factor in the overall performance of a gamma camera.
ANODE SENSITIVITY (%)
RELATIVE OUTPUT (%)
120
SPATIAL UNIFORMITY
100
ANODE
SENSITIVITY (%)
50
0
0
50
100
100
PHOTOCATHODE
50
GUIDE KEY
0
TPMHC0085EB
TPMSC0030EC
TEMPERATURE CHARACTERISTICS
Dark current originating from thermionic emissions can be reduced by decreasing the ambient temperature of a photomultiplier tube. The photomultiplier tube sensitivity also varies with the
temperature, but these changes are smaller than temperature-induced changes in dark current, so cooling a photomultiplier tube
will significantly improve the S/N ratio.
In the ultraviolet to visible region, the sensitivity temperature
coefficient has a negative value, while near the long wavelength
cutoff it has a positive value. Figure 14 shows typical temperature coefficients for various photocathodes versus wavelength,
measured at room temperatures. Since the change in temperature coefficient change is large near the long wavelength cutoff,
temperature control may be needed in some applications.
100
Figure 14: Temperature Coefficient for Anode Sensitivity (Typ.)
10
1
1.5
r
r
Hamamatsu provides photomultiplier tubes using fine-mesh type
dynodes (see page 54). These photomultiplier tubes exhibit
much higher resistance to external magnetic fields than the photomultiplier tubes with other dynodes. When the light level to be
measured is high, "triode" and "tetrode" type tubes can be used
even in highly magnetic fields.
TEMPERATURE COEFFICIENT
FOR ANODE SENSITIVITY [%/°C]
TPMOB0011EB
1
BIALKALI
MULTIALKALI
Sb-Cs
0.5
Cs-Te
GaAs (Cs)
0
Ag-O-Cs
-0.5
MULTIALKALI
-1
200
300 400
Sb-Cs
500 600
700
800
900 1000 1100 1200
WAVELENGTH [nm]
TPMOB0013EB
9
Construction and Operating Characteristics
HYSTERESIS
TIME RESPONSE
Photomultiplier tubes exhibit a slightly unstable output for several seconds to nearly 1 minute after a voltage is applied or light is
input, and the output may overshoot or undershoot before reaching a stable level (Figure 15). This unstable condition is called
hysteresis and may be a problem in spectrophotometry and
other applications.
Hysteresis is mainly caused by electrons deviating from their
planned trajectories and electrostatically charging the dynode
support section and glass bulb. When the applied voltage changes along with a change in the input light, noticeable hysteresis
can occur.
As a countermeasure, many Hamamatsu side-on photomultiplier
tubes employ an "anti-hysteresis design" which virtually eliminates hysteresis.
In the measurement of pulsed light, the anode output signal
should faithfully reproduce a waveform resembling the incident
pulse waveform. This reproducibility is greatly affected by the
electron transit time, anode pulse rise time, and electron transit
time spread (T.T.S.).
As illustrated in Figure 17, the electron transit time is the time interval between the arrival of a delta function light pulse (pulse
width less than 50 ps) at the photocathode and the instant when
the anode output pulse reaches its peak amplitude. The anode
pulse rise time is defined as the time needed to rise from 10 %
to 90 % of peak amplitude when the entire photocathode is illuminated by a delta function light pulse (pulse width less than 50
ps).
The electron transit time fluctuates between individual light pulses. This fluctuation is called transit time spread (T.T.S.) and defined as the FWHM of the frequency distribution of electron transit times (Figure 18). The T.T.S. is an important factor in time-resolved measurement.
The time response characteristics depend on the dynode structure and applied voltage. In general, photomultiplier tubes using
a linear-focused or circular-cage structure exhibit better time response than tubes using a box-and-grid or venetian blind structure. Photomultiplier tubes for high-speed photometry use a
spherical window or plano-concave window (flat on one side and
concave on the other) and electrodes specifically designed to
shorten the electron transit time. MCP-PMTs, which employ an
MCP in place of conventional dynodes, offer better time response than tubes using other dynodes. For example, these
have a significantly better T.T.S. compared to normal photomultiplier tubes because a nearly parallel electric field is applied between the photocathode, the MCP and the anode. Figure 19
shows typical time response characteristics vs. applied voltage
for Hamamatsu R2059 (51 mm diameter head-on, 12-stage, linear-focused type).
ANODE CURRENT
Figure 15: Hysteresis
I max.
Ii
0
I min.
5
6
7
TIME (MINUTE)
TPMOC0071EA
DRIFT AND LIFE CHARACTERISTIC
While operating a photomultiplier tube continuously over a long
period, the anode output current of the photomultiplier tube may
vary slightly over time, even though operating conditions have
not changed. Among the anode current fluctuations, changes
over a relatively short time are called "drift", while changes over
long periods such as 103 to 104 hours or more are called the life
characteristic. Figure 16 shows typical drift curves.
Drift is primarily caused by damage to the last dynode by heavy
electron bombardment. Therefore the use of lower anode current
is desirable. When stability is of prime importance, keeping the
average anode current within 1 µA or less is recommended.
Figure 17: Anode Pulse Rise Time and Electron Transit Time
DELTA FUNCTION LIGHT
RISE TIME
FALL TIME
10 %
Figure 16: Typical Life Characteristics
TRANSIT TIME
ANODE
OUTPUT
SIGNAL
90 %
x¯ + σ
Figure 18: Electron Transit Time Spread (T.T.S.)
100
x̄
∗FWHM=550 ps
∗FWTM=1228 ps
TYPE NO. : R2059
104
x¯ - σ
50
0
1
10
100
1000
10000
TIME (h)
RELATIVE COUNT
RELATIVE ANODE CURRENT (%)
TPMOB0060EB
PMT:R1924A
SUPPLY VOLTAGE:1000 V
INITIAL ANODE CURRENT:10 µA
103
102
101
TPMHB0448EB
100
-5
-4
-3
-2
-1
0
1
2
3
4
5
TIME (ns)
TPMHB0126EC
10
Figure 19: Time Response Characteristics vs. Supply Voltage
TYPE NO. : R2059
10 2
TRANSIT TIME
TIME (ns)
10 1
RISE TIME
Generally high output current is required in pulsed light applications. In order to maintain dynode potentials at a constant value
during pulse durations and obtain high peak currents, capacitors
are placed in parallel with the divider resistors as shown in Figure 20 (b). The capacitor values depend on the output charge.
When the output linearity versus input pulsed light needs to be
better than 1 %, the capacitor value should be at least 100 times
the photomultiplier output charge per pulse. If the peak output
current (amperes) is I, the pulse width (seconds) t, and the voltage across the capacitor (volts) V, then the capacitor value C
should be as follows:
10 0
C > 100
I·t
(farads)
V
T. T. S.
500
1000
1500
2000 2500 3000
SUPPLY VOLTAGE (V)
TPMOB0059EC
VOLTAGE-DIVIDER CIRCUITS
Interstage voltages for the dynodes of a photomultiplier tube are
usually supplied by voltage-divider circuits consisting of seriesconnected resistors. Schematic diagrams of typical voltage-divider circuits are illustrated in Figure 20. Circuit (a) is a basic arrangement (DC output) and (b) is for pulse operations. Figure 21
shows the relation between the incident light level and the output
current of a photomultiplier tube using the voltage-divider circuit
of figure 20. Deviation from ideal linearity occurs at a certain incident level (region B). This is caused by an increase in dynode
voltage due to the redistribution of the voltage loss between the
last few stages, resulting in an apparent increase in sensitivity.
As the input light level is increased, the anode output current begins to saturate near the value of the current flowing through the
voltage divider (region C). To prevent this problem, it is recommended that the voltage-divider current be maintained at least at
20 times the average anode output current required from the
photomultiplier tube.
In high energy physics applications where a high pulse output is
required, output saturation will occur at a certain level as the incident light is increased while the interstage voltage is kept
fixed,. This is caused by an increase in electron density between
the electrodes, causing space charge effects which disturb the
electron current flow. As a corrective measure to overcome
these space charge effects, the voltage applied to the last few
stages, where the electron density becomes high, should be set
to a higher value than the standard voltage distribution so that
the voltage gradient between those electrodes is enhanced. For
this purpose, a so-called tapered divider circuit (Figure 22) is often employed. Use of this tapered divider circuit improves pulse
linearity 5 to 10 times better than in normal divider circuits.
Hamamatsu provides a variety of socket assemblies incorporating voltage-divider circuits. They are compact, rugged, lightweight and carefully engineered to obtain the maximum performance of a photomultiplier tube with just a simple connection.
Figure 22: Typical Tapered Divider Circuit
PHOTOCATHODE
ANODE
SIGNAL
OUTPUT
RL
1R
Figure 20: Schematic Diagrams of Voltage-Divider Circuits
1R
1R
1R
2R
3R
2.5R
C1
C2
C3
a) Basic arrangement for DC operation
PHOTOCATHODE
-HV
ANODE
TACCC0035EB
RL
1R
1R
1R
1R
1R
1R
1R
1R
1R
1R
1R
-HV
GROUND POLARITY AND HA COATING
b) For pulse operation
PHOTOCATHODE
ANODE
RL
1R
1R
1R
1R
1R
1R
1R
1R
-HV
1R
1R
1R
C1
C2
C3
TACCC0030EC
Figure 21: Output Characteristics of PMT Using VoltageDivider Circuit of figure 20
C
B
1.0
ACTUAL
CURVE
0.1
0.01
0.001
0.001
IDEAL
CURVE
A
RATIO OF AVERAGE OUTPUT CURRENT
TO DIVIDER CURRENT
10
0.01
0.1
LIGHT FLUX (A.U.)
1.0
10
TACCB0005EA
The general technique used for voltage-divider circuits is to
ground the anode with a high negative voltage applied to the
cathode, as shown in Figure 20. This scheme facilitates the connection of such circuits as ammeters or current-to-voltage conversion operational amplifiers to the photomultiplier tube. However, when a grounded anode configuration is used, bringing a
grounded metallic holder or magnetic shield case near the bulb
of the tube can cause electrons to strike the inner bulb wall, resulting in the generation of noise. Also, in head-on type photomultiplier tubes, if the faceplate or bulb near the photocathode is
grounded, the slight conductivity of the glass material causes a
current to flow between the photocathode (which has a high
negative potential) and ground. This may cause significant deterioration of the photocathode. For this reason, extreme care is
required when designing housings for photomultiplier tubes and
when using electrostatic or magnetic shield cases.
.In addition, when using foam rubber or similar material to mount
the tube in its housing, it is essential that material having sufficiently good insulation properties be used. This problem can be
solved by applying a black conductive coat around the bulb, connecting it to the cathode potential and covering the bulb with a
protective film. This is called an "HA Coating" (see Figure 23).
11
Construction and Operating Characteristics
As mentioned above, the HA coating can be effectively used to
eliminate the effects of external potential on the side of the bulb.
However, if a grounded object is located on the photocathode
faceplate, there are no effective countermeasures. Glass scintillation, if occurring in the faceplate, has adverse noise effects
and also causes deterioration of the photocathode sensitivity. To
solve these problems, it is recommended that the photomultiplier
tube be operated in the cathode grounding scheme, as shown in
Figure 24, with the anode at a high positive voltage. For example in scintillation counting, since the grounded scintillator is directly coupled to the faceplate of a photomultiplier tube, grounding the cathode and maintaining the anode at a high positive voltage is recommended. In this case, a coupling capacitor Cc must
be used to isolate the high positive voltage applied to the anode
from the signal, and DC signals cannot be output.
Figure 23: HA Coating
Figure 26: Discrete Output Pulses (Single Photon Event)
TIME
TPMOC0074EB
Simply counting the photomultiplier tube output pulses will not
result in an accurate measurement, since the output contains
noise pulses such as dark pulses and cosmic ray pulses extraneous to the signal pulses representing photoelectrons as
shown in Figure 27. The most effective method for eliminating
the noise is to discriminate the output pulses according to their
amplitude. (Dark current pulese by thermal electrons emitted
from the photocathode cannot be eliminated.)
Figure 27: Output Pulse and Discrimination Level
GLASS BULB
PULSE HEIGHT
CONDUCTIVE PAINT
(SAME POTENTIAL
AS CATHODE)
INSULATING
PROTECTIVE COVER
ULD: Upper Level Discri.
LLD: Lower Level Discri.
COSMIC RAY PULSE
DARK CURRENT
PULSE
ULD
SIGNAL PULSE
CONNECTED TO
CATHODE PIN
LLD
TPMOC0015EA
TIME
TPMOC0075EC
Figure 24: Cathode Ground Scheme
PHOTOCATHODE
ANODE
Cc
SIGNAL
OUTPUT
RP
R1
R2
R3
R4
R5
R6
R7
C
C
+HV
TACCC0036EC
PHOTON COUNTING
Photon counting is one effective way to use a photomultiplier
tube for measuring extremely low light levels and is widely used
in astronomical photometry and for making chemiluminescence
and bioluminescence measurements. In its usual application, a
number of photons enter the photomultiplier tube and create an
output pulse train like that in (a) of Figure 25. The actual output
obtained by the measurement circuit is a DC current with a fluctuation as shown at (b).
A typical pulse height distribution (PHD) for a photomultiplier
tube output is shown in Figure 28. In this PHD, the lower level
discrimination (LLD) is set at the valley trough and the upper level discrimination (ULD) at the foot where there are very few output pulses. Most pulses smaller than the LLD are noise and pulses larger than the ULD result from cosmic rays, etc. Therefore,
by counting the pulses remaining between the LLD and ULD, accurate light measurements can be made. In the PHD, Hm is the
mean height of the pulses. The LLD should be set at 1/3 of Hm
and the ULD at triple Hm. The ULD may be omitted in most cases.
Considering the above, a clearly defined peak and valley in the
PHD is a very significant characteristic required of photomultiplier tubes for photon counting. Figure 28 shows the typical PHD of
a photomultiplier tube selected for photon counting.
Figure 28: Typical Single Photon Pulse Height Distribution
Figure 25: Overlapping Output Pulses
a)
SIGNAL PULSE + NOISE PULSE
NOISE PULSE
COUNTS
TIME
b)
TIME
LLD
Hm
ULD
PULSE HEIGHT
TPMOC0073EB
When the light intensity becomes so low that the incident photons are separated as shown in Figure 26. This condition is
called a single photon event. The number of output pulses is in
direct proportion to the amount of incident light and this pulse
counting method has the advantages of better S/N ratio and stability than the current measurement method that averages all the
pulses. This pulse counting technique is known as the photon
counting method.
12
TPMOC0076EA
SCINTILLATION COUNTING
Scintillation counting is one of the most sensitive and effective
methods for detecting radiation. It uses a photomultiplier tube
coupled to a scintillator that produces light when struck by radiation.
Figure 29: Scintillation Detector Using PMT and Scintillator
10000
PHOTOCATHODE
(51 mm dia. × 51 mm t)
PHOTOELECTRONS
COUNTS
REFLECTIVE
COATING
b) 137Cs+NaI (Tl)
ANODE
GAMMA RAY
DYNODES
5000
RADIATION
SOURCE
0
500
PMT
1000
ENERGY
TPMHC0052EC
In radiation particle measurements, there are two parameters
that should be measured. One is the energy of individual radiation particles and the other is the amount of radiation. Radiation
measurement should determine these two parameters.
When radiation particles enter the scintillator, they produce light
flashes in response to each particle. The amount of flash is extremely low, but is proportional to the energy of the incident particle. Since individual light flashes are detected by the
photomultiplier tube, the output pulses obtained from the photomultiplier tube contain information on both the energy and
amount of pulses, as shown in Figure 30. By analyzing these
output pulses using a multichannel analyzer (MCA), a pulse
height distribution (PHD) or energy spectrum is obtained, and
the amount of incident particles at various energy levels can be
measured accurately. Figure 31 shows typical PHDs or energy
spectra when radiation (55Fe, 137Cs, 60Co) is detected by the
combination of an NaI(Tl) scintillator and a photomultiplier tube.
The PHD must show distinct peaks at each energy level. These
peaks are evaluated as pulse height resolution which is the most
significant characteristic in the radiation measurements. As Figure 32 shows, the pulse height resolution is defined as the
FWHM (a) divided by the peak value (b) when pulse height distribution is measured using a single radiation source such as
137Cs and 55Fe.
c) 60Co+NaI (Tl)
10000
COUNTS
OPTICAL COUPLING
(USING SILICONE OIL etc.)
(51 mm dia. × 51 mm t)
5000
0
500
1000
ENERGY
TPMOB0087EC
Figure 32: Definition of Pulse Height Resolution (FWHM)
b
NUMBER OF PULSES
SCINTILLATOR
a
H
H
2
PULSE HEIGHT
TPMOB0088EB
Figure 30: Incident Radiation Particles and PMT Output
Energy resolution =
a
× 100 %
b
TIME
Figure 33: PMT Spectral Response and Spectral Emission of
Scintillators
100
SCINTILLATOR
CURRENT
PMT
TIME
TPMOC0039EC
QUANTUM EFFICIENCY (%)
RELATIVE EMISSION DISTRIBUTION
OF VARIOUS SCINTILLATOR (%)
BGO
THE HEIGHT OF OUTPUT
PULSE IS PROPORTIONAL
TO THE ENERGY OF
INCIDENT PARTICLE.
NaI (Tl)
10
BIALKALI
1
0.1
Figure 31: Typical Pulse Height Distributions (Energy Spectra)
CsI (Tl)
BaF2
200
300
400
500
600
700
800
WAVELENGTH (nm)
a) 55Fe+NaI (TI)
TPMOB0073EA
COUNTS
1000
(51 mm dia. × 2.5 mm t)
500
0
500
ENERGY
1000
Pulse height resolution is mainly determined by the quantum efficiency of the photomultiplier tube that detects the scintillator
emission. In the case of thallium-activated sodium iodide or NaI(Tl), which is one of the most popular scintillators, a head-on
type photomultiplier tube with a bialkali photocathode is widely
used since its spectral response matches the NaI(Tl) scintillator
spectrum.
13
Connections to External Circuits
LOAD RESISTANCE
Since the output of a photomultiplier tube is a current signal and
the type of external circuit to which photomultiplier tubes are
usually connected has voltage inputs, a load resistor is used for
current-voltage conversion. This section describes factors to
consider when selecting this load resistor.
Since for low output current levels, the photomultiplier may be
assumed to act as virtually an ideal constant-current source, the
load resistance can be made arbitrarily large, when converting a
low-level current output to a high-level voltage output. In practice, however, using a very large load resistance causes poor
frequency response and output linearity as described below.
Figure 34: Photomultiplier Tube Output Circuit
PHOTOCATHODE
ANODE
SIGNAL
OUTPUT
Ip
RL
CS
-HV
This value of Ro, which is less than the value of RL, is then the
effective load resistance of the photomultiplier tube. If, for example, RL=Rin, then the effective load resistance is 1/2 that of RL
alone. From this we see that the upper limit of the load resistance is actually the input resistance of the amplifier and that
making the load resistance much greater than this value does
not have a significant effect.
While the above description assumed the load and input impedances to be purely resistive, stray capacitances, input capacitance and stray inductances affect the phase relationships during actual operation. Therefore, as the frequency is increased,
these circuit elements must be considered as compound impedances rather than pure resistances.
From the above, three guides can be derived for selecting the
load resistance:
1) When frequency response is important, the load resistance
should be made as small as possible.
2) When output linearity is important, the load resistance should
be chosen to keep the output voltage within a few volts.
3) The load resistance should be less than the input impedance of the external amplifier.
TACCC0037EB
HIGH-SPEED OUTPUT CIRCUITS
In the circuit of Figure 34, if we let the load resistance be RL and
the total capacitance of the photomultiplier tube anode to all
other electrodes including stray capacitance such as wiring
capacitance be Cs, then the cutoff frequency fc is expressed by
the following relationship.
fc =
1
2 π Cs · RL
This relationship indicates that even if the photomultiplier tube
and amplifier have very fast response, the response will be
limited to the cutoff frequency fc of the output circuit. If the load
resistance is made large, then the voltage drop across RL
becomes large at high current levels, affecting the voltage
differential between the last dynode stage and the anode. This
increases the effect of the space charge and lowers the
efficiency of the anode in collecting electrons. In effect, the
output becomes saturated above a certain current, causing poor
output linearity (output current linearity versus incident light
level) especially when the circuit is operated at low voltages.
Figure 35: Amplifier Internal Resistance
1)
PMT
P
DYn
RL
2)
PMT
Rin
SIGNAL
OUTPUT
Rin
SIGNAL
OUTPUT
CS
P
CC
DYn
RL
CS
TACCC0017EA
In Figure 35, let us consider the effect of the internal resistance
of the amplifier. If the load resistance is RL and the input
impedance of the amplifier is Rin, the combined parallel output
resistance of the photomultiplier tube, Ro, is given by the
following equation.
Ro = RL · Rin
RL + Rin
When detecting high-speed and pulsed light signals, a coaxial
cable is used to make the connection between the photomultiplier tube and the electronic circuit. Since commonly used cables
have characteristic impedances of 50 Ω, this cable must be terminated in a pure resistance equal to the characteristic impedance to match the impedance and ensure distortion-free transmission of the signal waveform. If a matched transmission line is
used, the impedance of the cable as seen by the photomultiplier
tube output will be the characteristic impedance of the cable, regardless of the actual cable length so no distortion will occur in
the signal waveform.
If the impedance is not properly matched when the signal is received, the impedance seen at the photomultiplier tube output
will differ depending on both frequency and cable length, causing significant waveform distortion. Impedance mismatches
might also be due to the connectors being used. So these connectors should be chosen according to the frequency range to
be used, to provide a good match with the coaxial cable.
When a mismatch at the signal receiving end occurs, not all of
the pulse energy from the photomultiplier tube is dissipated at
the receiving end and is instead partially reflected back to the
photomultiplier tube via the cable. However if an impedance
match has been achieved at the cable end on the photomultiplier
tube side, then this reflected energy will be fully dissipated there.
. If this is a mismatch, however, the energy will be reflected and
returned to the signal-receiving end because the photomultiplier
tube itself acts as an open circuit. Since part of the pulse makes
a round trip in the coaxial cable and is again input to the receiving end, this reflected signal is delayed with respect to the main
pulse and results in waveform distortion (so called ringing phenomenon).
To prevent this phenomenon, in addition to matching the impedance at the receiving end, a resistor is needed for matching the
cable impedance at the photomultiplier tube end as well (Figure
36). If this is provided, it is possible to eliminate virtually all ringing caused by an impedance mismatch, although the output
pulse height of the photomultiplier tube is reduced to one-half of
the normal level by use of this impedance matching resistor.
Figure 36: Connection to Prevent Ringing
50 Ω OR 75 Ω COAXIAL CABLE
PMT
50 Ω OR 75 Ω CONNECTOR
HOUSING
RL
(50 Ω OR 75 Ω
MATCHING RESISTOR)
ANTI-REFLECTION
RESISTOR
TACCC0039EB
14
Next, let us consider waveform observation of high-speed pulses
using an oscilloscope. This type of operation requires a low load
resistance. However, the oscilloscope sensitivity is limited so an
amplifier may be required.
Cables with a matching resistor have the advantage that the
cable length will not affect the electrical characteristics of the
cable. However, since the matching resistance is very low compared to the usual load resistance, the output voltage becomes
too small. While this situation can be remedied with a high gain
amplifier, the inherent noise of such an amplifier can itself hurt
measurement performance. In such cases, the photomultiplier
tube should be brought as close as possible to the amplifier to
reduce stray capacitance and a larger load resistance should be
used (while still maintaining the frequency response), to achieve
the desired input voltage. (See Figure 37.)
Figure 37: Measurement with Ringing Suppression Measures
PMT
DYn
P
RL
OSCILLOSCOPE
WIRING SHOULD BE
AS SHORT AS POSSIBLE.
TACCC0026EA
It is relatively simple to implement a high-speed amplifier using a
wide-band video amplifier or operational amplifier. However, as
a trade-off for design convenience, these ICs tend to create performance problems (such as noise). This makes it necessary to
know their performance limits and take corrective action if necessary.
As the pulse repetition frequency increases, baseline shift becomes one reason for concern. This occurs because the DC signal component has been eliminated from the signal circuit by
coupling with a capacitor which blocks the DC components. If
this occurs, the reference zero level observed at the last stage is
not the actual zero level. Instead, the apparent zero level is a
time-average of the positive and negative fluctuations of the signal waveform. This is known as baseline shift. Since the height
of the pulses above this baseline level is affected by the repetition frequency, this phenomenon can be a problem when observing waveforms or discriminating pulse levels.
Figure 38: Current-Voltage Conversion Using Operational
Amplifier
Rf
p
lp
lp
–
Vo= -lp ⋅ Rf
+
PMT
OP-AMP
V
TACCC0041EA
If the operational amplifier has an offset current (Ios), the abovedescribed output voltage becomes Vo = -Rf (Ip+Ios), with the offset current component being superimposed on the output. Furthermore, the magnitude of the temperature drift may create a
problem. In general, a metallic film resistor which has a low temperature coefficient is used for the resistance Rf, and for high resistance values, a vacuum-sealed type with a low leakage current is used. Carbon resistors with their highly temperature-dependent resistance characteristics are not suitable for this application.
In addition to the above factors, when measuring extremely low
level currents such as 100 pA and below, the materials used to
fabricate the circuit also require careful selection. For example,
materials such as bakelite are not suitable. More suitable materials include teflon, polystyrol or steatite. Low-noise cables should
also be used, since general-purpose coaxial cables exhibit noise
due to physical factors. An FET input operational amplifier is recommended for measuring low-level current.
Figure 39: Frequency Compensation by Operational Amplifier
Cf
Cs
SHIELD CIRCUIT
Rf
SIGNAL
OUTPUT
+
OP-AMP.
TACCC0042EA
OPERATIONAL AMPLIFIERS
When a high-sensitivity ammeter is not available, using an operational amplifier allows making measurements with an inexpensive voltmeter. This section explains the technique for converting the output current of a photomultiplier tube to a voltage
signal. The basic circuit is as shown in Figure 38, for which the
output voltage, Vo, is given by the following relationship.
Vo = -Rf · Ip
This relationship is derived for the following reason. If the input
impedance of the operational amplifier is extremely large, and
the output current of the photomultiplier tube is allowed to flow
into the inverted (–) input terminal of the amplifier, most of the
current will flow through Rf and subsequently to the operational
amplifier output circuit. The output voltage Vo is therefore given
by the expression -Rf × Ip. When using such an operational amplifier, it is not of course possible to make unlimited increases in
the output voltage because the actual maximum output is roughly equal to the operational amplifier supply voltage. At the other
end of the scale, for extremely small currents, there are limits
due to the operational amplifier offset current (Ios), the quality of
Rf, and other factors such as the insulation materials used.
In Figure 39, if a capacitance Cf (including any stray capacitance)
is in parallel with the resistance Rf, the circuit exhibits a time
constant of (Rf × Cf), and the response speed is limited to this
time constant. This is a particular problem if the Rf is large. Stray
capacitance can be reduced by passing Rf through a hole in a
shield plate. When using coaxial signal input cables, oscillations
may occur and noise might be amplified since the cable capacitance Cc and Rf are in a feedback loop. While one method to
avoid this is to connect Cf in parallel with Rf, to reduce high frequency gain as described above, this method creates a time
constant of Rf × Cf which limits the response speed.
15
Selection Guide by Applications
Applications
Required Major Characteristics
Applicable PMT
Spectroscopy
●Equipment Utilizing Absorption
UV/Visible/IR Spectrophotometer
When light passes through a substance, the light energy causes changes in the electron energy of the
substance, resulting in partial energy loss. This is
called absorption and can be used to yield analytical
data. In order to determine the quantity of a sample
substance, it is irradiated while its light wavelength is
scanned continuously. The spectral intensities of the
light before and after passing through the sample are
then detected by a photomultiplier tube and the
amount of absorption in this way measured.
Atomic Absorption Spectrophotometer
This is widely used in analysis of minute quantities of
metallic elements. A special elementary hollow cathode lamp for each element to be analyzed is used to
irradiate a sample which is burned to atomize it. A
photomultiplier tube then detects the light passing
through the sample to measure the amount of absorption, which is compared with a pre-measured reference sample.
R928, R955, R3896
R7639
R374, R376
1) Wide spectral response
2) High stability
3) Low dark noise
4) High quantum efficiency
5) Low hysteresis
6) Good polarization characteristics
R928
R955
R7154
●Equipment Utilizing Emission
Photoelectric Emission Spectrophotometer
When external energy is applied to a sample, that
sample then emits light. . By using a monochromator
to disperse this light emission into characteristic spectral lines of elements and measuring their presence
and intensity simultaneously with photomultiplier
tubes, the photoelectric emission spectrophotometer
can perform rapid qualitative and quantitative analysis
of the elements contained in the sample.
Fluorescence Spectrophotometer
R6350, R6352, R6354
R6355, R6356, R7311
1P28, R212, R1527
R7446, R8487
1) High sensitivity
2) Low dark noise
3) High stability
The fluorescence spectrophotometer is used in biological science, especially in molecular biology. When
an excitation light is applied, some substances emit
light with a wavelength longer than that of the excitation light. This light is known as fluorescence. The intensity and spectral characteristics of the fluorescence
are measured by a photomultiplier tube, and the substance then analyzed qualitatively and quantitatively.
R6353, R6358, R6357
R3788, R4220, R1527
R928, R3896
Raman Spectroscopy
When monochromatic light strikes a substance and
scatters, a process called Raman scattering also occurs at a wavelength different from the excitation
light. Since this wavelength differential is a unique
characteristic of a molecule, spectral measurement of
Raman scattering can provide qualitative and quantitative data of molecules. Raman scattering is extremely weak and a sophisticated optical system is
required for measurement, with the photomultiplier
tube operated in the photon counting mode.
Other Spectrophotometric Equipment Using
Photomultiplier Tubes
• Liquid or gas chromatography
• X-ray diffractometers, X-ray fluorescence analyzers
• Electron microscopes
16
1) High quantum efficiency
2) Less dark count
3) Single photon discrimination ability
R2949
R1463P, R649
R943-02
R7400U-20
R3788, R4220
R647-01, R1166, R6095, R580
R647
R7400U-01, R5900U-01
Applications
Required Major Characteristics
Applicable PMT
Mass Spectroscopy and Solid Surface Analysis
Solid Surface Analysis
The composition and structure of a solid surface can
be studied by irradiating a narrow beam of electrons,
ions, light or X-rays onto the surface and measuring
the secondary electrons, ions or X-rays that are produced. Due to the rapid progress being made in the
semiconductor industry, this kind of technology is essential for measuring semiconductors, including defects, surface analysis, adhesion, and density profile.
Electrons, ions, and X-rays are measured with electron multipliers and MCPs.
1) High environmental resistance
2) High stability
3) High gain
4) Low dark current
R474, R515, R596, R595
R2362, R5150-10
The above product is an electron
multiplier
Pollution Monitoring
Dust Counter
A dust counter measures the density of dust or particles floating in the atmosphere or inside rooms. The
dust counter makes use of light scattering or absorption of beta-rays by the dust particles.
1) Less dark count
2) Less spike noise
3) High quantum efficiency
R6350
R105, R3788
R647, R1924A, R6095
1) Low dark current
2) Less spike noise
3) High quantum efficiency
R6350, R6357
R105, R7400U-01
R1924A
1) High quantum efficiency at target wavelengths
2) Low dark current
3) Good temperature characteristic
4) High stability
NOx= R3896, R5984, R374
R2228, R5929, R5070A
SOx= R6095, R3788, R1527
R5983
Turbidimeter
When floating particles are contained in a liquid, the
light incident on the liquid is absorbed, scattered or
refracted by these particles. This process merely appears cloudy or hazy to the human eye. A turbidimeter is a device that numerically measures the turbidity
by using light transmission and scattering.
Other Pollution Monitoring Equipment Using
Photomultiplier Tubes
• NOx meters, SOx meters
Biotechnology
Flow Cytometer
A flow cytometer uses a laser to irradiate cells labeled
with fluorescent substance and measures the resulting fluorescence or scattered light from those cells
with a photomultiplier tube, in order to identify each
cell. A cell sorter is one kind of flow cytometer having
the function of sorting specific cells.
DNA Sequencer
The DNA sequence is used to decode the base arrangement of DNA. When a voltage is applied across
the both ends of a gelatinous substance (gel) into
which DNA segments are injected, those DNA segments with a negative electric charge are drawn towards the plus electrode. The shorter the DNA segment, the faster it moves, resulting in a separation according to the DNA segment length. The base arrangement of each DNA segment can be determined
by detecting the fluorescence emitted from the labeling pigment at the end of each DNA.
1) High quantum efficiency
2) High stability
3) Low dark current
4) High gain
R6357, R6358
R928, R3788
R4220, R3896
R7400U-01, R7400U-20
R5900U-01, R5900U-01-M4
R5900U-20-L16
H7260-20
DNA Microarray Scanner
In this equipment, a DNA sample labeled by fluorescent dye is combined with a DNA probe having a
large number of DNAs whose arrangement is known
and fixed at a high density on a glass plate or silicon
substrate. A laser beam is used to scan the sample
and the resulting fluorescent intensity is measured to
investigate the gene information.
17
Selection Guide by Applications
Applications
Required Major Characteristics
Applicable PMT
Medical Applications
Gamma Camera
The gamma camera obtains an image of a radioisotope injected into the body of a patient to locate abnormalities. This equipment originated from a scintillation scanner and has been gradually improved. Its
detection section uses a large diameter NaI(Tl) scintillator and light-guide coupled to a photomultiplier tube
array.
1) High energy resolution
2) Good uniformity
3) High stability
4) Uniform gain (between each tube)
R6231-01
R6234-01
R6235-01
R6236-01
R1307-01
R6233-01
R6237-01
H8500, H9500
1) High energy resolution
2) High stability
3) Fast response time
4) Compact size
R1635, R8520U-00-C12
R1450
R7899
R1548-07
R6427
H8500, H9500
R9420, R9797, R9800
1) High quantum efficiency
2) Low thermionic emission noise
3) Less glass scintillation at bulb and
other materials
4) Fast response time
5) High pulse linearity
R331, R331-05
1) High quantum efficiency
2) High stability
3) Low dark current
R1166, R5610A, R5611A-01
R6350, R6352, R6353
R6356, R6357
R4220, R928, R3788, R3896
R647, R1463
R1925A, R1924A, R3550A
R6095, R374
1) High sensitivity
2) Low dark current
3) High stability
R6350
931A, R105
Positron CT
The positron CT provides tomographic images by detecting the coincident gamma-ray emission that accompanies the annihilation of positrons emitted from
a tracer radioisotope (11C, 15O, 13N, 18F, etc.) injected
into the body. Photomultiplier tubes coupled to scintillators are used to detect these gamma-rays.
Liquid Scintillation Counter
Liquid scintillation counters are used for tracer analysis in age measurement and biochemical research. A
sample containing radioisotopes is dissolved into a
solution containing an organic scintillator, and this is
placed in the center between a pair or photomultiplier
tubes. These tubes simultaneously detect the emission of the organic scintillator.
In-Vitro Assay
In-vitro assay is used for physical checkups, diagnosis, and evaluation of drug potency by making use of
the specific antigen/antibody reaction characteristics
of tiny amounts of insulin, hormones, drugs and viruses that are contained in blood or urine. Photomultiplier tubes are used to optically measure the amount
of antigens labeled by radioisotopes or fluorescent,
chemiluminescent or bioluminescent substances.
• Radioimmunoassay (RIA)
Uses radioactive isotopes for labeling and scintillators for measurement.
• Chemiluminoassay
CLIA (Chemilulminoassay)
CLEIA (Enzyme-intensified chemiluminoassay)
Uses luminescent substances for labeling to measure chemiluminescence or bioluminescence.
• Fluoroimmunoassay
Uses fluorescent substances for labeling.
Others
• X-ray phototimer
This equipment automatically controls the X-ray film
exposure during X-ray examinations. The X-rays
transmitting through a subject are converted into
visible light by a phosphor screen. A photomultiplier
tube detects this light and converts it into electrical
signals. When the accumulated electrical signal
reaches a preset level, the X-ray irradiation is shut
off, to allow obtaining an optimum film density.
18
Applications
Required Major Characteristics
Applicable PMT
Radiation Measurement
Area Monitor
Area monitors are designed to continuously measure
changes in environmental radiation levels. Area monitors use a photomultiplier tube coupled to a scintillator
to monitor low level gamma-rays and beta-rays.
1) Long term stability
2) Low background noise
3) Good plateau characteristic
R1306
R329-02, R4607-01
R1307
R877, R877-01
1) Long term stability
2) Low background noise
3) Good plateau characteristic
R1635
R647
R1924A
R6095
R7400U
1) Stable operation at high temperatures up to 175 °C
2) Rugged structure resistant to shock
and vibration
3) Good plateau characteristic
R4177-01
R3991A
R1288A, R1288A-01
R1750
R4607-01
1) Wide dynamic range
2) High energy resolution
R647, R7899
R6095
R580
R1306, R6231
R329-02
1) High quantum efficiency at target wavelengths
2) Good uniformity
2) Low spike noise
R928, R3896
R647, R1463
1) High quantum efficiency at RGB wavelengths
2) Low dark current
3) Fast signal pulse fall time
4) High stability
5) Good repeatability with changes in input signal
R3788
R3810, R3811
R647, R1463
R1924A, R1925A
Survey Meter
Survey meters are used to measure low level gamma-rays and beta-rays by using a photomultiplier tube
coupled to a scintillator.
Resource Inquiry
Oil Well Logging
Oil well logging is used to locate an oil deposit and
determine its size. A probe containing a radiation
source and a scintillator/photomultiplier tube is lowered into on oil well as it is being drilled. The scattered radiation or natural radiation from the geological
formation is detected and analyzed, to determine the
type and density of the rock that surrounds the well.
Industrial Measurement
Thickness Meter
The thickness meter uses a radiation source and a
scintillator/photomultiplier tube detector to measure
product thickness such as for paper, plastic, copper
sheet on factory production lines. Beta-rays are used
as a radiation source to measure small density products such as rubber, plastic, and paper. Gamma-rays
are used for large density products such as copper
plates. X-ray fluorescence is utilized to measure film
thickness for plating, evaporation, etc.)
Semiconductor Inspection System
This is widely used for semiconductor wafer inspection and pattern recognition such as semiconductor
mask alignment. In wafer inspection, the wafer is
scanned by a laser beam, and the scattered light
caused by dirt or defects is detected by a photomultiplier tube.
Photography and Printing
Color Scanner
To print-out color pictures and photographs, color
scanners separate the original colors into the three
primary colors (RGB) and black. Color scanners use
photomultiplier tubes combined with optical filters to
provide the different colors as image data.
19
Selection Guide by Applications
Applications
Required Major Characteristics
Applicable PMT
High Energy Physics
●Accelerator Experiment
Hodoscope
Photomultiplier tubes are coupled to the ends of long,
thin plastic scintillator arrays arranged in two layers
intersecting with each other in order to measure the
time and position at which charged particles pass
through the scintillator arrays.
TOF Counter
R7400U Series, R7600U Series
R1635 (H3164-10)
R647-01 (H3165-10)
R1450 (H6524), R1166 (H6520)
1) Fast response time
2) Compact size
Two counters are arranged along a path of charged
particles, with each counter consisting of a scintillator
and a photomultiplier tube. The velocity of the particles is measured by the time difference between the
two counters.
Cherenkov Counter
A Cherenkov counter is used to identify secondary
particles generated by the collision reaction of particles. Cherenkov radiation is emitted from charged particles with energy higher than a certain level when
they pass through a gas or silicon aerogel. This weak
Cherenkov radiation is detected by a photomultiplier
tube. These particles are then identified by measuring
the Cherenkov radiation emission angle.
Calorimeter
The calorimeter measures the accurate energy of
secondary particles generated by the collision reaction of particles.
R7400U Series, R7600U Series
R7899, R1635 (H3164-10)
R1450 (H6524), R4998 (H6533)
R1828-01 (H1949-51)
R2083 (H2431-50)
3) Resistance to magnetic fields (when
used in magnetic fields)
R5505-70 (H6152-70)
R7761-70 (H8409-70)
R5924-70 (H6614-70)
R6504-70 (H8318-70)
1) High quantum efficiency
2) Single photon discrimination ability
3) High gain
4) Fast response time
R329-02 (H6410), R5113-02
R1250 (H6527), R1584 (H6528)
5) Resistance to magnetic fields (when
used in magnetic fields)
R5505-70 (H6152-70)
R7761-70 (H8409-70)
R5924-70 (H6614-70)
R6504-70 (H8318-70)
H7546B, H8711
1) Good pulse linearity
2) High energy resolution
3) High stability
R580 (H3178-51)
R329-02 (H6410)
4) Resistance to magnetic fields
R5924 (H6614-70)
R6091 (H6559), R7600U Series
●Neutrino and Proton Decay Experiment, Cosmic Ray Detection
Neutrino Experiment
Research on solar neutrinos or particle astophysics is
utilized in a neutrino experiment. This experimental
system consists of a large amount of a medium surrounded by a great number of large-diameter photomultiplier tubes. When cosmic rays such as neutrinos enter
and pass through the medium, their energy and traveling direction are measured by detecting Cherenkov radiation that occurs from interaction with the medium.
R5912
R3600-08
Neutrino and Proton Decay Experiment
In the neutrino and proton decay experiments being
conducted at Kamioka, Japan, 11,200 photomultiplier
tubes each 20" diameter are installed to surround
from all directions a huge tank storing 50,000 t of
pure water. The photomultiplier tubes are used to
watch the subtle flash of Cherenkov radiation that occurs when proton decays or solar neutrinos pass
through the pure water tank.
1) Large photocathode area
2) Fast time response
3) High stability
4) Less dark count
Even large diameter PMTs are
available. Consult with our sales office.
Air Shower Counter
When cosmic rays collide with the earth's atmosphere, secondary particles are created by the interaction of the cosmic rays and atmospheric atoms. These
secondary particles generate more secondary particles, which continue to increase in a geometrical progression. This is called an air shower. The gammarays and Cherenkov radiation emitted in this air shower are detected by photomultiplier tubes arranged in a
lattice array on the ground.
20
R1166 (H6520)
R580 (H3178-51)
R329-02 (H6410)
R6091 (H6559)
R1250 (H6527)
R6234
The assembly type is given in parentheses.
Applications
Required Major Characteristics
Applicable PMT
Aerospace
Astronomical X-ray Measurement
X-rays from outer space include information on the
enigmas of space. As an example, the X-ray observation satellite "Asuka" developed by a group of the
ISAS (Institute of Space and Astronomical Science Japan), uses a gas-scintillation proportional counter
in conjunction with a position-sensitive photomultiplier
tube to measure X-rays from supernovas, etc.
1) High energy resolution
2) Resistance to shock and vibration
R3991A
R6231
R2486
Ruggedized PMT with high resistance to vibration and shock will be
required. Consult with our sales office.
Measurement of Scattered Light from Fixed
Stars and Interstellar Dust
Ultraviolet rays from space contain a great deal of information about the surface temperatures of stars and
interstellar substances. However, these ultraviolet
rays are absorbed by the earth's atmosphere making
is impossible to measure them from the earth's surface. So photomultiplier tubes are mounted in rockets
or artificial satellites, to measure ultraviolet rays with
wavelengths shorter than 300 nm.
1) Resistance to shock and vibration
2) Sensitivity only in VUV to UV range
(Solar blind response with no sensitivity
to visible light: See page 6 for Cs-Te
and CsI photocathodes)
R1080, R976
R6834, R6835, R6836
Ruggedized PMT with high resistance to vibration and shock will be
required. Consult with our sales office.
Lasers
Laser Radar
The laser radar is used in applications such as atmospheric measurement for highly accurate range
finding or aerosol scattering detection.
Fluorescence Lifetime Measurement
A laser is used as an excitation light for fluorescence
lifetime measurement. The molecular structure of a
substance can be studied by measuring the changes
in temporal intensity in the emitted fluorescence.
1) Fast time response
2) Less dark count
3) High gain
4) Less afterpulses
R3809U Series
R5916U Series
R3234-01
R7400U-20, R3896
R7205-01, R7206-01
R3809U Series
R5916U Series
R7400U-01, -20
R5900U-01, R5900U-01-M4
Plasma
Plasma Observation
Photomultiplier tubes are used in the electron density
and electron temperature measurement system for
plasma in the Tokamak-type nuclear fusion test reactor in Japan. Photomultiplier tubes and MCPs are
also used in similar measurements on plasma using
Thompson scattering and the Doppler effect to observe the spatial distribution of plasma, and to measure impurities in the plasma with the objective of controlling impurities and ions.
1) High detection capability at low light level
2) Quantum efficiency with less wavelength
dependence
3) Gate operation
R2257
R1104
R943-02
21
Side-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
900 1000
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
13 mm (1/2") Dia. Types
R6350
4 × 13
350U
340
Sb-Cs
U
1
CC/9
E678-11U* qw
1250
0.01
1000 i
R6351
4 × 13
—
340
Sb-Cs
Q
2
CC/9
E678-11U* qw
1250
0.01
1000 i
452U
420
BA
U
1
CC/9
E678-11U* qw
1250
0.01
1000 i
456U
400
LBA
U
1
CC/9
E678-11U* qw
1250
0.01
1000 i
1250
0.01
1000 i
4 × 13
R6352
4 × 13
R6353
4 × 13
550U
530
MA
U
1
CC/9
E678-11U* qw
R6356-06
4 × 13
—
400
MA
U
1
CC/9
E678-11U* qw
1250
0.01
1000 i
R6357
4 × 13
—
450
MA
U
1
CC/9
E678-11U* qw
1250
0.01
1000 i
561U
530
MA
U
1
CC/9
E678-11U* qw
1250
0.01
1000 i
350U
340
Sb-Cs
U
3
CC/9
E678-11U* qw
1250
0.01
1000 i
550U
530
MA
U
3
CC/9
E678-11U* qw
1250
0.01
1000 i
R6355
4 × 13
R6358
13 mm (1/2") Dia. Subminiature Types
3×4
R3810
3×4
R3811
Dimensional Outlines (Unit: mm)
1 R6350, R6352, R6353 etc.
2 R6351
3 R3810, R3811
13.5 ± 0.8
13.5 ± 0.8
4 MIN.
13.5 ± 0.8
3 MIN.
11 PIN BASE
11 PIN BASE
DY5
6
DY6
7
DY4 5
8
3
1
DY2
TPMSA0034EE
8
DY5
DY7
3
11
2
1
DY6
7
DY2
TPMSA0034EE
DY7
10 DY9
3
DY1
K
8
9 DY8
DY3 4
P
DIRECTION OF LIGHT
6
DY4 5
9 DY8
10 DY9
DY1
K
DIRECTION OF LIGHT
DY6
7
DY3 4
11 P
2
6
DY4 5
10 DY9
DY1
22
DY5
DY7
9 DY8
DY3 4
DY2
17 MAX.
4 MIN.
52 MAX.
7±2
42 ± 2
24.0 ± 1.5
13 MIN.
50 MAX.
40 ± 2
24.0 ± 1.5
13 MIN.
3±2
PHOTOCATHODE
25 MAX.
PHOTOCATHODE
9.7 ± 0.5
4 MIN.
PHOTOCATHODE
11 P
2
1
K
DIRECTION OF LIGHT
TPMSA0013EC
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
20
40
5.0
—
48
50
300
3.6 × 105 7.5 × 106
0.5
5
1.4
15
20
40
5.0
—
48
50
300
3.6 × 105 7.5 × 106
0.5
5
1.4
15
80
120
10.0
—
90
100
700
5.2 ×
30
70
6.5
—
65
100
400
3.7 × 105 5.7 × 106
600
15
1.4
15
R6352
Photon counting type: R6353P
Dark count 30 s-1 (Max.)
R6353
1.8 ×
105
4.0 ×
106
1
10
1.4
15
R6355
105
6.7 ×
106
1
10
1.4
15
R6356-06
2
10
1.4
15
200
300
10.0
0.3
77
400
2000
5.2 ×
350
500
13.0
0.4
105
1000
2000
4.2 × 105 4.0 × 106
3.5 ×
15
R6358
Photon counting type: R3810P
Dark count 30 s-1 (Max.)
R3810
200
7.5
0.15
70
300
700
2.5 ×
20
40
5.0
—
48
50
300
3.6 × 105 7.5 × 106
0.5
5
1.4
15
50
150
6.0
0.15
45
50
200
5.9 × 104 1.3 × 106
1
10
1.4
15
106
0.1
1
1.4
R6357
Photon counting type: R6358-10
Dark count 300 s-1 (Max.)
140
105
R3811
Dimensional Outline of Socket (Unit: mm)
E678-11U
24
18
5.5
13
3
100
1.4
2
R6351
10.5
45
10
R6350
4
0.15
1
0.1
Photon counting type: R6350P
Dark count 30 s-1 (Max.)
0.5
6.0
5.8 ×
106
Type No.
°
150
105
Notes
45
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
80
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
11
TACCA0181EB
23
Side-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
900 1000
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
28 mm (1-1/8") Dia. Types with UV to Visible Sensitivity
931A
8 × 24
350K
400
Sb-Cs
K
1
CC/9
E678-11A ert
1250
0.1
1000 i
931B
8 × 24
453K
400
BA
K
1
CC/9
E678-11A ert
1250
0.1
1000 i
1P21
8 × 24
350K
400
Sb-Cs
K
1
CC/9
E678-11A ert
1250
0.1
1000 i
R105
8 × 24
350K
400
Sb-Cs
K
1
CC/9
E678-11A ert
1250
0.1
1000 i
1P28
8 × 24
350U
340
Sb-Cs
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
R212
8 × 24
350U
340
Sb-Cs
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
R1527
8 × 24
456U
400
LBA
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
R4220
8 × 24
456U
410
LBA
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
R7447
8 × 24
—
410
LBA
Q
1
CC/9
E678-11A ert
1250
0.1
1000 i
452U
420
BA
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
430U
375
LBA
U
2
CC/9
E678-11A ert
1250
0.1
1000 i
8 × 24
R3788
18 × 16
R2693
R5983
10 × 24
456U
410
LBA
U
3
CC/9
E678-11A ert
1250
0.1
1000 i
R6925
8 × 24
351U
410
BA
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
R7518
8 × 24
456U
410
LBA
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
Dimensional Outlines (Unit: mm)
1 931A, 1P21, R105, R212 etc.
2 R2693
3 R5983
28.5 ± 1.5
29.0 ± 1.7
2.5 ± 0.5
18 MIN.
PHOTOCATHODE
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
DY5
5
DY6
6
7
DY4 4
P
11
K
DIRECTION OF LIGHT
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
DY5
49.0 ± 2.5
80 MAX.
94 MAX.
49.0 ± 2.5
24 MIN.
DY7
76 MAX.
7
DY4 4
90 MAX.
DY6
6
49.0 ± 2.5
5
16 MIN.
DY5
PHOTOCATHODE
24 MIN.
PHOTOCATHODE
P
11
K
DIRECTION OF LIGHT
11 PIN BASE
JEDEC No. B11-88
24
5
DY6
6
7
DY4 4
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
P
11
K
DIRECTION OF LIGHT
32.2 ± 0.5
34 MAX.
32.2 ± 0.5
80 MAX.
8 MIN.
10 MIN.
94 MAX.
28.5 ± 1.5
HA COATING
TPMSA0001EA
11 PIN BASE
JEDEC No. B11-88
11 PIN BASE
JEDEC No. B11-88
TPMSA0007EC
TPMSA0035EC
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
25
40
5.0
—
48
50
400
4.8 × 105 1.0 × 107
5
50
2.2
22
931A
30
60
7.1
—
60
50
600
6.6 × 105 1.0 × 107
5
50
2.2
22
931B
106
25
40
5.0
—
48
50
250
3.0 ×
1
5
2.2
22
1P21
25
40
5.0
—
48
50
400
4.8 × 105 1.0 × 107
1
10
2.2
22
R105
400
5
50
2.2
22
1P28
48
20
4.8 ×
1.0 ×
105
7.5 ×
106
25
40
5.0
—
48
50
300
3.6 ×
1
10
2.2
22
40
60
6.4
—
60
200
400
4.0 × 105 6.7 × 106
0.1
2
2.2
22
107
0.2
2
2.2
22
0.2
2
2.2
22
80
100
8.0
—
70
1000
1200
8.4 ×
80
100
8.0
—
70
1000
1200
8.4 × 105 1.2 × 107
105
1.2 ×
100
120
10.0
0.01
90
500
1200
9.0 ×
30
50
7.0
—
62
100
300
3.7 × 105 6.0 × 106
105
1.0 ×
60
100
8.0
—
70
500
1000
7.0 ×
40
70
—
0.01
68
200
500
4.8 × 105 7.1 × 106
1560
1.0 ×
120
130
10
—
85
1200
105
106
1.0 ×
107
1.2 ×
107
107
R212
Photon counting type: R1527P
Silica glass window type: R7446
Photon counting type: R4220P
R1527
R4220
R7447
5
50
2.2
22
Silica glass window type: R4332
0.5
5
1.2
18
Photon counting type: R2693P
R2693
Photon counting type: R5983P
R5983
0.2
2
2.2
22
5
50
2.2
22
0.2
2.0
2.2
22
R3788
R6925
Photon counting type: R7518P
R7518∗
Dimensional Outline of Socket (Unit: mm)
E678-11A
49
38
33
—
107
3.5
5.0
105
5
29
4
40
6.3 ×
18
25
105
TACCA0064EA
25
Side-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
C
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
G
J
Anode Average
to
Cathode Anode
Voltage Current
Socket
&
Socket
Assembly
(nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
28 mm (1-1/8") Dia. Types with UV to Near IR Sensitivity
10 × 24
562U
400
MA
U
1
CC/9
E678-11A ert
1250
0.1
1000 i
18 × 16
500U
420
MA
U
2
CC/9
E678-11A ert
1250
0.1
1000 i
R928
8 × 24
562U
400
MA
U
3
CC/9
E678-11A ert
1250
0.1
1000 i
R955
8 × 24
552S
400
MA
Q
3
CC/9
E678-11A ert
1250
0.1
1000 i
R2949
8×6
552U
400
MA
U
4
CC/9
E678-11A ert
1250
0.1
1000 i
R3896
8 × 24
R5984
R2368
555U
450
MA
U
3
CC/9
E678-11A ert
1250
0.1
1000 i
8 × 24
556U
430
MA
U
3
CC/9
E678-11A ert
1250
0.1
1000 i
∗R9110
8×6
555U
450
MA
U
5
CC/9
E678-11A ert
1250
0.1
1000 i
∗R9220
8 × 24
—
450
MA
U
3
CC/9
E678-11A ert
1250
0.1
1000 i
R4632
3 × 12
R636-10
GaAs
U
6
CC/9
E678-11A er
1500
0.001 1250 i
850U
400
InGaAs
U
7
CC/9
E678-11A er
1500
0.001 1250 i
700K
800
Ag-O-Cs
K
8
CC/9
E678-11A er
1500
0.01
650U 300-800
3 × 12
R2658
18 × 16
R5108
1250 i
Dimensional Outlines (Unit: mm)
1 R5984
2 R2368
3 R928, R3896 etc.
28.5 ± 1.5
28.5 ± 1.5
29.0 ± 1.7
10 MIN.
2.5 ± 0.5
8 MIN.
18 MIN.
PHOTOCATHODE
2
10
1
P
11
K
DY1
DY6
6
7
DY7
8 DY8
DY3 3
9 DY9
2
DY2
10
1
P
11
K
DY1
DIRECTION OF LIGHT
DY5
80 MAX.
9 DY9
49.0 ± 2.5
DY2
5
49.0 ± 2.5
DY3 3
DY5
DY4 4
24 MIN.
8 DY8
76 MAX.
DY7
7
90 MAX.
DY6
6
16 MIN.
80 MAX.
5
DY4 4
94 MAX.
49.0 ± 2.5
24 MIN.
DY5
94 MAX.
PHOTOCATHODE
PHOTOCATHODE
32.2 ± 0.5
32.2 ± 0.5
11 PIN BASE
JEDEC No. B11-88
DY7
7
8 DY8
DY3 3
DY2
9 DY9
2
10
1
P
11
K
DY1
DIRECTION OF LIGHT
32.2 ± 0.5
HA COATING
TPMSA0035EC
4 R2949
DY6
6
DY4 4
DIRECTION OF LIGHT
11 PIN BASE
JEDEC No. B11-88
5
11 PIN BASE
JEDEC No. B11-88
TPMSA0026EA
5 R9110
TPMSA0001EA
6 R636-10
29.0 ± 1.7
29.0 ± 1.7
8 MIN.
8 MIN.
3 MIN.
7
DY7
10
1
DY1
P
11
DY6
6
7
K
DIRECTION OF LIGHT
DY7
DY5
8 DY8
DY3 3
94 MAX.
2
80 MAX.
9 DY9
5
DY4 4
49 ± 1
DY2
DY5
8 DY8
DY3 3
94 MAX.
80 MAX.
DY4 4
DY2
9 DY9
2
10 P
1
DY1
49.0 ± 2.5
DY6
6
12 MIN.
5
PHOTOCATHODE
6 MIN.
DY5
49 ± 1
6 MIN.
7 MIN.
PHOTOCATHODE
16 MIN.
PHOTOCATHODE
11
K
DIRECTION OF LIGHT
5
DY6
6
7
DY4 4
94 MAX.
8 MIN.
80 MAX.
29.0 ± 1.7
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
P
11
K
DIRECTION OF LIGHT
32.2 ± 0.5
32.2 ± 0.5
INSULATION COVER
11 PIN BASE
JEDEC No. B11-88
HA COATING
11 PIN BASE
JEDEC No. B11-88
11 PIN BASE
JEDEC No. B11-88
TPMSA0016EB
26
34 MAX.
INSULATION COVER
TPMSA0043EA
TPMSA0027EE
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
140
300
9.0
0.32
76
400
3000
7.6 × 105 1.0 × 107
5
50
2.2
22
R5984
80
150
—
0.15
64
50
200
8.3 × 104 1.3 × 106
5
50
1.2
18
R2368
107
3
50
2.2
22
R928
3
50
2.2
22
R955
300h 500h 2.2
22
R2949
140
250
8.0
0.3
74
400
2500
7.4 ×
140
250
8.0
0.3
74
400
2500
7.4 × 105 1.0 × 107
2000
140
0.3
7.5
200
68
1000
105
1.0 ×
6.8 ×
105
1.0 ×
107
105
9.5 ×
106
475
525
15.0
0.4
90
3000
5000
8.6 ×
2.2
22
R3896
140
200
7.5
0.15
80
300
700
2.8 × 105 3.5 × 106 50h 100h 2.2
22
R4632
R9110∗
400
525
15.0
0.4
90
4000
10000
1.7 ×
375
450
12.5
0.4
85
1000
4500
8.5 × 105 1.0 × 107
100
250
2.8 ×
5
16
1.6 × 102 1.6 × 105
7.5
6.6 ×
400
550
9.0
0.53
50
100
4.5
0.4
10
at 1 µm
—
—
25
62
1
2.2
3.5
106
104
102
1.9 ×
4.5 ×
3.0 ×
10
50
107
5
15
2.2
22
10
50
2.2
22
105
105
R9220∗
0.1f
2f
2.0
20
Silica glass window type: R758-10
1
10
2.0
20
Photon counting type: R2658P
350e 1000e 1.1
17
R636-10
R2658
R5108
Dimensional Outline of Socket (Unit: mm)
7 R2658
E678-11A
49
28.5 ± 1.5
38
3 MIN.
PHOTOCATHODE
DY6
6
DY7
7
80 MAX.
94 MAX.
9 DY9
2
10
1
5
P
11
K
DY1
29
DIRECTION OF LIGHT
18
4
49.0 ± 2.5
12 MIN.
8 DY8
DY3 3
DY2
33
5
3.5
DY5
DY4 4
32.2 ± 0.5
11 PIN BASE
JEDEC No. B11-88
TPMSA0012ED
TACCA0064EA
8 R5108
29.0 ± 1.7
18 MIN.
PHOTOCATHODE
16 MIN.
DY5
5
DY6
6
7
90 MAX.
76 MAX.
49.0 ± 2.5
DY4 4
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
P
11
K
DIRECTION OF LIGHT
34 MAX.
11 PIN BASE
JEDEC No. B11-88
HA COATING
TPMSA0023EC
27
Side-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
D E
F
WinOut- Dynode
Photocathode dow line Structure
MateMaterial rial No. / Stages
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
G
Socket
&
Socket
Assembly
(nm)
900 1000
J
Anode Average
to
Cathode Anode
Voltage Current
(V)
(mA)
L
Anode to
Cathode
Supply
Voltage
(V)
13 mm (1/2") Dia. Types with Solar Blind Response
4×5
R7511
150M
130
Cs-I
R6354
4 × 13
250S
230
Cs-Te
R7311
4×5
250M
200
Cs-Te
MF 2
CC/9
E678-11U*
1250
0.01
1000 i
1
CC/9
E678-11U* qw
1250
0.01
1000 i
MF 2
CC/9
E678-11U*
1250
0.01
1000 i
MF 3
CC/9
E678-11A
1250
0.1
1000 i
4
CC/9
E678-11A ert
1250
0.1
1000 i
Q
28 mm (1-1/8") Dia. Types with Solar Blind Response
8 × 12
R8487
8 × 24
R7154
3 × 12
R7639
8 × 12
∗R8486
150M
130
Cs-I
250S
230
Cs-Te
—
155
DIA
MF 5
CC/9
E678-11A ert
1250
0.1
1000 i
250M
200
Cs-Te
MF 3
CC/9
E678-11A
1250
0.1
1000 i
Q
Dimensional Outlines (Unit: mm)
1 R6354
2 R7511, R7311
3 R8487, R8486
13.5 ± 0.8
28.5 ± 1.5
9 DY8
DY3 4
DY2
8
9 DY8
45 MAX.
10 DY9
3
11
2
3
7
P
DY7
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10
1
P
11
K
DIRECTION OF LIGHT
1 K
DY1
DIRECTION OF LIGHT
11 PIN BASE
11
2
1
32.2 ± 0.5
P
11 PIN BASE
JEDEC No. B11-88
K
DIRECTION OF LIGHT
TPMSA0034EE
4 R7154
TPMSA0038ED
5 R7639
28.5 ± 1.5
28.5 ± 1.5
3 MIN.
8 MIN.
MgF2
WINDOW
PHOTOCATHODE
94 MAX.
80 MAX.
49.0 ± 2.5
24 MIN.
DY4 4
8 DY8
DY3 3
DY2
9 DY9
2
DY1
10 P
1
DY5
DY7
11
K
5
DY6
6
7
DY4 4
PHOTOCATHODE
DIRECTION OF LIGHT
80 MAX.
7
DY7
8 DY8
DY3 3
94 MAX.
DY6
6
49.0 ± 2.5
5
12 MIN.
DY5
DY2
9 DY9
2
DY1
10
1
P
11
K
DIRECTION OF LIGHT
32.2 ± 0.5
32.2 ± 0.5
TPMSA0001EA
11 PIN BASE
JEDEC No. B11-88
TPMSA0040EB
28
PHOTOCATHODE
80 MAX.
8
DY6
6
10 DY9
DY1
11 PIN BASE
JEDEC No. B11-88
DY2
53 MAX.
DY4 5
6
DY7
DY3 4
24.0 ± 1.5
6
PHOTOCATHODE
DY7
DY6
7
DY4 5
5 MIN.
MgF2
WINDOW
DY5
DY5
94 MAX.
4 MIN.
14 MIN.
14.0 ± 0.4
5
DY4 4
49.0 ± 2.5
52 MAX.
42 ± 2
DY5
11 PIN BASE
DY6
7
8 MIN.
MgF2
WINDOW
9.0 ± 0.5
24.0 ± 1.5
13 MIN.
7±2
16.8 ± 0.6
4 MIN.
PHOTOCATHODE
TPMSA0042EB
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
—
—
—
—
—
—
—
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
26a
—
Radiant
Gain
Typ.
(A/W)
Typ.
Notes
Type No.
—
5.2 × 104a 2.0 × 106
0.3
3
1.4
15
R7511
—
1.8 ×
105b
3.0 ×
106
0.5
5
1.4
15
R6354
105b
7.0 ×
106
0.3
3
1.4
15
R7311
—
62b
—
—
2.8 ×
—
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
—
—
—
—
40b
—
—
—
—
25.5a
—
—
1.0 × 105a 3.9 × 106
0.1
—
2.2
22
R8487
—
—
—
—
62b
—
—
6.2 × 105b 1.0 × 107
1
10
2.2
22
R7154
0.5
5
2.2
22
R7639
1
10
2.2
22
R8486∗
Dimensional Outline of Socket (Unit: mm)
E678-11U
24
18
5.5
13
11
TACCA0181EB
E678-11A
49
38
33
3.0 ×
3
1.5 ×
5.2 × 105b 1.0 × 107
10.5
—
4
—
—
3.5
—
52b
5
29
4
50
—
18
—
—
0.5
—
—
°
—
—
106
45
—
105
TACCA0064EA
29
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
900 1000
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
10 mm (3/8") Dia. Types
8
R1893
8
R1635
8
R2496
8
R1894
200S
240
Cs-Te
Q
1
L/8
E678-11N* y
1500
0.01
1250 q
400K
420
BA
K
1
L/8
E678-11N* y
1500
0.03
1250 q
400S
420
BA
Q
1
L/8
E678-11N* ui
1500
0.03
1250 r
500K
420
MA
K
1
L/8
E678-11N* y
1500
0.03
1250 q
100M
140
Cs-I
MF 2
L/10
E678-12A*
2250
0.01
2000 !0
200M
240
Cs-Te
MF 2
L/10
E678-12A*
1250
0.01
1000 !0
13 mm (1/2") Dia. Types
6
R1081
R1080
6
R759
10
200S
240
Cs-Te
Q
3
L/10
E678-13A* o!0
1250
0.01
1000 !0
R647
10
400K
420
BA
K
3
L/10
E678-13A* o!0
1250
0.1
1000 !0
R4124
10
400K
420
BA
K
4
L/10
E678-13A* !1
1250
0.03
1000 !6
R2557
10
402K
375
LBA
K
3
L/10
E678-13A* !2
1500
0.03
1250 !3
R4177-01
10
401K
375
HBA
K
5
L/10
E678-13E*
1800
0.02
1500 !0
500U
420
MA
U
3
L/10
E678-13A* o!0
1250
0.03
1000 !0
10
R1463
Dimensional Outlines (Unit: mm)
1 R1893, R1635, R2496, R1894
2 R1081, R1080
3 R759, R647, R2557, R1463
13.5 ± 0.5
13.5 ± 0.5
A Temporary Base Removed
8 MIN.
9 DY4
DY3 3
DY1
1
IC
10 MAX.
11 PIN BASE
R1635, R1894
10
DY2
11
K
2
SHORT PIN
SEMI-FLEXIBLE
LEADS
DY6
9
DY7 4
10 DY4
DY5 3
11 DY2
PHOTOCATHODE
B
DY10
P
1
DY1
6
DY9
2
DY3
13
K
7
DY8
8
5
9
DY7 4
DY10
P
6
DY9
DY3
5
8
13
IC
K
SHORT PIN
9 DY6
10 DY4
DY5 3
R2496 has a plano-concave faceplate.
12
1
DY8
DY7 4
DY3
11 DY2
2
DY1
7
DY6
10 DY4
DY5 3
B Bottom View
12 PIN BASE
JEDEC
No. B12-43
10.5 ± 0.5
DY8
8
5
A
R1893, R2496
9.7 ± 0.4
10 MIN.
71 ± 2
8
4
DY6
FACEPLATE
11
2
1
12
DY1
DY2
13 PIN BASE
13 MAX.
45.0 ± 1.5
DY5
6
DY9
13 MAX.
PHOTOCATHODE
DY10
7
P
PHOTOCATHODE
DY8
7
71 ± 2
P
6
DY7
5
LEAD LENGTH 33 MIN.
FACEPLATE
A
6 MIN.
FACEPLATE
A
K
37.3 ± 0.5
TPMHA0100EB
4 R4124
5 R4177-01
14.5 ± 0.7
13.5 ± 0.5
FACEPLATE
10 MIN.
10 MIN.
50 ± 2
6
7
5
10 DY6
3
11
2
1
13 MAX.
IC
13 PIN BASE
DY4
12
DY1
6
DY8
8
9
3
DY5
DY6
10 DY4
11
2
DY1
12
1
13
DY2
IC
K
SHORT PIN
SHORT PIN
13 PIN BASE
TPMHA0102EA
7
5
DY7 4
DY3
DY2
13
K
DY10
P
DY9
DY8
9
DY5 4
DY3
PHOTOCATHODE
DY10
8
61 ± 2
P
DY9
DY7
PHOTOCATHODE
13 MAX.
FACEPLATE
30
TPMHA0207EA
TPMHA0006EA
TPMHA0014EA
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
—
—
—
—
24b
1.2 × 103
(A/W)b
—
3.6 × 103b 1.5 × 105
0.5
2.5
0.8
7.8
60
100
10
—
80
30
100
8.0 × 104 1.0 × 106
1
50
0.8
9.0
106
2
50
0.7
9.0
R2496
2
20
0.8
7.8
R1894
60
100
10
—
80
30
100
8.0 ×
80
120
—
0.2
51
10
50
2.1 × 104 4.2 × 105
—
—
—
—
12a
—
—
—
—
28b
2 × 102
(A/W)a
4 × 103
(A/W)b
4 × 103
(A/W)b
30
—
80
18
1.4 × 104b 5.0 × 105
0.3
1
2.5
24
—
1.4 ×
0.3
1
2.5
24
1
15
2.1
22
104b
5.0 ×
105
110
8.0 × 104 1.0 × 106
40
100
10
—
80
30
100
8.0 ×
25
40
5.5
—
50
50
200
2.5 × 105 5.0 × 106
1.0 ×
104
5.0 ×
106
20
40
6.0
—
51
10
20
2.5 ×
80
120
—
0.2
51
30
120
5.1 × 104 1.0 × 106
105
105
R1081
Photon counting type: R1080P
R1080
R759
Photon counting type: R647P
UV glass window type: R960
Silica glass window type: R760
R647
1
15
1.1
12
UV glass window type: R4141
0.5
4
2.2
22
Photon counting type: R2557P
R2557
High temp. operation type:
-30 °C to +175 °C
Photon counting type: R1463P
R4177-01
0.5
10
2.0
20
4
20
2.5
24
R4124
R1463
Dimensional Outline of Socket (Unit: mm)
E678-11N
E678-12A
47
40
4.3
17
10.5
11
3
9.5
2- 3.2
3
34
8
5
9.5
15
—
10
1.8
—
TACCA0043EB
E678-13A
TACCA0009EB
E678-13E
12.4
11
24
5.5
18
2- 2.2
3
13
3.4
10
3
—
110
1.2 × 103a 1.0 × 105 0.03 0.05
10.5
—
40
—
R1635
7
—
28b
1.0 ×
104
R1893
Photon counting type: R1635P
UV glass window type: R3878
11
TACCA0005EA
TACCA0013EB
31
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
19 mm (3/4") Dia. Types
13
R972
15
R821
100M
140
Cs-I
200S
240
Cs-Te
MF 1
L/10
E678-12A* !3
2250
0.01
2000 !2
Q
2
L/10
E678-12L* !4!5!6
1250
0.01
1000 !2
R1166
15
400K
420
BA
K
2
L/10
E678-12L* !4!5!6
1250
0.1
1000 !2
R1450
15
400K
420
BA
K
2
L/10
E678-12L* !7
1800
0.1
1500 !4
R3478
15
400K
420
BA
K
3
L/8
E678-12L* !8!9
1800
0.1
1700 t
∗R5610A
15
402K
375
LBA
K
4
CC/10
E678-12T*
1250
0.1
1000 !5
∗R5611A-01
15
400K
420
BA
K
5
CC/10
E678-12A*
1250
0.1
1000 !5
∗R3991A
15
401K
375
HBA
K
5
CC/10
E678-12R*
1800
0.02
1500 !5
R1617
15
500K
420
MA
K
2
L/10
E678-12L* !4!5!6
1250
0.1
1000 !2
R1878
4
500K
420
MA
K
6
L/10
E678-12L* @0
1250
0.1
1000 !3
Dimensional Outlines (Unit: mm)
1 R972
2 R821, R1166, R1450 etc.
3 R3478
19 ± 1
A
13 MIN.
FACEPLATE
LEAD LENGTH 45 MIN.
12 PIN BASE
JEDEC
No. B12-43
B
6
DY8
7
DY6
8
DY9 4
9 DY4
DY7 3
10 DY2
11
2
1
DY8
IC
PHOTOCATHODE
P
7
9 DY4
10 DY2
11
2
1
7
DY1
SHORT PIN
DY8
8
K
12
DY3
DY7 4
DY6
8
DY7 3
DY5
DY1
6
5
IC 4
K
12
DY3
DY10
5
DY10
6
5
65 ± 2
P
DY5
DY9
15 MIN.
PHOTOCATHODE
B Bottom View
P
A
18.6 ± 0.7
FACEPLATE
SHORT PIN
9 DY6
10 DY4
DY5 3
11
2
DY3
1
12
DY1
DY2
12 PIN BASE
K
R821
13 MAX.
SEMI-FLEXIBLE
LEADS
15 MIN.
88 ± 2
A Temporary Base Removed
DY8
DY6
DY10
7
8
6
DY4
P
9
5
10 DY2
DY9 4
11
DY7 3
K
12
2
DY5
DY1
1
DY3
13 MAX.
88 ± 2
PHOTOCATHODE
12 PIN BASE
Others
19 ± 1
A
18.6 ± 0.7
13 MAX.
FACEPLATE
R1450 has a plano-concave faceplate.
37.3 ± 0.5
TPMHA0208EA
4 R5610
TPMHA0012EB
5 R5611A-01, R3991A
TPMHA0119EB
6 R1878
19 ± 1
15 MIN.
30 ± 1.5
5
9 DY5
SEMIFLEXIBLE
LEADS
A
10 DY7
DY6 3
11
2
1
12
DY10
13 MAX.
DY3
8
DY4 4
DY8
12 PIN BASE
DY9
P
A
PHOTOCATHODE
7
12 PIN BASE
JEDEC
No. B12-43
SHORT PIN
B
37.3 ± 0.5
6
DY7 4
10 DY8
DY5 3
11 DY6
A
TPMHA0269EA
32
R3991A
30 ± 1.5
28 ± 1.5
MASKED
PHOTOCATHODE
P
12
2
DY3
1
14
DY1
K
DY4
13
DY2
B Bottom View
P
DY9
6
5
DY10
7
DY8
8
DY7 4
9 DY6
DY5 3
10 DY4
DY3
R5611A-01
4 MIN.
DY10
9
5
80 ± 2
DY2
PHOTOCATHODE
DY1
6
13 MAX.
K
LEAD LENGTH 45 MIN.
15 MIN.
FACEPLATE
P
DY9
18.6 ± 0.7
FACEPLATE
A Temporary Base Removed
11
2
1
DY1
12
7
DY6
8
9 DY4
DY7 3
10 DY2
11
2
1
DY3
12
K
DY1
SHORT PIN
DY2
TPMHA0036EB
DY8
DY9 4
DY5
HA COATING
K
SHORT PIN
DY10
6
5
12 PIN BASE
13 MAX.
18.6 ± 0.7
FACEPLATE
TPMHA0027EA
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
1.6
17
—
1.0 × 104b 3.6 × 105
0.5
2.5
27
70
110
10.5
—
85
10
110
8.5 ×
70
115
11.0
—
88
100
200
1.5 × 105 1.7 × 106
200
—
88
100
1.5 ×
105
1
5
2.5
27
3
50
1.8
19
1.7 ×
106
10
2.0 ×
106
30
50
6.5
—
50
20
100
1.0 ×
60
90
10.5
—
85
10
50
4.7 × 104 5.5 × 105
20
40
6.0
—
51
5
15
1.9 ×
80
120
—
0.2
51
30
120
5.1 × 104 1.0 × 106
150
6.1 ×
0.2
51
30
1.2 ×
1.3
14
0.5
4
1.3
12
3
20
1.3
12
Button stem type: R5611
R5611A-01∗
High temp. operation type:
-30 °C to +175 °C
UV glass window type: R1464
Silica glass window type: R2027
Bialkali photocathode type: R2295
R3991A∗
0.1
10
1.0
10
4
20
2.5
27
100h 250h 1.7
24
R5610A∗
R1617
R1878
Dimensional Outline of Socket (Unit: mm)
E678-12A, E678-12R*
E678-12L
47
35
40
28.6
17
2- 3.2
13
2-R4
360
13
18
2
2- 3.2
34
(8)
—
106
R3478
R1450
300
5
120
104
3.8 ×
105
UV glass window type: R3479
Silica glass window type: R2076
Photon counting type: R5610P
R1166
13
18
8
80
104
R821
* Gold Plating type
TACCA0047EA
TACCA0009EB
E678-12T
35
28.5
13
2- 3.5
360
13
24
11.0
105
1.0 ×
106
R972
MgF2 window type: R976
(Dimensional Outline: q)
Photon counting type: R1166P
UV glass window type: R750
Flexible lead type: R1450-13
6.7
115
104
0.3
9
(23.6)
28b
2
—
2.9
—
12 × 103a 1.0 × 105 0.03 0.05
18.5
—
—
Type No.
1.9
7.5
—
2 × 102
(A/W)a
4 × 103
(A/W)b
Notes
3
12a
Typ.
6.5
—
Typ.
(A/W)
7
—
Gain
10.5
9.5
3.3 3.7
—
Radiant
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
15
—
70
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
TACCA0275EA
33
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
900 1000
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
25 mm (1") Dia. Types
R7899
22
400K
420
BA
K
1
L/10
E678-14C* @1
1800
0.1
1250 !6
R4998
20
400K
420
BA
K
2
L/10
E678-12A*
2500
0.1
2250 !9
201S
240
Cs-Te
Q
3
CC/10
E678-12A*
2000
R1924A
22
400K
420
BA
K
4
L/10
E678-14C* @2@3@4
1250
0.1
1000 !5
R3550A
22
402K
375
LBA
K
4
L/10
E678-14C* @2@3@4
1250
0.1
1000 !5
R1288A
22
401K
375
HBA
K
3
L/10
E678-12R*
1800
0.02
1500 !5
500K
420
MA
K
4
L/10
E678-14C* @2@3@4
1250
0.1
1000 !5
502K
420
MA
K
5
L/10
E678-14C* @2@3@4
1250
0.1
1000 !5
21
R2078
22
R1925A
21
R5070A
0.015 1500 !3
Dimensional Outlines (Unit: mm)
1 R7899
2 R4998
3 R2078, R1288A
26 ± 1
25.4 ± 0.5
25.4 ± A
20 MIN.
FACEPLATE
22 MIN.
9
5
10
DY5 4
DY10
11 DY8
DY3 3
12 DY6
13
14
DY4
DY2
2
DY1
1
K
SMA
CONNECTOR
SEMIFLEXIBLE
LEADS
A
SHORT PIN
13 MAX.
12 PIN BASE
JEDEC
No. B12-43
16
3
DY5
HA COATING
G
1 18
DY1
K
DY10
6
DY8
7
8 DY6
P
DY9 5
DY7 4
(Acc)
DY5 3
DY3
1
DY1
TPMHA0093ED
5 R5070A
25.4 ± 0.5
25.4 ± 0.5
22 MIN.
FACEPLATE
43.0 ± 1.5
6
10 DY10
DY5 4
11 DY8
DY3 3
12 DY6
13
DY4
14
DY2
2
1
13 MAX.
K
PHOTOCATHODE
DY9
6
IC
8
IC
9
10 DY10
DY5 4
11 DY8
DY3 3
12 DY6
13
DY4
14
DY2
2
1
K
14 PIN BASE
7
DY7 5
DY1
SHORT PIN
TPMHA0040EC
34
P
IC
9
DY7 5
DY1
14 PIN BASE
7
21 MIN.
46.0 ± 1.5
DY9
PHOTOCATHODE
IC
8
13 MAX.
P
B
SHORT PIN
TPMHA0491EA
37.3 ± 0.5
A
B
R2078
0.8
21
6
5
DY5 4
DY10
10
DY8
11
12 DY6
DY3 3
13 DY4
DY1 2
14
DY2
17
K
12 PIN BASE
JEDEC
No. B12-43
9 DY4
10 DY2
11
12
G
K
2
TPMHA0492EB
FACEPLATE
SEMIFLEXIBLE
LEADS
A
B Bottom View
37.3 ± 0.5
4 R1924A, R3550A, R1925A
DY2
17
2
DY3
B
PHOTOCATHODE
15 DY4
DY7 4
(Acc)
13 MAX.
IC
P
8
DY9
DY7
43.0 ± 1.5
DY9 5
71 ± 1
68.0 ± 1.5
DY7
6
IC
8
13 MAX.
P
7
DY9
LEAD LENGTH 52 MIN.
PHOTOCATHODE
DY10
12
DY8
13
14 DY6
P
PHOTOCATHODE
14 PIN BASE
A Temporary Base Removed
B
A Temporary Base Removed
LEAD LENGTH 50 MIN.
FACEPLATE
FACEPLATE
R1288A
0.5
22
B Bottom View
P
6
DY9
5
DY10
7
DY8
8
DY7 4
9 DY6
DY5 3
10 DY4
DY3
11
2
1
DY1
12
DY2
K
TPMHA0039EB
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
Semiflexible leads type
: R7899-01
Assembly type H6533 (Recommended)
Silica glass window type: R5320
70
95
11.0
—
88
—
190
1.7 × 105 2.0 × 106
2
15
1.6
17
60
70
9.0
—
72
100
400
4.1 × 105 5.7 × 106
100
800
0.7
10
—
0.015 0.1
1.5
14
180
1.7 × 105 2.0 × 106
20
1.5
17
Photon counting type R1924P
R1924A
100
17
Photon counting type: R3550P
R3550A
7.0
—
55
30
1.1 ×
105
2.0 ×
106
104
3.8 ×
105
20
40
6.0
—
51
8
15
1.9 ×
80
150
—
0.2
64
20
75
3.2 × 104 5.0 × 105
100
2.8 ×
130
230
—
0.25
65
20
104
4.3 ×
105
3
0.5
4
1.5
R2078
Button stem type: R1288A-01
High temp. operation type:
-30 °C to +175 °C
0.1
10
1.3
13
3
20
1.5
17
Silica glass window type: R1926A
R1925A
19
Prism window type
R5070A
3
20
2.2
R1288A
Dimensional Outline of Socket (Unit: mm)
E678-12A, E678-12R*
47
40
17
2- 3.2
34
* Gold Plating type
TACCA0009EB
E678-14C
44
35
30
50
5.0 ×
5
30
1.5 ×
15
40
8
85
11.6
29b
—
19.1
—
10.5
R4998
2- 3.5
26
7
—
90
105
2.5
—
60
104b
9
—
2 × 103
(A/W)b
R7899
25
TACCA0004EA
35
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
28 mm (1-1/8") Dia. Types
23
R6835
23
R6836
100M
140
Cs-I
MF 1
B+L/11
E678-14C*
2500
0.01
2000 @3
200M
240
Cs-Te
MF 1
B+L/11
E678-14C*
1500
0.01
1000 @3
200S
240
Cs-Te
Q
2
B+L/11 E678-14C* @5@6@7
1500
0.01
1000 @3
R6095
25
400K
420
BA
K
3
B+L/11 E678-14C* @5@6@7
1500
0.1
1000 @3
R6094
25
400K
420
BA
K
4
B+L/11 E678-14C* @5@6@7
1500
0.1
1000 @3
R6427
25
25
R6834
25
R374
400K
420
BA
K
6
L/10
E678-14C* @8@9#0
2000
0.2
1500 !8
500U
420
MA
U
3
B/11
E678-14C* @5@6@7
1500
0.1
1000 @3
R5929
25
502K
420
MA
K
3
B/11
E678-14C* @5@6@7
1500
0.1
1000 @3
R2228
25
501K
600
MA
K
3
B/11
E678-14C* @5@6@7
1500
0.1
1000 @3
400K
420
BA
K
5
B+L/11
E678-14C* #1
1500
0.01
1000 @5
500K
420
MA
K
5
B+L/11
E678-14C* #1
1500
0.01
1000 @5
10
R7205-01
10
R7206-01
R3998-02
25
400K
420
BA
K
7
B+L/9
E678-14C* #2
1500
0.1
1000 o
R7111
25
400K
420
BA
K
8
L/10
E678-14C* @2@3@4
1250
0.1
1000 !5
Dimensional Outlines (Unit: mm)
1 R6835, R6836
2 R6834
28.2 ± 0.8
28.5 ± 0.5
PHOTOCATHODE
PHOTOCATHODE
P
DY8
DY11
9
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
1
IC
DY9 5
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
DY3
2
1
IC
SHORT PIN
4 R6094
92 ± 2
DY9 5
11 DY4
DY5 3
12 DY2
13
K
14
DY1
2
1
IC
P
DY11
6
36
25 MIN.
DY7 4
11 DY4
DY5 3
12 DY2
13
K
14
DY1
DY3
HA COATING
2
1
IC
P
DY10
DY8
8
9
10 DY6
NC
6
DY9 5
DY10
DY8
8
9
10 DY6
11 DY4
DY5 3
12 DY2
13
K
14
DY1
2
1
IC
SHORT PIN
14 PIN BASE
TPMHA0412EB
7
DY7 4
DY3
SHORT PIN
13 MAX.
13 MAX.
TPMHA0493EA
7
DY9 5
14 PIN BASE
TPMHA0482EA
PHOTOCATHODE
SHORT PIN
14 PIN BASE
1
28.5 ± 0.5
FACEPLATE
DY10
DY8
8
9
10 DY6
DY7 4
DY3
12 DY2
13
K
14
DY1
R2228, R5929 has a plano-concave faceplate.
85 ± 2
7
11 DY4
DY5 3
IC
10 MIN.
92 ± 2
P
6
DY7 4
6 R6427
PHOTOCATHODE
PHOTOCATHODE
DY11
10 DY6
2
29.0 ± 0.7
FACEPLATE
DY8
9
5
DY3
14 PIN BASE
5 R7205-01, R7206-01
25 MIN.
8
7
6
SHORT PIN
TPMHA0226EC
28.5 ± 0.5
FACEPLATE
DY9
13 MAX.
14 PIN BASE
TPMHA0115EC
DY10
P
DY11
SHORT PIN
13 MAX.
14 PIN BASE
DY10
DY8
8
9
10 DY6
13 MAX.
2
DY3
7
6
10 DY6
13 MAX.
8
5
92 ± 2
92 ± 2
DY9
7
6
PHOTOCATHODE
DY10
P
DY11
25 MIN.
FACEPLATE
25 MIN.
FACEPLATE
112 ± 2
23 MIN.
FACEPLATE
3 R6095, R374, R5929 etc.
28.2 ± 0.8
TPMHA0387EA
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
—
—
—
—
12a
—
—
—
—
—
28b
4 × 103
(A/W)b
4 × 103
(A/W)b
60
95
11.0
—
88
50
—
—
60
95
28b
—
—
88
—
11.0
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
50
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
—
1.2 × 103a 1.0 × 105 0.03 0.05
—
1.4 × 104b 5.0 × 105
0.3
—
1.4 ×
104b
5.0 ×
105
2.8
22
R6835
4
30
R6836
0.3
1
4
30
1.8 × 105 2.1 × 106
2
10
4
30
200
2
10
4
30
1.8 ×
105
2.1 ×
106
105
5.0 ×
106
10
200
1.7
3
15
15
95
11.0
—
88
—
475
4.4 ×
80
150
—
0.2
64
20
80
3.4 × 104 5.3 × 105
130
230
—
0.25
65
30
180
5.1 ×
100
200
—
0.3
40
20
150
3.0 × 104 7.5 × 105
104
7.8 ×
R6834
Photon counting type: R6095P
UV glass window type: R7449
Silica glass window type: R7459
R6095
R6094
16
UV glass window type: R7056
R6427
60
High gain type: R1104
R374
Prism window type
R5929
105
5
25
15
60
8
30
15
60
R2228
Silica glass window type: R7207-01
40
70
9.0
—
72
200
700
7.5 ×
1.7
26
80
150
—
0.2
64
—
1500
6.4 × 105 1.0 × 107 300h 1000h 1.7
26
R7206-01
105
1.0 ×
Type No.
1
200
60
Notes
60
90
10.5
—
85
50
120
1.1 ×
60
90
10.5
—
85
40
180
1.7 × 105 2.0 × 106
105
1.3 ×
107
10h 30h
R7205-01
106
2
10
3.4
23
R3998-02
3
20
1.6
18
R7111
Dimensional Outline of Socket (Unit: mm)
7 R3998-02
E678-14C
44
35
28.5 ± 0.5
DY6 5
60 ± 2
7
6
DY9
DY7
8
9
10 DY5
11 IC
IC 4
DY4
12
3
13
2
1
DY2
14
K
G
2- 3.5
DY3
DY1
26
9
13 MAX.
2.5
SHORT PIN
14 PIN BASE
30
P
DY8
11.6
PHOTOCATHODE
19.1
25 MIN.
7
FACEPLATE
25
TPMHA0114EA
TACCA0004EA
8 R7111
28.5 ± 0.5
FACEPLATE
25 MIN.
P
DY9
6
43.0 ± 1.5
PHOTOCATHODE
IC
9
10 DY10
DY5 4
11 DY8
DY3 3
12 DY6
13
DY4
14
DY2
2
1
K
13 MAX.
IC
8
DY7 5
DY1
14 PIN BASE
7
SHORT PIN
TPMHA0395EA
37
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
C
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
(V)
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
38 mm (1-1/2") Dia. Types
R980
34
400K
420
BA
K
1
CC/10
E678-12A* #3#4
1250
0.1
1000 !3
R3886
34
400K
420
BA
K
2
CC/10
E678-12A* #3#4
1250
0.1
1000 !3
R580
34
400K
420
BA
K
3
L/10
E678-12A* #3#4
1750
0.1
1250 !3
R1705
34
401K
375
HBA
K
4
CC/10
E678-12R* #3#4
1800
0.02
1500 !3
500K
420
MA
K
1
CC/10
E678-12A* #3#4
1250
0.2
1000 !3
501K
600
MA
K
1
CC/10
E678-12A* #3#4
1500
0.2
1000 !3
34
R1387
34
R2066
Dimensional Outlines (Unit: mm)
FACEPLATE
38 ± 1
3 R580
38.0 ± 0.7
FACEPLATE
34 MIN.
A Temporary Base Removed
34 MIN.
PHOTOCATHODE
PHOTOCATHODE
DY10
9
DY8
10
11 DY6
P
6
DY10
P
6
DY9
7
DY8
8
DY7 4
12 DY4
DY7 4
13 DY2
DY5 3
DY3
PHOTOCATHODE
P
2
10 DY4
11
2
DY3
1
12
DY1
DY2
K
R2066 has a plano-concave
faceplate.
P
A
12 PIN BASE
JEDEC
No. B12-43
DY9
DY10
6
DY8
8
DY7 4
9 DY6
10
DY5 3
10 DY4
DY5 3
11
2
1
12
DY2
K
DY4
11
2
DY3
9 DY6
DY1
12 PIN BASE
JEDEC
No. B12-43
DY8
8
DY7 4
DY3
7
5
7
5
B Bottom View
SEMIFLEXIBLE
LEADS
13 MAX.
DY5 3
DY10
6
DY9
15
K
1
DY1
9 DY6
LEAD LENGTH 70 MIN.
116 MAX.
99 ± 2
5
12 PIN BASE
JEDEC
No. B12-43
63.5 ± 1.5
DY9 5
38 ± 1
34 MIN.
109 ± 2
FACEPLATE
2 R3886
127 MAX
1 R980, R1387, R2066 etc.
1
12
DY1
K
DY2
B
37.3 ± 0.5
4 R1705
38.0 ± 0.7
FACEPLATE
34 MIN.
A Temporary Base Removed
PHOTOCATHODE
P
DY10
DY8
9
10
DY6
11
6
87 ± 2
DY9 5
DY7 4
12 DY4
13 DY2
DY5 3
2
15
K
1
DY1
13 MAX.
DY3
B Bottom View
P
DY9
A
70 MIN.
SEMI-FLEXIBLE
LEADS 0.7 MAX.
12 PIN BASE
JEDEC
No. B12-43
6
5
DY10
7
DY8
8
DY7 4
9 DY6
DY5 3
10 DY4
DY3
11
2
1
DY1
12
DY2
K
B
37.3 ± 0.5
TPMHA0042EB
38
37.3 ± 0.5
37.3 ± 0.5
TPMHA0228EA
TPMHA0104EA
TPMHA0121EA
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
70
100
11.5
—
90
10
100
9.0 × 104 1.0 × 106
3
5
2.8
40
R980
70
90
10.5
—
85
10
45
4.3 × 104 5.0 × 105
3
5
2.5
32
R3886
—
88
10
100
9.7 ×
6.0
—
51
5
20
2.5 × 104 5.0 × 105
50
50
80
120
150
200
—
—
0.2
0.3
64
40
10
20
1.1 ×
2.1 ×
104
3.3 ×
105
1.0 ×
104
2.5 ×
105
3
20
2.7
37
0.5
10
2.0
35
4
25
2.8
40
8
30
2.8
40
R580
High temp. operation type:
-30 °C to +175 °C
UV glass window type: R1508
Silica glass window type: R1509
R1705
R1387
R2066
Dimensional Outline of Socket (Unit: mm)
E678-12A, E678-12R*
47
40
17
2- 3.2
34
5
11.0
40
15
95
20
106
8
70
104
* Gold Plating type
TACCA0009EB
39
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
900 1000
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
51 mm (2") Dia. Types with Plastic Base
R6231
46
400K
420
BA
K
1
B+L/8
E678-14W #5#6
1500
0.1
1000 y
R1306
46
400K
420
BA
K
2
B/8
E678-14W #7#8
1500
0.1
1000 w
R2154-02
46
400K
420
BA
K
3
L/10
E678-14W #9
1750
0.1
1250 !3
R1828-01
46
400K
420
BA
K
4
L/12
E678-20A* $0
3000
0.2
2500 @6
R3234-01
10
400K
420
BA
K
5
L/12
E678-20A* $1
2500
0.1
2000 #0
500K
420
MA
K
6
B/10
E678-14W $2$3$4$5 1500
0.3
1000 !1
46
R550
Dimensional Outlines (Unit: mm)
1 R6231
2 R1306
51.0 ± 0.5
51.0 ± 0.5
51.0 ± 0.5
FACEPLATE
46 MIN.
46 MIN.
46 MIN.
IC
8
PHOTOCATHODE
9
90 ± 3
113 MAX.
DY4 5
10 DY7
DY3 4
11 DY8
12 P
DY2 3
IC
DY7
DY6
7
6
DY5 5
IC
2
1
DY1
13
14
K
G
DY8
IC
8
9
10 IC
DY4 4
11 P
DY3 3
12 IC
13
G
14
K
DY2
2
1
DY1
PHOTOCATHODE
DY7
7
DY6
124 ± 2
DY6
7
6
6
147 MAX.
DY5
114 ± 2
PHOTOCATHODE
137 MAX.
FACEPLATE
FACEPLATE
3 R2154-02
DY5 5
DY8
DY9
8
9
DY10
10
DY4 4
11 P
DY3 3
12 IC
13
IC
14
K
DY2
2
1
DY1
56.5 ± 0.5
56.5 ± 0.5
14 PIN BASE
JEDEC No. B14-38
56.5 ± 0.5
14 PIN BASE
JEDEC No. B14-38
14 PIN BASE
JEDEC No. B14-38
TPMHA0388EB
4 R1828-01
TPMHA0089EC
5 R3234-01
TPMHA0296EA
6 R550
53.0 ± 1.5
46 MIN.
53.0 ± 1.5
FACEPLATE
10 MIN.
51.0 ± 0.5
FACEPLATE
146 ± 3
P DY12
IC
DY10
DY11 9 10 11 12
DY8
13 DY6
DY9 8
14
7
DY7 6
15 DY4
16 DY4
DY5 5
17 DY2
IC 4
18
3
DY3
19 IC
2
20 G1
(G2) & DY1 1
IC
K
HA COATING
168 MAX.
170 ± 3
HA COATING
192 MAX.
PHOTOCATHODE
P DY12
IC
DY10
DY11 9 10 11 12
DY8
13 DY6
DY9 8
14
7
DY7 6
15 DY4
16 DY4
DY5 5
17 DY2
IC 4
18
3
DY3
19 IC
2
20 NC
DY1 1
K
IC
46 MIN.
PHOTOCATHODE
DY6
DY7
7
6
124 ± 2
PHOTOCATHODE
14 PIN BASE
JEDEC
No. B14-38
DY5 5
147 MAX.
FACEPLATE
DY8
DY9
8
9
10 DY10
DY4 4
11 P
DY3 3
12 IC
13
G
14
K
DY2
2
1
DY1
20 PIN BASE
JEDEC
No. B20-102
20 PIN BASE
JEDEC
No. B20-102
56.5 ± 0.5
52.5 MAX.
52.5 MAX.
TPMHA0064EC
40
TPMHA0004EB
TPMHA0210EB
80
110
12.0
—
95
3
30
2.6 × 104 2.7 × 105
2
20
5.0
48
80
110
12.0
—
95
3
30
2.6 × 104 2.7 × 105
2
20
7.0
60
8.5 ×
5
20
3.4
50
400
1.3
60
90
10.5
—
85
20
90
60
90
10.5
—
85
200
1800
1.7 × 106 2.0 × 107
2000
100
150
9.0
—
—
0.2
72
64
500
20
2.0 ×
4.3 ×
104
R1306
31
Multialkali photocathode type: R3256
R2154-02
28
Silica glass window type: R2059
R1828-01
Silica glass window type: R3235-01
R3234-01
2.5 ×
107
1
10
1.3
28
6.7 ×
105
10
30
9.0
70
R550
Dimensional Outline of Socket (Unit: mm)
E678-14W
19.8
62
56
17 11
100
80
106
R6231
30
1.0 ×
106
Type No.
2
104
Notes
TACCA0200EA
E678-20A
20
Typ.
58
52.5
13
Typ.
(A/W)
21
Gain
6
Radiant
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
10
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
60
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
52
56
TACCA0003EA
41
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
C
Curve Peak
Code Wavelength
Wavelength (nm)
800
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
(nm)
900 1000
J
Anode Average
to
Cathode Anode
Voltage Current
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
51 mm (2") Dia. Types with Glass Base
5×8
400K
420
BA
K
1
B/12
E678-21C* $6
1500
0.01
1000 @8
R329-02
46
400K
420
BA
K
2
L/12
E678-21C* $7$8$9
2700
0.2
1500 @7
R331-05
46
400K
420
BA
K
3
L/12
E678-21C* $7$8$9
2500
0.2
1500 @7
R2083
46
400K
420
BA
K
4
L/8
E678-19F*
3500
0.2
3000 e
R4607-01
46
401K
375
HBA
K
5
CC/10
E678-15B*
1800
0.02
1500 !3
500K
420
MA
K
1
B/12
E678-21C* $6
1500
0.01
1000 @8
R464
5×8
R649
Dimensional Outlines (Unit: mm)
2 R329-02
53.0 ± 1.5
53.0 ± 1.5
52.0 ± 1.5
FACEPLATE
FACEPLATE
46 MIN.
PHOTOCATHODE
DY9 5
DY7 4
3
2
DY5
1
DY3
DY1
127 ± 2
126 ± 2
HA COATING
HA COATING
17 G
18 IC
19
IC
21 20
IC
K
SH IC DY10
DY8
DY12 9 10 11 12 13
DY6
14 DY4
8
P
15
7
DY11 6
16 DY2
DY9 5
17 G
18 IC
DY7 4
19
3
2 1 21 20 IC
DY5
DY3
IC
DY1
K
21 PIN BASE
TPMHA0123EE
5 R4607-01
53.0 ± 1.5
46 MIN.
52 ± 1
FACEPLATE
NC NC NC
121 ± 2
P
HA COATING
8
9 10 11
12
7
DY8
DY6
13
DY4
3
DY3
2
1
G2 & DY1
ACC
19
K
TPMHA0185EC
42
15 PIN BASE
7
6
5
8
DY10
9
DY8
10
11 DY6
DY7 4
DY3
G1
13 MAX.
SMA
CONNECTOR
DY9
DY5
IC
18
SHORT PIN
19 PIN BASE
PHOTOCATHODE
14
15 DY4
16 DY2
17
6
DY7 5
DY5 4
IC
IC
P
80 ± 2
PHOTOCATHODE
46 MIN.
13 MAX.
FACEPLATE
DY9 5
4
DY7
3
2
DY5
1
DY3
DY1
17 G
18
IC
19
20
IC
21
K
IC
*CONNECT SH TO DY5
21 PIN BASE
TPMHA0216EB
4 R2083
HA COATING
SH IC DY10
DY8
IC
10 11 12
DY12
13
9
DY6
14
8
P 7
15 DY4
DY11 6
16 DY2
*CONNECT SH TO DY5
13 MAX.
13 MAX.
LIGHT SHIELD
21 PIN BASE
PHOTOCATHODE
IC
126 ± 2
IC IC DY10
DY8
10 11 12
DY12
DY6
13
9
14
8
DY4
P
15
7
DY11 6
16 DY2
IC
12 DY4
3
2
1
DY1
13 DY2
14
IC
15
K
SHORT PIN
TPMHA0003EC
13 MAX.
PHOTOCATHODE
46 MIN.
0.2
5×8
FACEPLATE
3 R331-05
50.0
±
1 R464, R649
TPMHA0072EC
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
30
50
—
—
50
100
300
3.0 × 105 6.0 × 106
5h
15h
13
70
Silica glass window type: R585
R464
60
90
10.5
—
85
30
100
9.4 × 104 1.1 × 106
6
40
2.6
48
R329-02
200h 600h 2.6
48
UV glass window type: R5113-02
Silica glass window type: R2256-02
Silica glass window type: R331
Assembly type: H2431-50 (Recommended)
Silica glass window type: H3378-50
High temp. operation type:
-30 °C to +175 °C
R2083
60
90
10.5
—
85
30
120
1.1 ×
60
80
10.0
—
80
50
200
2.0 × 105 2.5 × 106
20
800
5.0 ×
3.4 ×
105
6.7 ×
106
3
50
2.5
29
200h
350h
13
70
R331-05
R4607-01
R649
Dimensional Outline of Socket (Unit: mm)
E678-21C
E678-19F
60
51
50
R5
45
40
4
19
5
40
2
12
6.5
TACCA0066EC
TACCA0203EA
E678-15B
60
45
40
4
50
2
11.5
5
5
100
2.5 ×
12
51
5
16
56.8
0.2
51
0.7
5
—
—
105
800
13
120
6.0
104
100
4
80
40
1.3 ×
106
6.5
20
105
40
TACCA0201EA
43
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
100 200 300 400 500 600 700 800 900 1000 1100
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
51 mm (2") Dia. Types with Glass Base
46
R375
46
R669
10
R943-02
10
R3310-02
46
R2257
500S
420
MA
Q
1
B/10
E678-15B* %0
1500
0.1
1000 !1
501K
600
EMA
K
1
B/10
E678-15B* %0
1500
0.1
1000 !1
650S
300-800
GaAs
Q
2
L/10
(NOTE) E678-21C*
2200
0.001 1500 !7
851K
400
InGaAs
K
2
L/10
(NOTE) E678-21C*
2200
0.001 1500 !7
501K
600
EMA
K
3
L/12
E678-21C* $7$8$9
2700
0.2
1500 @7
(NOTE) For cooling operation, another ceramic socket, type number E678-21D (sold separately) is recommended.
Dimensional Outlines (Unit: mm)
2 R943-02, R3310-02
3.4
51.0 ± 1.5
FACEPLATE
PHOTOCATHODE
10 × 10
46 MIN.
PHOTOCATHODE
IC DY9 DY7
7 8 9
DY5
10
6
IC 5
11 DY3
FACEPLATE
3 R2257
6.6
52 ± 1
10
1 R375, R669
FACEPLATE
46 MIN.
PHOTOCATHODE
51 ± 1
2
1
DY4
13
K
14
G
DY2
15
15 PIN BASE
13 MAX.
SHORT PIN
21 PIN BASE
DY8 5
DY6 4
3
2
DY4
1
DY2
K
HA COATING
LIGHT
SHIELD
IC
DY7
IC 9 10 11 12 13
DY5
14
P 8
DY3
15
7
DY10 6
16 DY1
126 ± 2
3
DY6
PHOTOCATHODE
10 × 10
17 IC
18 IC
19
IC
21 20
IC
SH IC DY10
IC
DY8
DY12 9 10 11 12 13
DY6
14
DY4
P 8
15
7
DY11 6
16 DY2
DY9 5
DY7 4
3
2
DY5
1
DY3
DY1
17 G
18 IC
19
IC
21 20
K
IC
∗ CONNECT SH TO DY5
IC
SHORT PIN
21 PIN BASE
13 MAX.
DY8
12 DY1
88 ± 2
DY10 4
IC IC DY9
14 MAX.
112 ± 2
P
R669 has a plano-concave faceplate.
TPMHA0211EA
44
TPMHA0021EE
TPMHA0359EA
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
80
150
—
0.2
64
20
80
3.4 × 104 5.3 × 105
5
20
9.0
70
R375
140
230
—
0.35
50
20
75
1.7 × 104 3.3 × 105
7
15
9.0
70
R669
300
600
—
0.58
71
150
300
3.6 ×
3.0
23
R943-02
80
150
—
0.4
9.4c
15
50
3.1 × 103 3.3 × 105 30j 150j 3.0
23
R3310-02
100
2.2 ×
48
R2257
4.3 ×
30
100
2.6
Dimensional Outline of Socket (Unit: mm)
E678-15B
E678-21C
60
51
50
19
56.8
45
R5
5
5
13
4
6.5
40
TACCA0201EA
TACCA0066EA
E678-21D
44.5
18.5
3.0
7.5
48
23.5
4.2
15
4
50
40
0.35
105
2
—
20j 50j
11.5
230
104
5.0 ×
105
5
140
104
TACCA0054EB
45
Head-on Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
(nm)
900 1000
J
Anode Average
to
Cathode Anode
Voltage Current
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
(V)
76 mm (3") Dia. Types
R1307
70
400K
420
BA
K
1
B/8
E678-14W #7#8
1500
0.1
1000 w
R6233
70
400K
420
BA
K
2
B+L/8
E678-14W #5#6
1500
0.1
1000 y
R4143
65
400K
420
BA
K
3
L/12
E678-20A*
3000
0.2
2500 @9
R6091
65
400K
420
BA
K
4
L/12
E678-21C* $7$8$9
2500
0.2
1500 @7
E678-14W $2$$
3 $
4 5 1500
127 mm (5") Dia. Types
R877
111
400K
420
BA
K
5
B/10
R1250
120
400K
420
BA
K
6
L/14
500K
420
MA
K
5
400U
420
BA
U
7
111
R1513
120
R1584
E678-20A* %1
VB/10 E678-14W $2$3$4$5
L/14
E678-20A* %1
0.1
1250 !1
3000
0.2
2000 #2
2000
0.1
1500 !1
3000
0.2
2000 #2
Dimensional Outlines (Unit: mm)
1 R1307
2 R6233
3 R4143
77.0 ± 1.5
FACEPLATE
76.0 ± 0.8
FACEPLATE
65 MIN.
76.0 ± 0.8
70 MIN.
FACEPLATE
70 MIN
DY4 4
11 P
14 PIN BASE
JEDEC
No. B14-38
51.5 ± 1.5
12 IC
DY3 3
DY2
PHOTOCATHODE
IC
G
14
K
DY12
NC P
DY10
DY11
DY8
9 10 11 12
13
8
DY9
DY6
IC
9
10 DY7
11 DY8
12 P
DY2 3
13
2
1
DY1
DY3 4
IC
8
192 ± 5
DY5 5
DY8
IC
8
9
10 IC
DY6
DY5
7
6
DY4 5
2
1
DY1
13
G
14
K
HA
COATING
7
215 MAX.
DY7
7
6
100 ± 3
127 ± 3
51.5 ± 1.5
14 PIN BASE
JEDEC
No. B14-38
150 MAX.
DY6
123 MAX.
PHOTOCATHODE
PHOTOCATHODE
DY7 6
DY5 5
NC 4
3
DY3
2
1
G2 & DY1
IC
20
14
15 NC
16 DY4
17 DY2
18
19 NC
K
G1
20 PIN BASE
JEDEC
No. B20-102
56.5 ± 0.5
56.5 ± 0.5
53.5 MAX.
TPMHA0078EA
4 R6091
TPMHA0389EB
5 R877, R1513
TPMHA0112EB
6 R1250
133 ± 2
FACEPLATE
FACEPLATE
76 ± 1
120 MIN.
133.0 ± 1.5
65 MIN.
111 MIN.
3
2
DY5
1
DY3
DY1
15
16 DY2
17 G
18 IC
19
20
IC
21
K
PHOTOCATHODE
13 MAX.
DY7
7
6
55 MAX.
DY5 5
DY8
DY9
8
9
10 DY10
DY4 4
11 P
DY3 3
12 IC
13
G
14
K
DY2
IC
* CONNECT SH TO DY5
21 PIN BASE
DY6
FACEPLATE
2
1
DY1
259 ± 5
7
DY11 6
DY9 5
DY7 4
194 MAX.
SH IC DY10
IC
DY8
DY12 9 10 11 12 13
DY6
14
P 8
DY4
171 ± 3
137 ± 2
PHOTOCATHODE
HA COATING
276 ± 5
PHOTOCATHODE
DY14
IC P
DY12
DY13 9 10 1112 DY10
13 DY8
DY11 8
14
7
DY9 6
15 DY6
16 DY4
DY7 5
17 DY2
4
DY5
18
3
DY3
19 IC
2 1
20
G2 & DY1
G1
IC
K
20 PIN BASE
JEDEC
No. B20-102
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
52.5 MAX.
TPMHA0285EB
46
TPMHA0074EC
TPMHA0018EB
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
80
110
12.0
—
95
3
30
2.6 × 104 2.7 × 105
2
20
8.0
64
R1307
80
110
12.0
—
95
3
30
2.6 × 104 2.7 × 105
2
20
6.0
52
R6233
106
60
80
9.5
—
76
100
400
3.8 ×
50
500
1.8
32
R4143
60
90
10.5
—
85
50
450
4.3 × 105 5.0 × 106
10
60
2.6
48
R6091
60
95
11.0
—
88
20
40
3.7 × 104 4.2 × 105
10
50
10
90
55
70
9.0
—
72
300
1000
1.0 × 106 1.4 × 107
50
300
2.5
54
R1250
2.1 ×
105
30
150
7.0
82
R1513
1.0 × 106 1.4 × 107
50
300
2.5
54
R1584
100
150
—
0.2
64
10
50
55
70
9.0
—
72
300
1000
105
104
5.0 ×
3.3 ×
K-free borosilicate glass type:
R877-01
R877
Dimensional Outline of Socket (Unit: mm)
7 R1584
E678-14W
E678-20A
133 ± 2
19.8
120 MIN.
FACEPLATE
58
62
6
52.5
20 PIN BASE
JEDEC No. B20-102
10
21
13
56
30
DY14
IC P
DY12
DY13 9 10 1112 DY10
13 DY8
DY11 8
14
7
DY9 6
15 DY6
16 DY4
DY7 5
17 DY2
DY5 4
18
DY3 3 2
19 IC
G2 & DY1 1 20 G1
IC
K
17 11
259 ± 5
HA COATING
276 ± 5
20
PHOTOCATHODE
2
52
56
52.5 MAX.
TACCA0200EA
TACCA0003EA
E678-21C
51
56.8
19
4
13
5
R5
6.5
TPMHA0187EC
TACCA0066EC
47
Hemispherical Envelope Type, Special Envelope Type Photomultiplier Tubes
Spectral Response
B
Effective Area (mm)
Type No.
100
200
300
400
500
600
700
800
C
Curve Peak
Code Wavelength
Wavelength (nm)
Max. Ratings H
Remarks
A
D E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(nm)
900 1000
(V)
L
Anode to
Cathode
Supply
Voltage
(mA)
(V)
Hemispherical Envelope Types
190
R5912
400K
420
BA
K
1
B+L/10
E678-20A* %2%3
2000
0.1
1500 @2
400K
420
BA
K
2
B+L/8
E678-14W #5#6
1500
0.1
1000 y
400K
420
BA
K
3
B+L/8
E678-14W #5#6
1500
0.1
1000 y
0.1
1000 y
Special Envelope Types
55 (6)
R6234
54
R6236
400K
420
BA
K
4
B+L/8
E678-14W #5#6
1500
R6237
70
400K
420
BA
K
5
B+L/8
E678-14W #5#6
1500
0.1
1000 y
R2248
8
400K
420
BA
K
6
L/8
E678-11N* y
1500
0.03
1250 q
400K
420
BA
K
7
L/10
E678-17A*
1750
0.1
1250 !8
70 (6)
R6235
8 × 18 × (2)
R1548-07
Dimensional Outlines (Unit: mm)
1 R5912
2 R6234
3 R6236
54 MIN.
59.5 ± 1.0
60 MIN.
190 MIN.
67.5 ± 0.6
202 ± 5
INPUT
WINDOW
R
13
1
59.5 ± 1.0
59.5 ± 0.5
FACEPLATE
55 MIN.
IC
8
DY5
10 DY7
51.5 ± 1.5
11 DY8
12 P
DY2 3
IC
13
G
14
K
2
1
DY1
IC
8
IC
9
DY4 5
9
DY3 4
DY6
7
6
IC
14 PIN BASE
JEDEC
No. B14-38
56.5 ± 0.5
123 MAX.
DY6
DY5
7
6
DY4 5
100 ± 3
51.5 ± 1.5
14 PIN BASE
JEDEC
No. B14-38
84.5 ± 2
54 MIN.
PHOTOCATHODE
PHOTOCATHODE
100 ± 3
220 ± 10
275 MAX.
FACEPLATE
123 MAX.
PHOTOCATHODE
10 DY7
DY3 4
11 DY8
DY2 3
2
1
DY1
IC
12 P
13
G
14
K
56.5 ± 0.5
TPMHA0390EB
TPMHA0392EB
20-PIN BASE
JEDEC No. B20-102
K
70 MIN.
76.0 ± 1.5
76.0 ± 1.5
FACEPLATE
TPMHA0261EC
FACEPLATE
70 MIN.
DY5
PHOTOCATHODE
DY6
7
6
IC
8
IC
9
DY4 5
10 DY7
100 ± 3
51.5 ± 1.5
123 MAX.
DY3 4
IC
70 MIN.
PHOTOCATHODE
DY5
11 DY8
2
1
DY1
51.5 ± 1.5
13
14
K
G
DY6
7
6
DY4 5
12 P
DY2 3
14 PIN BASE
JEDEC
No. B14-38
14 PIN BASE
JEDEC
No. B14-38
IC
9
10 DY7
DY3 4
11 DY8
DY2 3
IC
IC
8
2
1
DY1
12 P
13
G
14
K
56.5 ± 0.5
56.5 ± 0.5
TPMHA0391EB
48
76.0 ± 1.5
FOCUS2
100 ± 3
20
16 DY4
17 DY2
18
19 FOCUS1
123 MAX.
DY7 5
DY5 4
3
DY3
2
FOCUS3 1
DY1
5 R6237
79 MIN.
IC IC DY10
IC
P 9 10 11 12 DY8
13
8
DY9
14 DY6
7
IC 6
15 IC
85 ± 1
4 R6235
52.5MAX.
TPMHA0393EB
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
—
70
9.0
—
72
—
700
7.2 × 105 1.0 × 107
50
700
3.8
55
R5912
80
110
12.0
—
95
3
30
2.6 × 104 2.7 × 105
2
20
6.0
52
R6234
80
110
12.0
—
95
3
30
2.6 × 104 2.7 × 105
2
20
6.0
52
R6236
30
80
110
12.0
—
3
95
2.6 ×
104
2.7 ×
105
2
20
6.0
52
R6235
104
2.7 ×
105
80
110
12.0
—
95
3
30
2.6 ×
2
20
6.0
52
R6237
60
95
9.5
—
76
30
100
8.0 × 104 1.1 × 106
1
50
0.9
9
R2248
200
1.9 ×
20
250
1.8
20
R1548-07
60
80
9.5
—
50
76
2.5 ×
105
106
Dimensional Outline of Socket (Unit: mm)
6 R2248
E678-20A
E678-14W
20
8 MIN.
9.8 ± 0.4
9.8 ± 0.4
19.8
8 MIN.
DY8
7
10 MAX.
11
K
10
DY2
56
SHORT PIN
52
2
56
TACCA0003EA
TPMHA0098EB
7 R1548-07
E678-11N
8 MIN. 8 MIN.
TACCA0200EA
E678-17A
18.0
18 MIN.
24.0 ± 0.5
4.3
24.0
11 PIN BASE
1
IC
62
30
2
DY1
52.5
17 11
9 DY4
DY3 3
58
DY6
13
8
4
21
45.0 ± 1.5
DY5
P
6
6
DY7
5
PHOTOCATHODE
10
FACEPLATE
24.0 ± 0.5
FACEPLATE
10.5
9.5
21.9
3
0.1
11
3
70 ± 2
17 PIN BASE
9.5
12.0
13 MAX.
SHORT PIN
16.3
P2 DY10 DY8
DY7
8 9 10
11 DY6
7
DY9 6
12
DY7 5
13 DY4
14 DY2
DY5 4
3
15
DY3
2
16 IC
1
17 IC
DY1
IC
K
P1
14.0
PHOTOCATHODE
22.8
TPMHA0223EA
TACCA0043EA
TACCA0046EB
49
Metal Package Photomultiplier Tubes
Spectral Response
Max. Ratings H
Remarks
A
C
Effective Area (mm)
Type No.
Peak
Wavelength
Wavelength (nm)
100
200
300
400
500
600
700
800
900 1000
R7400U-01
R7400U-02
420
BA
K
1
MC/8
E678-12M %4
1000
0.1
800 u
400
MA
K
1
MC/8
E678-12M %4
1000
0.1
800 u
8
500
MA
K
1
MC/8
E678-12M %4
1000
0.1
800 u
420
BA
U
1
MC/8
E678-12M %4
1000
0.1
800 u
400
MA
U
1
MC/8
E678-12M %4
1000
0.1
800 u
420
BA
Q
2
MC/8
E678-12M %4
1000
0.1
800 u
240
Cs-Te
Q
2
MC/8
E678-12M %4
1000
0.01
800 u
630
MA
K
1
MC/8
E678-12M %4
1000
0.1
800 u
420
BA
K
3
MC/8
E678-12M %4
1000
0.1
800 u
400
MA
K
3
MC/8
E678-12M %4
1000
0.1
800 u
8
R7400U-04
8
R7400U-06
8
R7400U-09
8
R7400U-20
8
R7401
8
R7402
J
L
Anode Average Anode to
to
Cathode
Cathode Anode Supply
Voltage Current Voltage
(V)
(V)
(mA)
Socket
&
Socket
Assembly
8
8
R7400U-03
G
(nm)
8
R7400U
D
E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
Dimensional Outlines (Unit: mm)
5±1
SR7
PHOTOCATHODE
8 MIN.
5.1
5.1
Side View
Side View
(a) R7400U-01, -02, -04, -20 do not have
Side View
Bottom View
SHORT PIN DY3 DY5
(IC)
2
1
3
DY7
K
12
4
5 P
10
6
8
DY6
7
DY8
Bottom View
(b) R7402 do not have
DY1 11
DY1 11
5.1
10.2
Bottom View
SHORT PIN DY3 DY5
(IC)
2
1
3
DY7
K
12
4
DY2
SHORT PIN
(IC)
IC: Internal Connection
(Do not use)
TPMHA0411EE
50
PHOTOCATHODE
8 MIN.
10.2
10.2
9
DY4
12- 0.45
(b)
(a)
PHOTOCATHODE
8 MIN.
DY2
SHORT PIN
GUIDE MARK
5.1
14.0 ± 0.3
5.1
15.9 ± 0.4
12- 0.45
10.2
15.9 ± 0.4
SHORT PIN
GUIDE MARK
WINDOW
11.0 ± 0.4
5.1
12- 0.45
4.0 ± 0.3
11.5 ± 0.4
5.4 ± 0.3
5.4 ± 0.3
5±1
SHORT PIN
GUIDE MARK
INSULATION COVER (Polyoxymethylene)
19.0 ± 0.5
4.0 ± 0.3
0.3 ± 0.2
5.4 ± 0.3
12.8 ± 0.5
5±1
WINDOW
9.4 ± 0.4
15.9 ± 0.4
0.5 ± 0.2
3 R7401, R7402
INSULATION COVER (Polyoxymethylene)
INSULATION COVER (Polyoxymethylene)
4.0 ± 0.3
10.2
11.5 ± 0.4
2 R7400U-06, -09
10.2
1 R7400U, -01, -02, -03, -04, -20
5 P
10
9
DY4
SHORT PIN DY3
DY5
(IC)
2
3
GUIDE MARK 1
DY7
4
K 12
6
8
DY6
7
DY8
DY1 11
SHORT PIN
(IC)
DY2
IC: Internal Connection
(Do not use)
TPMHA0410ED
5 P
10
9
DY4
6
8
DY6
7
DY8
SHORT PIN
(IC)
IC: Internal Connection
(Do not use)
TPMHA0415ED
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
40
70
8.0
—
62
10
50
4.3 × 104 7.0 × 105
0.2
2
0.78
5.4
80
150
—
0.2
60
15
75
3.0 × 104 5.0 × 105
0.4
4
0.78
5.4
Type No.
Photon counting type: R7400P
R7400U
R7400U-01
with condenser lens: R7402-02
200
250
—
0.25
58
25
125
2.9 ×
2.0
20
0.78
5.4
40
70
8.0
—
62
10
50
4.3 × 104 7.0 × 105
0.2
2
0.78
5.4
R7400U-03
75
0.4
4
0.78
5.4
R7400U-04
0.2
2
0.78
5.4
R7400U-06
0.78
5.4
80
150
0.2
—
15
60
40
70
8.0
—
62
10
50
—
—
—
—
10b
—
—
104
5.0 ×
Notes
105
3.0 ×
104
5.0 ×
105
4.3 ×
104
7.0 ×
105
5.0 × 104 0.025 0.5
500b
R7400U-09
with condenser lens: R7402-20
350
500
—
0.45
78
35
250
3.9 ×
2.0
20
0.78
5.4
40
70
8.0
—
62
10
50
4.3 × 104 7.0 × 105
0.2
2
0.78
5.4
R7401
75
3.0 ×
0.4
4
0.78
5.4
R7402
80
150
—
60
0.2
15
104
104
5.0 ×
R7400U-02
5.0 ×
105
105
R7400U-20
■Spectral Response
100
100
10
R7400U-03
1
200
300
400
500
600
700
R7400U-01
R7402
10
R7400U-20
1
0.1
100
800
WAVELENGTH (nm)
200 300
400 500 600 700 800 900 1000
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
R7400U
R7401
0.1
100
R7400U-02
R7400U-04
R7400U-06
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
TPMHB0473EB
TPMHB0475EB
TPMHB0474EA
100
10
R7400U-09
1
0.1
0.01
100
300
400
500
600
WAVELENGTH (nm)
WAVELENGTH (nm)
■Gain
200
Dimensional Outline of Socket (Unit: mm)
TPMHB0680EB
107
E678-12M
R7400U-01/-02/-04/-20, R7402
106
12.5
R7400U/-03/-06, R7401
2.5
6.0
104
103
1.8
R7400U-09
101
400
2.8
102
4.2
10.2
3.2
GAIN
105
600
800
1000
0.5
SUPPLY VOLTAGE (V)
TACCA0164EC
51
Metal Package Photomultiplier Tubes
Spectral Response
Max. Ratings H
Remarks
A
C
Effective Area (mm)
Type No.
Peak
Wavelength
Wavelength (nm)
100
200
300
400
500
600
700
800
D
E
F
Photo- Win- Out- Dynode
cathode dow line Structure
MateMaterial rial No. / Stages
900 1000
G
Socket
&
Socket
Assembly
(nm)
J
L
Anode Average Anode to
to
Cathode
Cathode Anode Supply
Voltage Current Voltage
(V)
(V)
(mA)
18 × 18
420
BA
K
1
MC/10
E678-32B %5
900
0.1
800 @1
R7600U-00-M4
8.9 × 8.9 × (4)
420
BA
K
2
MC/10
E678-32B %6
900
0.1
800 @1
R5900U-00-L16
0.8 × 16 × (16)
R7600U
420
BA
K
3
MC/10
E678-32B %7
900
0.1
800 !0
18 × 18
400
MA
K
1
MC/10
E678-32B %5
900
0.1
800 @1
R5900U-01-M4
8.9 × 8.9 × (4)
400
MA
K
2
MC/10
E678-32B %6
900
0.1
800 @1
R5900U-01-L16
0.8 × 16 × (16)
R5900U-01
420
MA
K
3
MC/10
E678-32B %7
900
0.1
800 !0
18 × 18
530
MA
K
1
MC/10
E678-32B %6
900
0.1
800 @1
∗R5900U-20-M4
8.9 × 8.9 × (4)
530
MA
K
2
MC/10
E678-32B %6
900
0.1
800 @1
R5900U-20-L16
0.8 × 16 × (16)
630
MA
K
3
MC/10
E678-32B %7
900
0.1
800 !0
420
BA
K
4
MC/11
E678-32B %8
1000
0.1
800 @4
∗R5900U-20
22 × 22
R8520U-00-C12
Multianode photomultiplier tubes R7600-00-M16 and R7600-00-M64 are listed in the group of photomultiplier tube assemblies on page 64.
Dimensional Outlines (Unit: mm)
1 2 3 4 5 6 7 8 9
32
10
11
31
30
12
GUIDE
29
13
CORNER
28
14
15
27
16
26
25 24 23 22 21 20 19 18 17
IC
IC
P
IC
IC
IC
IC
4 MAX.
29- 0.45
IC
IC
IC
IC
IC
IC
IC
Side View
K
2.54 PITCH
IC
P1
IC
IC
IC
P4
IC
4 MAX.
TOP VIEW
SIDE VIEW
1 2 3 4 5 6 7 8 9
32
10
11
31
30
12
GUIDE
29
13
CORNER
28
14
15
27
16
26
25 24 23 22 21 20 19 18 17
IC
P2
IC
IC
IC
P3
IC
29- 0.45
PHOTOCATHODE
INSULATION COVER
K
: Photocathode
Dy : Dynode
P
: Anode
CUT : Short Pin
IC : Internal Connection (Don't Use)
Bottom View
4.4 ± 0.7
0.20
EFFECTIVE AREA
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
IC (Dy10)
CUT (K)
INSULATION
COVER
Top View
22.0 ± 0.5
0.6 ± 0.4
18 MIN.
2.54 PITCH
PHOTOCATHODE
EFFECTIVE AREA
30.0 ± 0.5
25.7 ± 0.5
BOTTOM VIEW
CUT (K)
Dy10
Dy9
Dy8
Dy7
Dy6
Dy5
IC (Dy10)
CUT (K)
12.0 ± 0.5
0.6 ± 0.4
18 MIN.
4.4 ± 0.7
0.20
22.0 ± 0.5
12.0 ± 0.5
30.0 ± 0.5
25.7 ± 0.5
IC (Dy10)
IC
Dy1
Dy2
Dy3
Dy4
IC (Dy10)
CUT (K)
2 R7600U-00-M4, R5900U-01-M4, R5900U-20-M4
K
IC (Dy10)
IC
Dy1
Dy2
Dy3
Dy4
IC (Dy10)
CUT (K)
1 R7600U, R5900U-01, R5900U-20
: Photocathode
K
Dy : Dynode
: Anode
P
CUT : Short Pin
IC : Internal Connection
(Don't Use)
Basing Diagram
TPMHA0278EI
Basing Diagram
TPMHA0297EI
3 R5900U-00-L16, R5900U-01-L16, R5900U-20-L16
4 R8520U-00-C12
G
30.0 ± 0.5
2.54 PITCH
1 MAX.
Dy2
20.32
Dy4
NC
P15
P16
P14
4 MAX.
Dy10
16
INSULATION
COVER
Side View
1.0 PITCH
0.8
Bottom View
Dy8 P12 P10 P8 P6 P4 Dy5
0.6 ± 0.4
P3
P1
4.4 ± 0.7
2.54 PITCH
Dy2
Dy4
Dy6
NC
Dy8
Dy3
K
K : Photocathode
Dy : Dynode (Dy1-Dy10)
P : Anode (P1-P16)
NC : No Connection
Basing Diagram
15.8
4 MAX.
PHOTOCATHODE
INSULATION COVER
EFFECTIVE AREA
Top View
18
PX1
PX2
PX3
PX4
PX5
PX6
Top View
25- 0.45
0.5
2.5
3.5
3.5
2.5
Side View
2.5
3.5
0.5
2.28
PY1
PY2
PX-ANODE
Dy1 Dy3 Dy5 Dy7 Dy9 Dy11
K
P2
Dy1
30- 0.45
PHOTOCATHODE
22 MIN.
Dy9
1 2 3 4 5 6 7 8 9
10
32
31
11
30
12
29
13
GUIDE
28
14
CORNER
27
15
26
16
25 24 23 22 21 20 19 18 17
29.0 ± 0.5
25.7 ± 0.5
12.0 ± 0.5
Dy6P13 P11 P9 P7 P5 Dy7
Dy10
PX1
1 2 3 4 5 6 7 8 9
10
32
31
11
30
12
29
13
GUIDE
28
14
CORNER
27
15
26
16
25 24 23 22 21 20 19 18 17
PX2
PX3
PY1
PX4
PX5
PX6
Bottom View
3.5
2.5
2.28
18
K
2.28
4.4 ± 0.7
12
EFFECTIVE
AREA
24 MAX.
2.28
30.0 ± 0.5
25.7 ± 0.5
15.8
PY6
PY3
PY5
PY4
PY-ANODE
PY6 PY5 PY4
PY3 PY2
K : Photocathode
Dy : Dynode (Dy1-Dy11)
P : Anode (PX1-PX6)
(PY1-PY6)
G : Grid
Basing Diagram
Top View
TPMHA0298EF
52
TPMHA0484EC
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
60
70
8.0
—
72
40
140
1.4 × 105 2.0 × 106
60
70
8.0
—
72
25
140
1.4 × 105 2.0 × 106 0.5/ch 5/ch
50
70
8.5
—
72
50
280
2.9 ×
150
200
—
0.2
70
50
200
7.0 × 104 1.0 × 106
200
150
200
—
0.2
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
50
70
105
4.0 ×
106
7.0 ×
104
1.0 ×
106
104
1.0 ×
106
150
250
—
0.3
65
75
250
6.5 ×
350
500
—
0.4
78
100
500
6.5 × 104 1.0 × 106
20
0.2/ch 2/ch
10
50
1.4
9.6
UV glass window type: R7600U-03
R7600U
1.2
9.5
UV glass window type: R7600U-03-M4
R7600U-00-M4
0.6
7.4
R5900U-00-L16
1.4
9.6
UV glass window type: R5900U-03-L16
Silica glass window type: R5900U-06-L16
UV glass window type: R5900U-04
9.5
UV glass window type: R5900U-04-M4
R5900U-01-M4
0.6
7.4
UV glass window type: R5900U-04-L16
Silica glass window type: R5900U-07-L16
R5900U-01-L16
1.4
9.6
R5900U-20∗
2.5/ch 25/ch 1.2
0.5/ch 5/ch
20
50
Type No.
R5900U-01
350
500
—
0.4
78
100
500
6.5 ×
2.5/ch 12.5/ch 1.2
9.5
R5900U-20-M4∗
350
500
—
0.45
78
175
500
7.8 × 104 1.0 × 106 1/ch 10/ch 0.6
7.4
R5900U-20-L16
70
6.5 ×
15.2
R8520U-00-C12
50
80
9.0
—
15
72
104
104
1.0 ×
2
Notes
0.9 ×
106
106
2
10
2.4
■Spectral Response
100
CATHODE
RADIANT
SENSITIVITY
10
QUANTUM
EFFICIENCY
1
R7600U
R7600U-00-M4
R8520U-00-C12
0.1
TPMHB0709EB
100
10
R5900U-20-L16
1
R5900U-01-L16
R5900U-00-L16
0.1
CATHODE RADIANT
SENSITIVITY
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
TPMHB0266EA
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
100
TPMHB0710EB
10
R5900U-20
R5900U-20-M4
R5900U-01
R5900U-01-M4
1
CATHODE RADIANT
SENSITIVITY
0.1
QUANTUM
EFFICIENCY
QUANTUM EFFICIENCY
0.01
100
200
300
400
500
600
700
800
900
0.01
100 200 300 400 500 600 700 800 900 1000
WAVELENGTH (nm)
WAVELENGTH (nm)
WAVELENGTH (nm)
■Gain
108
0.01
100 200 300 400 500 600 700 800 900 1000
Dimensional Outline of Socket (Unit: mm)
TPMHB0681EA
E678-32B
R5900U-00-L16
107
R7600U
R7600U-00-M4
22.86
4.45 2.92
2.54
20.32
R5900U-01-L16
R5900U-20-L16
12.7
R5900U-01-M4
20.32
105
22.86
GAIN
106
0.51
104
103
500
R5900U-01
R8520U-00-C12
600
700
12.7
800
900
1.57
MATERIAL: Glass Epoxy
SUPPLY VOLTAGE (V)
TACCA0094ED
53
Photomultiplier Tubes for High Magnetic Environments
Spectral Response
Remarks
A
Type No.
Max. Ratings H
C
Effective Area (mm)
Tube
Diameter
Wavelength (nm)
mm
(inch)
100
200
300
400
500
600
700
800
900 1000
D E
F
Peak Photo- Win- Out- Dynode
Wave- cathode dow line Structure
Matelength Material rial No. / Stages
(nm)
G
Socket
&
Socket
Assembly
J
Anode Average
to
Cathode Anode
Voltage Current
(V)
(mA)
L
Anode to
Cathode
Supply
Voltage
(V)
R5505-70
25 (1)
17.5
420
BA
K
1
FM/15
E678-17A* %9
2300
0.01
2000 #3
R7761-70
38 (1-1/2)
27
420
BA
K
2
FM/19
—
2300
0.01
2000 #4
R5924-70
51 (2)
39
420
BA
K
3
FM/19
—
2300
0.1
2000 #4
R6504-70
64 (2-1/2)
51
420
BA
K
4
FM/19
—
2300
0.1
2000 #4
Dimensional Outlines (Unit: mm)
1 R5505-70
2 R7761-70
39 ± 1
25.8 ± 0.7
27 MIN.
17.5 MIN.
DY 15 P
DY 13
9 10 DY 14
DY 11 7 8
11
12 DY 12
DY 9 6
13 DY 10
DY 7 5
14 DY 8
15 DY 6
16
DY 4
17
DY 2
DY 5 4
DY 3 3
HA COATING
2
DY 1
1
K
HA COATING
SHORT PIN
13 MAX.
17 PIN BASE
50 ± 2
40.0 ± 1.5
PHOTOCATHODE
DY17 DY19 P
DY18
DY15
10 11 12
9
13 DY16
DY13
8
14
DY11
15 DY14
7
DY9 6
16 DY12
17 DY10
DY7 5
4
18
DY5
DY8
19
3
DY3
2
20 DY6
1
21
DY4
DY1
K
DY2
PHOTOCATHODE
13 MAX.
FACEPLATE
FACEPLATE
SEMIFLEXIBLE
LEADS 0.7
27
TPMHA0236EA
3 R5924-70
TPMHA0469EA
4 R6504-70
64 ± 1
52 ± 1
FACEPLATE
39 MIN.
P
DY19 11
DY17 10
9
DY18 DY16
DY14
14 15
16 DY12
17 DY10
18
DY8
DY15 8
DY13 7
6
DY11 5
DY9 4 3
2 1 26
DY7
DY5 DY3
DY1 K
19
20 DY6
21 DY4
22
HA COATING
DY2
SEMIFLEXIBLE
LEADS 0.7
9
DY18 DY16
DY14
14 15
16 DY12
17 DY10
18
DY8
DY15 8
DY13 7
DY11 5
DY9 4 3
2 1 26
DY7
DY5 DY3 DY1 K
SEMIFLEXIBLE
LEADS 0.7
31
19
20 DY6
21 DY4
22
DY2
38
TPMHA0490EA
54
P
DY19 11
DY17 10
6
13 MAX.
HA COATING
PHOTOCATHODE
55 ± 2
50 ± 2
PHOTOCATHODE
51 MIN.
13 MAX.
FACEPLATE
TPMHA0336EA
Cathode Characteristics
Dark Current
(After 30 min.)
Gain
at 0 T
Typ.
at 0.5 T
Typ.
at 1.0 T
Typ.
Typ.
(nA)
Max.
(nA)
Time
Response
Rise Transit
Time
Time
Typ.
Typ.
(ns)
(ns)
23
80
9.5
40
5.0 × 105
2.3 × 105
1.8 × 104
5
30
1.5
5.6
23
80
9.5
800
1.0 × 107
3.0 × 106
1.5 × 105
15
100
2.1
7.5
4.1 ×
2.5 ×
105
30
200
2.5
9.5
2.0 × 105
50
300
2.7
11.0
22
70
9.0
700
1.0 ×
22
70
9.0
700
1.0 × 107
107
106
4.1 × 106
■Spectral Response
Notes
Type No.
(For +HV operation)
Assembly type: H6152-70 Recommended
(For +HV operation)
Assembly type: H8409-70 Recommended
(For +HV operation)
Assembly type: H6614-70 Recommended
(For +HV operation)
Assembly type: H8318-70 Recommended
R5505-70
R7761-70
R5924-70
R6504-70
■Gain
TPMHB0684EA
108
100
at 0 T
TPMHB0258EC
107
10
1.5" R7761-70
2" R5924-70
2.5" R6504-70
106
GAIN
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
(at 25 °C)
A
Anode Characteristics M
Blue
Quantum Lumi- Sensitivity LumiIndex
Efficiency nous
nous
(CS 5-58)
at 390 nm
Typ.
Typ.
Typ.
(%)
(µA/lm)
(A/lm)
1
PHOTOCATHODE RADIANT
SENSITIVITY
105
1" R5505-70
104
0.1
QUANTUM EFFICIENCY
103
0.01
200
300
400
500
600
700
800
WAVELENGTH (nm)
102
500
1000
2000
2500
SUPPLY VOLTAGE (V)
■R5924-70, R6504-70 Relative Gain in Magnetic Fields
101
1500
Dimensional Outline of Socket (Unit: mm)
TPMHB0247EC
SUPPLY VOLTAGE: 2000 V
E678-17A
24.0
18.0
30 °
10-1
21.9
0°
MAGNETIC
FIELD
10-3
0
0.25
0.50
0.75
1.0
1.25
1.5
16.3
0.1
10-2
14.0
RELATIVE GAIN
100
12.0
22.8
MAGNETIC FLUX DENSITY (T)
TACCA0046EB
55
Position Sensitive Type Photomultiplier Tubes
Spectral Response
A
Max. Ratings H
Remarks
C
Effective Area (mm)
Type No.
Wavelength (nm)
100
200
300
400
500
600
700
800
900
D
Peak Photo- WinWave- cathode dow
Matelength Material rial
1000 (nm)
E
Anode
Matrixes
F
Anode
to
Cathode
Voltage
(V)
Out- Dynode
line Structure
No. / Stages
J
L
Average Anode to
Cathode
Anode
Supply
Current Voltage
(mA)
(V)
R2486-02
50
420
BA
K
16(X) + 16(Y)
1
CM/12
1300
0.06
1250 #1
R3292-02
100
420
BA
K
28(X) + 28(Y)
2
CM/12
1300
0.06
1250 #1
■Spectral Response
CATHODE RADIANT SENSITIVITY (mA/W)
QUANTUM EFFICIENCY (%)
100
TPMHB0495EB
CATHODE
RADIANT
SENSITIVITY
10
QUANTUM
EFFICIENCY
1
0.1
0.01
200
400
Dimensional Outlines (Unit: mm)
600
WAVELENGTH (nm)
1 R2486-02
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
Y13
Y14
Y15
Y16
76 ± 1
-H.V
: RG-174/U
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
86.2 ± 3.0
11.2 20 ± 1
PHOTOCATHODE
55 ± 2
50 MIN.
EACH
RESISTOR: 1 kΩ
SIGNAL OUTPUT
: 0.8D COAXIAL CABLES
XA XB
YD
YC
C3
DY12
DY11
DY10
DY9
DY8
DY7
DY6
DY5
DY4
DY3
DY2
2R
2R
2R
2R
2R
2R
TPMHA0160ED
56
2R C2
2R
2R
1R
1R : 180 kΩ 1/2 W
2R : 360 kΩ 1/2 W
C1 : 0.002 µF/2 kV
C2 : 0.01 µF/500 V
C3 : 0.01 µF/500 V
2R
2R
DY1
Focus
K
1R
2R
C1
10 kΩ
RG174/U
HV
IN
TPMHC0086EE
800
(at 25 °C)
A
Anode Characteristics M
Cathode Characteristics
K
Blue
Red/
Luminous
Luminous
Sensitivity White Radiant
Index Ratio
(CS 5-58) (R-68)
Typ.
Typ.
Typ.
Min.
Typ.
Min.
Typ.
(µA/lm) (µA/lm)
(mA/W) (A/lm) (A/lm)
Radiant
Gain
Typ.
(A/W)
Typ.
Time
Dark Current
(After 30 min.) Response
Rise Transit
Time Time
Typ. Max. Typ. Typ.
(nA) (nA) (ns) (ns)
Notes
Type No.
50
80
9.0
—
72
5.0
40
3.6 × 104 5.0 × 105
20
50
5.5
17
R2486-02
50
80
9.0
—
72
5.0
10
9.4 × 103 1.3 × 105
40
150
6.0
20
R3292-02
R3292-02 Position Signal Linearity
TPMHB0449EB
100
80
60
40
20
INCIDENT LIGHT
SPOT DIAMETER: 1 mm
WAVELENGTH: 400 nm
0
RELATIVE POSITION SIGNAL
RELATIVE POSITION SIGNAL
100
80
60
40
20
INCIDENT LIGHT
SPOT DIAMETER: 1 mm
WAVELENGTH: 400 nm
0
10 20 30 40 50 60
70 80 90 100 110 120
10 20 30 40 50 60
X-AXIS (mm)
70 80 90 100 110 120
Y-AXIS (mm)
Y1
Y2
Y3
Y4
Y5
132 ± 3
Y24
Y25
Y26
Y27
Y28
2 R3292-02
100 MIN.
X1
X2
X3
X4
X5
X24
X25
X26
X27
X28
133 ± 3
113 ± 2
PHOTOCATHODE
HA COATING
SIGNAL OUTPUT
: 0.8D COAXIAL CABLES
20 ± 1
EACH
RESISTOR: 1 kΩ
XA
XB
YC
-H.V
: RG-174/U
YD
C3
DY12
DY11
DY10
DY9
DY8
DY7
DY6
DY5
DY4
DY3
DY2
DY1
K
2R
R
2R
2R
2R
2R
C2
2R
2R
1R : 180 kΩ
2R : 360 kΩ
C1 : 0.002 µF/2 kV
C2 : 0.01 µF/500 V
C3 : 0.01 µF/500 V
2R
2R
2R
2R
2R
1R
C1
HV
IN
10 kΩ
RG174/U
TPMHA0162EE
TPMHC0088EE
57
Microchannel Plate-Photomultiplier Tubes (MCP-PMTs)
Spectral Response
A
B
Effective Area (mm)
Type No.
Curve Peak
Code Wavelength
Wavelength (nm)
Remarks
Max. Ratings H
D E
Anode Current
Signal Anode
-HV
Photo- Win- Out- No. of
to
Input Output Cathode Contin- Pulsed
cathode dow line MCP
MatePeak
Material rial No. Stage Terminals Terminals Voltage uous
C
(nm)
100 200 300 400 500 600 700 800 900 1000 1100 1200
(V)
(nA)
(mA)
Standard Types
11
R3809U-50
11
R3809U-51
11
R3809U-52
R3809U-57
R3809U-58
11
11
11
R3809U-59
500S
430
MA
Q
1
2
SHV-R SMA-R
-3400
100
350
501S
600
EMA
Q
1
2
SHV-R SMA-R
-3400
100
350
Q
403K
400
BA
1
2
SHV-R SMA-R
-3400
100
350
201M
230
Cs-Te
MF 1
2
SHV-R SMA-R
-3400
100
350
500M
430
MA
MF 1
2
SHV-R SMA-R
-3400
100
350
700M
800
Ag-O-Cs
K
1
2
SHV-R SMA-R
-3400
100
350
500S
430
MA
Q
2
2
SHV-R SMA-R
-3400
100
350
501S
600
EMA
Q
2
2
SHV-R SMA-R
-3400
100
350
403K
400
BA
Q
2
2
SHV-R SMA-R
-3400
100
350
Gated Types
10
R5916U-50
10
R5916U-51
R5916U-52
10
The R5916 series can be gated by input of a +15 V gate signal. Standard types are normally OFF, but normally ON types are also available.
Gate operation is 5 ns, though this depends on the gate signal input pulse.
Dimensional Outlines (Unit: mm)
1 R3809U-50, -51, -52, -57, -58, -59
MCP
3.0 ± 0.2
3.2 ± 0.1
12 MΩ
24 MΩ
6 MΩ
1000 pF
1000 pF
900 pF
SIGNAL
OUTPUT
SMA-R
7.0 ± 0.2
PHOTOCATHODE
ANODE OUTPUT
SMA-R CONNECTOR
-HV
SHV-R
TPMHA0352EB
58
ANODE
11 MIN.
WINDOW
FACE PLATE
-H.V INPUT
SHV-R CONNECTOR
13.7 ± 0.1
52.5 ± 0.1
45.0 ± 0.1
EFFECTIVE
PHOTOCATHODE
DIAMETER
11.0 MIN.
CATHODE
70.2 ± 0.3
TPMHC0089EC
Anode Characteristics M
Cathode Characteristics
Anode to
Cathode Quantum
Supply Efficiency
Voltage at peak
Luminous
Luminous
Gain
Typ.
(µA/lm)
Typ.
(A/lm)
Typ.
Max.
(nA)
A
Time
Response
Rise
Transit Transit Time
Time
Time Spread
Typ.
Typ.
Typ.
(ns)
(ns)
(ps)
Notes
Type No.
(V)
(%)
Min.
(µA/lm)
-3000
20
100
150
30
2.0 × 105
10
0.15
0.55
25
R3809U-50
-3000
8.3
240
350
70
2.0 × 105
10
0.15
0.55
25
R3809U-51
105
-3000
20
20
50
10
2.0 ×
0.5
0.15
0.55
25
R3809U-52
-3000
11
—
—
—
2.0 × 105
0.1
0.15
0.55
25
R3809U-57
30
2.0 ×
105
10
0.15
0.55
25
R3809U-58
105
10
0.15
0.55
25
R3809U-59
100
20
-3000
150
-3000
0.25
12
25
5
2.0 ×
-3000
15
100
150
30
2.0 × 105
10
0.18
1.0
90
R5916U-50
-3000
7.6
200
300
60
2.0 × 105
10
0.18
1.0
90
R5916U-51
9
2.0 ×
0.5
0.18
1.0
90
R5916U-52
-3000
20
15
45
105
■Spectral Response
103
■Gain
TPMHB0177ED
107
TPMHB0179EA
QE = 25%
102
-58
-57
QE = 10%
-52
101
100
QE =
0.1%
-59
-57
106
-50, -58
-51
QE = 1%
105
GAIN
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
Dark
Current
(After 30 min.)
104
-50, 52
10-1
103
10-2
100 200 300 400 500 600 700 800 900 1000 1100
102
-2.0
-2.2
-2.4
-2.6
-2.8
-3.0
-3.2
-3.4
SUPPLY VOLTAGE (kV)
WAVELENGTH (nm)
2 R5916U-50, -51, -52
GATE
71.5 ± 0.3
WINDOW
FACE PLATE
CATHODE
53.8 ± 0.3
MCP
ANODE
-HV
(SHV-R)
3.0 ± 0.2
19
17.5
10 MIN.
7
330 pF
ANODE
OUTPUT
SMA-R
450 pF
100 kΩ
55 ± 0.3
EFFECTIVE
PHOTOCATHODE
DIAMETER
10 MIN.
33 kΩ
330 pF
12 MΩ
1000 pF
24 MΩ
1000 pF
6 MΩ
330 pF
330 pF
50 Ω
GND
4.6 ± 0.1
7.9
PHOTOCATHODE
GND
10 kΩ
SMA-R CONNECTOR
ANODE OUTPUT
SMA-R CONNECTOR
GATE PULSE INPUT
-HV
SHV-R
TPMHA0348EC
GATE SIGNAL
INPUT SMA-R
TPMHC0090ED
59
Gain Characteristics
For tubes not listed here, please consult our sales office.
Side-on Types
108
Head-on Types (10 mm and 19 mm Dia.)
TPMSB0079EC
108
TPMHB0198EG
R9
28
R1878
R6355
R6357
R5611A-01
107
R5611A
63
5
107
106
R6
36
-1
0
105
R3
GAIN
47
8
105
104
104
103
103
700
1000
1500
2000
R9
102
500
3000
700
1000
Head-on Types (13 mm and 25 mm Dia.)
3000
Head-on Types (28 mm Dia.)
TPMHB0682EB
108
R1924A
R3550A
TPMHB0199ED
R3998-02
R6834,
R6836, R374
107
GAIN
GAIN
105
R4124
104
105
104
16
-02
R3
106
R2
2
R7899-01
106
R
R7
28 609
20
,R
4,
5R
59
01
29 609
,R
5
72
06
-0
1
107
2000
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
108
1500
R6
42
7
102
500
72
R6
32
-01
GAIN
R1
R6350
106
R5070A
103
102
500
103
700
1000
1500
2000
SUPPLY VOLTAGE (V)
60
3000
102
500
700
1000
1500
2000
SUPPLY VOLTAGE (V)
3000
Head-on Types (38 mm Dia.)
108
Head-on Types (51 mm Dia.)
TPMHB0200EE
108
TPMHB0201ED
6
R1828-01
107
R943-02
R6
23
1
R580
R3886
GAIN
R1705
105
105
R4
64
106
106
GAIN
R5
49
R1387
107
3
08
R2
R1767
104
R3
29
-0
2
104
103
103
R980
102
500
700
1000
1500
2000
102
500
3000
700
1000
SUPPLY VOLTAGE (V)
2000
3000
SUPPLY VOLTAGE (V)
Head-on Types (76 mm Dia.)
Head-on Types (127 mm Dia.) and Special Types
TPMHB0202ED
109
TPMHB0203ED
R6
108
R1307
106
8
105
103
102
500
104
700
1000
1500
2000
SUPPLY VOLTAGE (V)
3000
103
500
R8
77
R1
R4
104
54
14
3
R1
105
3
6
R6234
R6235
R6236
R6237
107
GAIN
R
3
23
51
106
R5
91
2
107
GAIN
R1
09
1
25
0
108
1500
700
1000
1500
2000
3000
SUPPLY VOLTAGE (V)
61
Voltage Distribution Ratio
The characteristic values tabulated in the catalog for the individual tube types are measured with the voltage-divider networks having
the voltage distribution ratio shown below.
Distribution
Ratio
Codes
Number of
Stage
8
K
q
G
Dy1
2
—
Dy2
2
Dy3
Dy4
Dy5
Dy6
Acc
1
1
1
1
1
Dy7
Dy8
—
1
P
1
1
1
1
1
1
1
1
—
1
1
e
1.3
4.8
1.2
1.8
1
1
1
1
0.5
3
2.5
r
3
—
1.5
1.5
1
1
1
1
—
1
1
t
7
—
1
1.5
1
1
1
1
—
1
1
y
2
2
1
1
1
1
1
1
—
1
1
1
9
—
K
G
1
Dy1
1
Dy2
1
1
Dy3
Dy4
1
Dy5
1
Dy6
—
Dy7
1
Dy8
1
—
1
1
1
1
1
1
1
1
o
3
1
1
1
1
1
1.5
1
1
1
10
K
G
Dy1
Dy2
Dy3
Dy4
Dy5
Dy6
Dy7
0.5
Dy9
i
Dy8
F: Focus
1
w
u
P
1
1
Dy9 Dy10
P
!0
1
—
1
1
1
1
1
1
1
1
1
1
!1
1
1
1
1
1
1
1
1
1
1
1
1
!2
1.5
—
1
1
1
1
1
1
1
1
1
1
!3
2
—
1
1
1
1
1
1
1
1
1
1
!4
2
—
1
1.5
1
1
1
1
1
1
1
0.75
!5
3
—
1
1
1
1
1
1
1
1
1
1
!6
3
—
1
1.5
1
1
1
1
1
1
1
1
!7
3
—
1.5
1
1
1
1
1
1
1
1
1
!8
4
—
1
1.5
1
1
1
1
1
1
1
!9
1.3
4.8
1.2
1.8
1
1
1
1
1
1.5
3
2.5 (Note 1)
@0
1.5
—
1.5
1.5
1
1
1
1
1
1
1
0.5
@1
1.5
—
1.5
1.5
1
1
1
1
1
1
1
1
K
@2
Dy1
11.3
11
K
F2
0
G
F1
F3
0.6
Dy1
0
Dy2
Dy2
3.4
Dy3
Dy3
5
Dy4
Dy4
Dy5
3.33 1.67
Dy5
Dy6
Dy6
1
Dy7
Dy7
1
Dy8
1
Dy8
Dy9 Dy10
1
1
1
Dy9 Dy10 Dy11
1
—
1
1
1
1
1
1
1
1
1
1
1
@4
0.5
1.5
2
1
1
1
1
1
1
1
1
1
0.5
—
1
1
1
1
2
12
K
G
Dy1
@6
1.2
2.8
@7
4
@8
4
@9
#0
#1
14
15
#4
1
Dy5
1
Dy6
1
Dy7
1
Dy8
Dy9 Dy10 Dy11 Dy12
P
2.5
1
1
1
1
1
1
1.5
1.5
3
0
1
1.4
1
1
1
1
1
1
1
1
1
1 (Note 2)
0
2.5
1.5
1
1
1
1
1
1
1
1
1
1
1
3
1.2
1.8
1
1
1
1
1
1
1.5
1.5
3
2.5
4
0
1.2
1.8
1
1
1
1
1
1
1
1
1
1
1
—
1
1
1
1
1
1
1
1
1
1
1
1
G1
K
G2
7.5
Dy1
2
19
Dy4
1.8
2.5
#3
1
1
Dy3
1.2
K
#2
1
Dy2
P
1
P
@3
@5
K
Dy2
1
Dy1
2
Dy1
0
Dy3
1.8
Dy3 1 Dy4
Dy2
1
Dy2
1.2
1
1
Dy4
1
Dy5
Dy5
1
Dy6
Dy6
1
Dy7
Dy7
1
Dy8
Dy8
1
Dy9 Dy10 Dy11 Dy12 Dy13 Dy14
1
1
1
1.5
1.5
3
Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy15
1
1
1
1
1
1
1
1
1
1
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Dy3
Note 1: Please connect ACC of R5496 to Dy7.
2: The shield pin should be connected to Dy5.
62
Voltage Distribution Ratio
Dy: Dynode P: Anode G: Grid
K: Photocathode
1
1
P
1
Dy17 Dy18 Dy19
1
1
P
2.5
1
1
P
Replacement Information
* : The same dimensional outline, base connection and electric characteristics.
** : The similar electric characteristics and the same dimensional outline and base connection.
*** : The similar electric but different dimensional outline and/or different base connection.
BURLE
Hamamatsu
Side-on Types
ETL
Hamamatsu
PHOTONIS
Hamamatsu
Head-on Types
Side-on Types
1P21
1P21* R105**
9780B
1P28** 931A** 1P21**
XP1911
R1166** R1450* R3478***
1P28
1P28*
9781B
1P28** R212**
XP2012B, XP2072B
R580**
1P28/V1
R212* 1P28**
9781R
R3788**
XP2013B
R1387***
4832
R636-10***
9783B
R106*
XP2015B
R1767***
931A, 931VA
931A*
XP2017B
R2066***
931B
931B* R105**
XP2020
R1828-01*
Head-on Types
Head-on Types
9078B
R1166**
XP2050
R877***
9082B
R1450**
XP2052B
R980**
4501/V3
R331-05*
9102KB, 9902KB, 9903KB R580**
XP2202B
R2154-02**
4516
R1166*** R1450*** R3478***
9110FLB
R1288A**
XP2206B
R4607-01***
4856
R2154-02***
9111B, 9112B
R1924A**
XP2262B
R329-02***
4900
R1307***
9113B
R1925A**
XP2282B
R2083***
4903
R1387***
9124B, 9125B, 9128B
R6094** R6095**
XP2312B
R6091***
5819
R2154-02***
9135B
R7899***
XP2802
R1166***
6199
R980***
9207B
R4607-01***
XP2971, XP2972
R6427**
6342A
R2154-02***
9214KB
R1828-01***
XP3462B
R6091***
6342A/V1
R2154-02***
9250KB, 9257KB, 9266KB R2154-02**
XP4500B
R1584***
6655A
R2154-02***
9330KB, 9390KB
R877**
XP4512B
R1250***
8575
R329-02**
9353B
R5912***
8644
R1617***
9524B, 9766B, 9924B
R6095**
C31000AJ4
R4607-01***
9530KB, 9791KB
R877***
C31000AP4
R4607-01***
9558B
R375***
C31000AJ-175
R4607-01***
9659B
R669***
C31000AP-175
R4607-01***
9734B
R6095***
C31016G4
R1288A***
9758KB
R1307***
C31016H5
R1288A***
9789B, 9844B
R464***
C31031
R943-02***
9792KB
R877***
C31034-02
R943-02***
9798B
R374**
C31034-06
R943-02***
9807KB, 9813KB
R1828-01***
C31034A
R943-02***
9814B
R329-02***
C31034A-02
R943-02***
9815B
R5496***
C31034A-05
R943-02***
9821B, 9921B
R6091***
S83006E
R877***
9822B
R6091***
S83010E
R980***
9823KB
R1250**
S83010EM1
R3886***
9826B
R1450*** R3478***
S83049F
R1307**
9828B
R5929**
S83050E
R980***
9829B, 9849B
R331-05*
S83050EM1
R3886***
9865B
R649***
S83054F
R1306**
9881B
R1450*** R3478***
S83068E
R6427***
9882B
R1617***
9884B, 9887B
R329-02***
9893KB/350
R3234-01***
9899B
R331-05***
9972KB, 9973KB
R1387**
63
Photomultiplier Tube Assemblies
Photomultiplier Tube Assemblies
Photomultiplier tube assemblies are made up of a photomultiplier tube, a voltagedivider circuit and other components, all integrated into a single case.
TACCF0133
Max. Rating
Type No.
Assembly PMT
Dia.
Dia.
mm
(mm) (inch)
H3164-10
10.5
H3695-10
11.3
H3165-10
14.3
H6520
23.5
H6524
23.5
H6612
23.5
H6152-70
31.0
H6533
31.0
H7415
33.0
H3178-51
47.0
H8409-70
38.0
H1949-51
60.0
H6410
60.0
H7195
60.0
H2431-50
60.0
H6614-70
60.0
H6156-50
60.0
H8318-70
71.0
H6559
83.0
H6527
142.0
H6528
142.0
H9530-20
35 × 16
10
(3/8)
10
(3/8)
13
(1/2)
19
(3/4)
19
(3/4)
19
(3/4)
25
(1)
25
(1)
28
(1-1/8)
38
(1-1/2)
38
(1-1/2)
51
(2)
51
(2)
51
(2)
51
(2)
51
(2)
51
(2)
64
(2-1/2)
76
(3)
127
(5)
127
(5)
Built-in
PMT
Curve
Code
Wavelength
(nm)
F Anode to
Cathode
Out- Dynode
line Structure Voltage
No. / Stages
Max.
(V)
Divider
Current
Max.
(mA)
Cathode Sensitivity
Anode to
Cathode
Supply
Voltage
(V)
Blue
Sensitivity
Luminous
Index
(CS 5-58)
Typ.
Typ.
(µA/lm)
R1635
400K
300 to 650
q
L/8
-1500
0.41
-1250
100
9.5
R2496
400S
160 to 650
w
L/8
-1500
0.37
-1250
100
9.5
R647
400K
300 to 650
e
L/10
-1250
0.34
-1000
110
10.0
R1166
400K
300 to 650
r
L/10
-1250
0.33
-1000
110
10.5
R1450
400K
300 to 650
t
L/10
-1800
0.43
-1500
115
11.0
R3478
400K
300 to 650
y
L/8
-1800
0.35
-1700
115
11.0
—
300 to 650
u
FM/15
+2300
0.41
+2000
80
9.5
R4998
400K
300 to 650
i
L/10
-2500
0.36
-2250
70
9.0
R6427
400K
300 to 650
o
L/10
-2000
0.41
-1500
95
11.0
R580
400K
300 to 650
!0
L/10
-1750
0.63
-1500
95
11.0
R7761-70
—
300 to 650
!1
FM/19
+2300
0.33
+2000
80
9.5
R1828-01
400K
300 to 650
!2
L/12
-3000
0.70
-2500
90
10.5
R329-02
400K
300 to 650
!3
L/12
-2700
0.67
-2000
90
10.5
R329-02
400K
300 to 650
!4
L/12
-2700
1.23
-2000
90
10.5
R2083
400K
300 to 650
!5
L/8
-3500
0.61
-3000
80
10.0
—
300 to 650
!6
FM/19
+2300
0.33
+2000
70
9.0
400K
300 to 650
!7
L/10
-3000
0.71
-2500
80
10.0
—
300 to 650
!8
FM/19
+2300
0.33
+2000
70
9.0
R6091
400K
300 to 650
!9
L/12
-2500
0.62
-2000
90
10.5
R1250
400K
300 to 650
@0
L/14
-3000
1.02
-2000
70
9.0
R1584
400U
185 to 650
@0
L/14
-3000
1.02
-2000
70
9.0
R5505-70
R5924-70
R5496
R6504-70
—
—
—
300 to 920
@1
MC/12
-1200
0.42
-1000
500
—
H8711
30
—
R7600-00-M16
—
300 to 650
@2
MC/12
-1000
0.35
-800
80
8.5
H7546B
30
—
R7600-00-M64
—
300 to 650
@3
MC/12
-1000
0.45
-800
80
8.5
—
R7259-20
—
300 to 920
@4
MC/10
-900
0.37
-800
500
—
H7260-20
52 × 24
H8500
52
—
R8400-00-M64
—
300 to 650
@5
MC/12
-1100
0.18
-1000
55
7.5
H9500
52
—
R8400-00-M256
—
300 to 650
@6
MC/12
-1100
0.18
-1000
55
8.0
CAUTION: Photomultiplier tube assemblies listed in this catalog are not designed for use in a vacuum, please consult our sales office.
64
Anode Characteristics
Dark Current
Pulse
Linearity
Time Response
Luminous
Gain
Typ.
(A/lm)
Typ.
Typ.
(nA)
Max.
(nA)
100
1.0 × 106
1
50
0.8
9.0
100
1.0 × 106
2
50
0.7
150
1.4 × 106
1
2
110
1.0 ×
106
1
200
1.7 × 106
200
Type No.
2%
Typ.
(mA)
5%
Typ.
(mA)
0.5
3
7
H3164-11 (with 50 Ω *)
H3164-10
9.0
0.5
3
7
H3695-11 (with 50 Ω *)
H3695-10
2.5
24
1.6
3
7
H3165-11 (with 50 Ω *)
H3165-10
5
2.5
27
2.8
4
7
H6520-01 (with 50 Ω *)
H6520
3
50
1.8
19
0.76
4
8
H6524-01 (with 50 Ω *)
H6524
1.7 × 106
10
300
1.3
14
0.36
4
8
H6612-01 (with 50 Ω *)
H6612
40
5.0 × 105
5
30
1.5
5.6
0.35
180
250
400
5.7 ×
100
800
0.7
10
0.16
40
70
H6610 (R5320)
H6533
H7415-01 (with 50 Ω *)
H7416 (R7056)
H7415
106
Rise Time Transit Time Transit Time Spread
Typ.
Typ.
Typ.
(ns)
(ns)
(ns)
Notes
H6152-70
475
5.0 × 106
10
200
1.7
16
0.5
10
30
75
7.9 × 105
2
15
2.7
40
4.5
150
200
H3178-51
800
1.0 × 107
15
100
2.1
7.5
0.35
350
500
H8409-70
1800
2.0 ×
107
50
400
1.3
28
0.55
100
200
H3177-51 (R2059)
270
3.0 × 106
10
100
2.7
40
1.1
100
200
H6521 (R2256) H6522 (R5113) H6410
270
3.0 × 106
10
100
2.7
40
1.1
80
110
H7195
200
2.5 × 106
100
800
0.7
16
0.37
100
150
700
1.0 ×
107
30
200
2.5
9.5
0.44
500
700
H6614-70
1000
1.3 × 107
100
800
1.5
24
0.27
100
150
H6156-50
700
1.0 × 107
50
300
2.7
11
0.47
700
1000
H8318-70
900
1.0 ×
107
30
120
2.3
40
1.5
80
110
H6559
1000
1.4 ×
107
50
300
2.5
54
1.2
100
150
H6527
1000
1.4 × 107
50
300
2.5
54
1.2
100
150
H6528
1500
3.0 × 106
1/ch
10/ch
0.7
6.0
0.25
0.9/ch
1/ch
280
24
H3378-50 (R3377)
H1949-51
H2431-50
H9530-20
16 Multianode
H8711-10 (Taper Divider Type) H8711
3.5 ×
106
0.8/ch
4
0.83
12
0.3
0.5/ch
1/ch
3.0 ×
105
0.2/ch
2
1.0
10.9
0.3
0.3/ch
0.6/ch
64 Multianode
32 Linearanode
H7260A-20 (-HV Cable Input Type) H7260-20
H7546B
500
1.0 × 106
1/ch
10/ch
0.6
6.8
0.18
0.6/ch
0.8/ch
55
1.0 × 106
0.5/ch
—
0.8
6.0
0.4
1/ch
2/ch
H8500
55
1.0 ×
0.1/ch
—
0.8
6.0
0.4
0.2/ch
0.5/ch
H9500
106
Note: * marks = 50 Ω is a terminal resistor at anode output.
65
Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)
q H3164-10
w H3695-10
10.5 ± 0.6
11.3 ± 0.7
8 MIN.
8 MIN.
SIGNAL OUTPUT
: RG-174/U (BLACK)
SIGNAL OUTPUT
: RG-174/U (BLACK)
C2
R9
C1
*MAGNETIC SHIELD
DY6
R8
DY5
R7
DY4
R6
DY3
R5
DY5
R6
DY4
R5
DY3
R4
DY2
R3
R2
POTTING
COMPOUND
R1
-H.V
: COAXIAL CABLE (RED)
R1 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
SIGNAL OUTPUT
: RG-174/U (BLACK)
C1
DY1
R2
-H.V
: COAXIAL CABLE (RED)
C2
R8
R7
R4
K
C3
R9
DY6
DY2
DY1
10.6 ± 0.2
R10
DY7
MAGNETIC
SHIELD (t=0.2mm)
WITH HEAT
SHRINKABLE TUBE
R3
POTTING
COMPOUND
P
DY8
PMT: R2496
WITH HA COATING
95.0 ± 2.5
DY7
MAGNETIC
SHIELD (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
1500
R10
DY8
R1
K
-H.V
: COAXIAL CABLE (RED)
10.6 ± 0.2
1500
95.0 ± 2.5
PMT: R1635
WITH HA COATING
C3
*MAGNETIC SHIELD
P
R11
PHOTOCATHODE
45.0 ± 1.5
45.0 ± 1.5
PHOTOCATHODE
R1 to R4 : 510 kΩ
R5 to R10 : 330 kΩ
C1 to C3 : 0.01 µF
-H.V
: COAXIAL CABLE (RED)
* MAGNETIC SHIELD IS CONNECTED
TO -H.V INSIDE OF THIS PRODUCT.
SIGNAL OUTPUT
: RG-174/U (BLACK)
* MAGNETIC SHIELD IS CONNECTED
TO -H.V INSIDE OF THIS PRODUCT.
TPMHA0309EC
e H3165-10
TPMHA0310EC
r H6520
14.3 ± 0.6
23.5 ± 0.5
10 MIN.
19.3 ± 0.7
1MAX.
15 MIN.
PHOTOCATHODE
SIGNAL OUTPUT
: RG-174/U (BLACK)
71 ± 2
PMT: R647-01
WITH HA COATING
R11
C3
R10
C2
R9
C1
88 ± 2
DY8
R8
DY7
R7
DY6
R6
C2
R9
C1
DY8
DY7
R7
DY6
DY5
R6
R5
DY5
R4
DY4
R3
DY3
DY4
R5
R4
DY3
R3
DY2
R2
DY1
K
R2
-H.V
: RG-174/U (RED)
or EQUIV.
DY1
K
-H.V
: RG-174/U (RED)
or EQUIV.
R1
12.4 ± 0.5
-H.V
:COAXIAL CABLE (RED)
R1
POTTING
COMPOUND
R1 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
1500
1500
C3
R10
DY9
R8
DY2
SIGNAL OUTPUT
: RG-174/U (BLACK)
R11
DY10
MAGNETIC SHIELD
CASE (t=0.5mm)
130.0 ± 0.8
*MAGNETIC SHIELD
116.0 ± 3.0
DY9
POTTING
COMPOUND
P
PMT: R1166
WITH HA COATING
DY10
MAGNETIC
SHIELD (t=0.2 mm)
WITH HEAT
SHRINKABLE TUBE
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
P
R1 : 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 0.01 µF
-H.V
:COAXIAL CABLE (RED)
*
TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
* MAGNETIC SHIELD IS CONNECTED
TO -H.V INSIDE OF THIS PRODUCT.
SIGNAL OUTPUT
: RG-174/U (BLACK)
TPMHA0311EC
y H6612
23.5 ± 0.5
23.5 ± 0.5
19.3 ± 0.7
19.3 ± 0.7
15 MIN.
15 MIN.
1MAX.
1MAX.
t H6524
TPMHA0312EB
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
P
R11
88 ± 2
C3
PMT: R3478
WITH HA COATING
R10
MAGNETIC SHIELD
CASE (t=0.5mm)
C2
DY9
R9
R11
C3
R10
C2
R9
C1
DY8
DY7
DY10
C1
130.0 ± 0.8
130.0 ± 0.8
P
65 ± 2
PMT: R1450
WITH HA COATING
DY8
R8
DY7
R7
DY6
MAGNETIC SHIELD
CASE (t=0.5 mm)
DY6
R8
DY5
R7
DY4
R6
DY3
R5
R6
DY2
DY5
R4
R5
DY1
DY4
R3
R4
DY3
R2
R3
DY2
K
R2
R1
-H.V
: COAXIAL CABLE (RED)
1500
POTTING
COMPOUND
-H.V
: COAXIAL CABLE (RED)
R1
R3
R2, R4 to R11
C1 to C3
: 680 kΩ
: 510 kΩ
: 330 kΩ
: 0.01 µF
POTTING
COMPOUND
*
TO MAGNETIC
SHIELD CASE
1500
DY1
K
-H.V
: COAXIAL CABLE (RED)
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
R1
R2
R3
R4, R6 to R11
R5
C1 to C3
-H.V
: COAXIAL CABLE (RED)
: 1 MΩ
: 750 kΩ
: 560 kΩ
: 330 kΩ
: 510 kΩ
: 0.01 µF
*
TO MAGNETIC
SHIELD CASE
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
SIGNAL OUTPUT
: RG-174/U (BLACK)
66
R1
SIGNAL OUTPUT
: RG-174/U (BLACK)
TPMHA0313EA
TPMHA0315EB
u H6152-70
i H6533
31.0 ± 0.5
31.0 ± 0.5
25.8 ± 0.7
17.5 MIN.
R21 R17
C5
R20 R16
C4
R19 R15
C3
R14
C2
R13
C1
C4
1MAX.
P
PMT: R5505-70
WITH SHRINKABLE
TUBING
R24
+H.V
: SHIELD
CABLE
(RED)
DY15
DY14
R17
PHOTOCATHODE
DY11
R12
DY10
DY9
R14
C2
DY8
R12
R11
DY6
R10
R11
DY5
R9
R10
DY4
DY8
R8
R9
DY3
DY7
R7
R8
DY6
POTTING COMPOUND
(SILICONE & EPOXY)
R6
R7
DY2
DY5
R5
R6
1500 +50
-0
R5
R4
DY3
R3
R4
DY2
R3
-H.V
: COAXIAL CABLE (RED)
DY1
SIGNAL OUTPUT
: RG-174/U (BLACK)
K
R18
1500
R2
5 10
DY1
POTTING
COMPOUND
DY4
+H.V
: SHIELD CABLE (RED)
R1
ACC
F
K
R2
R1
-H.V
: COAXIAL CABLE
(RED)
*
R1, R3, R19 : 430 kΩ TO MAGNETIC
R2, R7 to R12, R15 to R17 : 330 kΩ SHIELD CASE
R4 : 820 kΩ
R5, R18 : 390 kΩ
R6, R14 : 270 kΩ
R13 : 220 kΩ
R20 to R22 : 51 Ω
C1 to C3 : 0.022 µF
C4 : 0.033 µF
SIGNAL OUTPUT
: RG-174/U (BLACK)
R1 to R17
R18, R23
R19 to R21
R22
R24
C1 to C5
C6, C7
C1
DY7
MAGNETIC SHIELD
CASE (t=0.8 mm)
DY9
POM CASE
C3
R20 R13
120.0 ± 0.8
DY12
R16
R21 R15
PMT: R4998 (H6533)
R5320 (H6610)
WITH HA COATING
DY13
100.0 ± 0.8
R19
R22 R18
DY10
C7
R22
PHOTOCATHODE
SIGNAL OUTPUT
: RG-174/U (BLACK)
P
20 MIN.
71 ± 1
1MAX.
R23
C6
26 ± 1
SIGNAL
OUTPUT
: RG-174/U
(BLACK)
: 330 kΩ
: 1 MΩ
: 51 Ω
: 100 kΩ
: 10 kΩ
: 0.01 µF
: 0.0047 µF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0470EA
o H7415
TPMHA0317EB
!0 H3178-51
47.0 ± 0.5
33.0 ± 0.5
39 ± 1
29.0 ± 0.7
1MAX.
SIGNAL OUTPUT
: RG-174/U (BLACK)
SIGNAL OUTPUT
: BNC-R
P
PHOTOCATHODE
C4
R16 R13
C3
DY10
R15 R12
C2
R14 R11
C1
DY8
R10
DY7
R9
DY6
R8
DY5
R7
R14 R12
DY10
PMT: R580 (H3178-51)
R580-17 (H3178-61)
WITH HA COATING
DY9
MAGNETIC SHIELD
CASE (t=0.5 mm)
R1,R2 : 430 kΩ
R3 : 470 kΩ
R5 : 510 kΩ
R4,R6 to R13 : 330 kΩ
R14 to R16 : 51 Ω
C1 to C3 : 0.01 µF
R11
C3
R10
DY9
C1
R7
DY6
R6
DY5
R5
DY4
R4
DY3
R6
R3
DY2
R5
R2
DY2
R4
K
DY1
C5
DY1
R1
R15
R3
R1
SIGNAL OUTPUT
: RG-174/U (BLACK)
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
-H.V
: COAXIAL CABLE (RED)
*
TO MAGNETIC
SHIELD CASE
SIGNAL
OUTPUT
: BNC-R
-HV
R2
K
SIG
1500
C2
R8
DY7
DY3
-H.V
: COAXIAL CABLE
(RED)
R9
DY8
MAGNETIC SHIELD
CASE (t=0.8mm)
DY4
POTTING
COMPOUND
R13
PHOTOCATHODE
P
PMT: R6427 (H7415)
R7056 (H7416)
WITH HA COATING
* TO MAGNETIC
SHIELD CASE
34 MIN.
162.0 ± 0.8
130.0 ± 0.8
85 ± 2
1MAX.
25 MIN.
-H.V
: SHV-R
* R580-17 has a plano-concave
face plate.
R1, R10, R12
R2 to R6, R13
R7
R8
R9
R11
R14
R15
C1
C2
C3
C4
C5
-H.V
: SHV-R
: 300 kΩ
: 150 kΩ
: 180 kΩ
: 220 kΩ
: 330 kΩ
: 240 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 4700 pF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0318EB
TPMHA0320EB
67
Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)
!1 H8409-70
!2 H1949-51
* TO MAGNETIC
SHIELD CASE
60.0 ± 0.5
45.0 ± 0.5
53.0 ± 1.5
1MAX.
1 MAX.
39 ± 1
27 MIN.
SIGNAL OUTPUT
: BNC-R
46 MIN.
P
R17
R15
C6
R27
P
R25 R21
C5
R24 R20
C4
+H.V
: SHIELD CABLE
(RED)
DY19
POM CASE
POTTING COMPOUND
(SILICONE & EPOXY)
C3
R18
C2
R17
C1
+50
1500 -0
DY15
R1 to R21
R22, R28
R23 to R25
R26
R27
C1 to C5
C6, C7
R16
R15
DY13
R14
DY12
R13
DY11
5 10
R12
C3
R11
C2
R10
C1
C10
DY8
DY7
DY14
SIGNAL OUTPUT
: RG-174/U (BLACK)
C7
DY9
DY17
DY16
+H.V
: SHIELD CABLE (RED)
C8
C4
DY10
PMT: R1828 (H1949-51)
R2059 (H3177-51)
R4004 (H4022-51)
WITH HA COATING
DY18
R23 R19
C5
R18 R13
R19 R14
DY11
R26
: 330 kΩ
: 1 MΩ
: 51 Ω
: 10 kΩ
: 100 kΩ
: 0.01 µF
: 0.0047 µF
R9
235.0 ± 0.5
80.0 ± 0.8
50 ± 2
PHOTOCATHODE
C7
C9
DY12
R28
PMT: R7761-70
WITH HEAT
SHRINKABLE TUBING
C6
R20 R16
SIGNAL OUTPUT
: RG-174/U (BLACK)
PHOTOCATHODE
DY6
R8
MAGNETIC SHIELD
CASE (t=0.8mm)
DY5
R7
DY4
R6
DY3
R5
DY2
R4
DY1
R12
R3
DY10
Acc
G1
K
R11
DY9
R10
DY8
C11
R2
R21
R1
-H.V
: SHV-R
R9
DY7
R8
DY6
R7
DY5
R6
DY4
R5
DY3
R4
-HV
A1
DY2
R3
DY1
R22
K
-H.V
: SHV-R
SIGNAL
OUTPUT
: BNC-R
R2
R1
R1, R4
R2, R5
R3, R6 to R11, R17
R12 to R16
R18 to R20
R21
C1 to C7
C8
C9
C10
C11
: 240 kΩ
: 360 kΩ
: 200 kΩ
: 300 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.033 µF
: 0.01 µF
: 470 pF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0476EA
!4 H7195
!3 H6410
60.0 ± 0.5
200.0 ± 0.5
DY12
PHOTOCATHODE
DY11
PMT: R329 (H6410)
R5113 (H6522)
R2256 (H6521)
WITH HA COATING
DY10
DY9
DY8
DY7
DY6
DY5
SH
MAGNETIC SHIELD
CASE (t=0.8mm)
SIG
-HV
R25
C4
P
C3
PHOTOCATHODE
C2
C1
PMT: R329-02
WITH HA COATING
C7
DY12
DY11
MAGNETIC SHIELD
CASE (t=0.8mm)
R6
R5
R4
R3
R2
R1
DY10
DY9
DY8
DY7
DY6
DY5
DY4
DY3
DY2
DY1
G
R22
-H.V
: SHV-R
: 240 kΩ
: 220 kΩ
: 180 kΩ
: 150 kΩ
: 300 kΩ
: 360 kΩ
: 51 Ω
: 100 Ω
: 10 kΩ
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 470 pF
K
R21
R24 R20
R19
R18
R23 R17
R16
R22 R15
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
C6
C5
C4
C3
C2
R1
C1
DYNODE 12
OUTPUT
: BNC-R
ANODE
OUTPUT 2
: BNC-R
A2
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
-HV
ANODE
OUTPUT 1
: BNC-R
A1
R1, R5
R2, R10, R16
R3, R9
R4, R6 to R8, R14, R18
R11, R13, R17
R12, R15
R19
R20, R21
R22
C1
C2
C3
C4
C5
C6
C6
DY
-H.V
: SHV-R
C5
ANODE OUTPUT 2
: BNC-R
ANODE OUTPUT 1
: BNC-R
DYNODE OUTPUT
: BNC-R
46 MIN.
R7
DY4
DY3
DY2
DY1
G
K
R18
R21 R17
R16
R20 R15
R14
R19 R13
R12
R11
R10
R9
R8
1MAX.
P
53.0 ± 1.5
215 ± 1
1MAX.
SIGNAL OUTPUT
: BNC-R
46 MIN.
* TO MAGNETIC
SHIELD CASE
60.0 ± 0.5
* TO MAGNETIC
SHIELD CASE
53.0 ± 1.5
SIGNAL
OUTPUT
: BNC-R
TPMHA0326EC
- H.V
: SHV-R
R1, R25
R2 to R4, R17 to R19
R5, R6, R8 to R13, R15
R16, R20, R21
R7, R14
R22
R23, R24
C1
C2
C3
C4
C5
C6
C7
-H.V
: SHV-R
: 10 kΩ
: 110 kΩ
: 100 kΩ
: 160 kΩ
: 51 Ω
: 100 Ω
: 470 pF
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 0.01 µF
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
TPMHA0324EB
68
TPMHA0323EB
!5 H2431-50
!6 H6614-70
* TO MAGNETIC
SHIELD CASE
60.0 ± 0.5
P
46 MIN.
R16
52 ± 1
1 MAX.
1MAX.
60.0 ± 0.5
SIGNAL OUTPUT
: BNC-R
53.0 ± 1.5
C7
R17 R15
DY8
39 MIN.
SIGNAL OUTPUT
: RG-174/U (BLACK)
R14
C9
R13
PMT: R5924-70
WITH HEAT
SHRINKABLE TUBING
DY7
PHOTOCATHODE
C5
80- 1
+0
R12
C8
R11
200 ± 1
R10
C4
R9
C3
R8
C2
POM CASE
+H.V
: SHIELD CABLE
(RED)
R7
1500 -0
+50
DY2
R6
DY1
R5
-H.V
: SHV-R
R24 R19
C3
R23 R18
C2
R17
C1
+H.V
: SHIELD CABLE
(RED)
DY15
R16
DY14
R15
DY13
SIGNAL OUTPUT
: RG-174/U (BLACK)
C1
R1
R2
-H.V
: SHV-R
R1 to R21
R22, R29
R23 to R26
R27
R28
C1 to C5
C6, C7
DY12
R13
DY11
R12
5 10
R3
-HV
C4
R14
ACC
SIG
R25 R20
R27
DY16
R4
SIGNAL
OUTPUT
: BNC-R
C5
DY18
AL PANEL
DY3
R1
R2, R15
R3, R4, R13
R5
R6, R16
R7
R8 to R11
R12
R14
R17
C1
C2, C3
C4
C5, C6
C7
C8, C9
R26 R21
DY17
DY4
F
K
C6
R28
DY19
LIGHT SHIELD STEM
DY5
MAGNETIC SHIELD
CASE (t=0.8mm)
C7
P
DY6
PMT: R2083 (H2431-50)
R3377 (H3378-50)
WITH HA COATING
R29
PHOTOCATHODE
C6
DY10
R11
: 33 kΩ
: 390 kΩ
: 470 kΩ
: 499 kΩ
: 360 kΩ
: 536 kΩ
: 300 kΩ
: 150 kΩ
: 430 kΩ
: 51 Ω
: 2200 pF
: 4700 pF
: 0.01 µF
: 0.022 µF
: 0.047 µF
: 1000 pF
DY9
R10
DY8
R9
DY7
R8
DY6
R8
DY5
R6
DY4
R5
DY3
R4
DY2
R3
DY1
R2
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
K
R22
R1
TPMHA0472EA
TPMHA0327EB
!7 H6156-50
!8 H8318-70
* TO MAGNETIC
SHIELD CASE
SIGNAL
OUTPUT
: BNC-R
1 MAX.
53 ± 1
46 MIN.
P
R16
C6
C9
C5
C8
71.0 ± 0.5
64 ± 1
1 MAX.
60.0 ± 0.5
R29
PHOTOCATHODE
215.0 ± 0.5
R14
C10
DY9
PMT
WITH HA-COATING
AND HEAT
SHRINKABLE TUBING
DY8
R17 R12
C4
R11
C3
R10
C2
R9
C1
85- 1
PHOTOCATHODE
+0
R18 R13
C7
PMT: R6504-70
WITH HEAT
SHRINKABLE TUBING
DY6
R7
DY16
POM CASE
DY15
1500 -0
R6
DY2
R5
AL PANEL
C4
R24 R19
C3
R23 R18
C2
R17
C1
+H.V
: SHIELD
CABLE
(RED)
DY14
R15
R14
DY12
R13
DY11
DY1
R12
R4
SIGNAL OUTPUT
: RG-174/U (BLACK)
R3
-HV
SIG
-H.V
: SHV-R
R25 R20
R27
DY13
+50
DY3
R1
R2, R3, R6
R4, R5
R7 to R11, R16
R12 to R15
R17 to R19
R20
C1 to C3, C9
C4, C5
C6
C7, C8
C10
C11
C5
DY19
LIGHT SHIELD STEM
+H.V
: SHIELD CABLE (RED)
DY4
C11
R20
DY10
R11
DY9
R10
-H.V
: SHV-R
5 10
R1
R26 R21
R16
R8
R2
C6
R28
P
DY18
DY7
Acc
G
K
C7
DY17
DY5
MAGNETIC SHIELD
CASE
SIGNAL
OUTPUT
: RG-174/U
(BLACK)
51 MIN.
R19 R15
DY10
SIGNAL
OUTPUT
: BNC-R
: 330 kΩ
: 1 MΩ
: 51 Ω
: 10 kΩ
: 100 kΩ
: 0.01 µF
: 0.0047 µF
DY8
R9
DY7
R8
DY6
: 270 kΩ
: 360 kΩ
: 240 kΩ
: 200 kΩ
: 300 kΩ
: 51 Ω
: 10 kΩ
: 0.01 µF
: 0.022 µF
: 0.033 µF
: 4700 pF
: 0.01 µF
: 470 pF
R7
DY5
R6
DY4
R5
DY3
R4
DY2
R3
DY1
R2
K
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
R22
R1 to R21
R22, R29
R23 to R26
R27
R28
C1 to C5
C6, C7
TPMHA0489EA
R1
: 330 kΩ
: 1 MΩ
: 51 Ω
: 10 kΩ
: 100 kΩ
: 0.01 µF
: 0.0047 µF
TPMHA0473EA
69
Photomultiplier Tube Assemblies Dimensional Outlines and Diagrams (Unit: mm)
!9 H6559
@0 H6527, H6528
142.0 ± 0.8
131 ± 2
83 ± 1
77.0 ± 1.5
65 MIN.
DY11
DY10
DY9
DY8
DY7
DY6
DY5
218 ± 1
PMT: R6091
WITH HA COATING
SH
C4
C3
C2
C1
C1
R12
DY9
R11
DY8
R10
DY7
R9
DY6
MAGNETIC SHIELD
CASE (t=0.8mm)
R8
DY5
R7
C6
74
R22
BLACK TAPE
DY4
SOCKET ASSY
HOUSING
DY3
R6
R5
DY2
R4
-H.V
: SHV-R
DY1
: 240 kΩ
: 220 kΩ
: 180 kΩ
: 150 kΩ
: 300 kΩ
: 360 kΩ
: 51 Ω
: 100 Ω
: 10 kΩ
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 470 pF
R3
G2
R1
SIG
H6527=Flat window, Borosilicate
H6528=Curved window, UV glass
-HV
-H.V
: SHV-R
-H.V
: SHV-R
TPMHA0331EB
2.54
16.0 ± 0.5
33.0 ± 0.5
0.5 TYP.
3.08
8
P1 P2
R3
R4
R5
R6
R7
R8
R9
ACTIVE VOLTAGE
DIVIDER
R10
DY7-1
R11
GND
ANODE16 OUTPUT
TERMINAL PINS
DY12 OUTPUT
GND
GND
ANODE15 OUTPUT
TERMINAL PINS
GND
GND
ANODE9 OUTPUT
C1
Dy8
7.62
Dy12 OUTPUT
TERMINAL PIN
( 0.46)
P8
3.2
3.7
BOTTOM VIEW
VR8
C2
R15 R11
R9
2.54
ANODE OUTPUT
TERMINAL PIN
( 0.46,
2.54 PITCH 8 × 4)
VR7
R8
Dy7
R7
Dy6
R6
Dy5
R5
Dy4
R4
Dy3
-HV INPUT
TERMINAL PINS
( 0.46)
R3
Dy2
R2
Dy1
F
K
R1
R14
R1 to R3 : 360 kΩ
R4 to R13 : 180 kΩ
R14 : 1 MΩ
R15 to R17 : 51 Ω
R18 : 10 kΩ
C1 to C4 : 0.01 µF
VOLTAGE DIVIDER CURRENT: 0.35 mA at -1000 V INPUT
TPMHA0508EB
70
5.08
-HV
DY7-8
VR6
2.54
4-SCREWS
(M2)
GND
DY7-7
VR5
R16 R12
Dy10
DY
DY7-6
VR4
220 kΩ
1 KΩ
200 KΩ
1.3 MΩ
51 Ω
2 MΩ
0.01 µF
C3
R10
P16
DY7-5
VR3
R1 to R6, R9:
R7:
R8, R11:
R10:
R12 to R14:
VR1 to VR8:
C1 to C4:
R13
R17
Dy12
Dy9
P1
DY7-4
VR2
R18
C4
Dy11
SIDE VIEW
GND
DY7-3
VR1
P15 P16
P9
DY7-2
P9
12.7
-HV
R2
R14
C4
ANODE1
ANODE2
ANODE3
ANODE4
ANODE5
ANODE6
ANODE7
ANODE8
2.54
R1
R13
C3
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
2.54 × 7=17.78
C1
R12
C2
SB
P8
POM CASE
K
DY8 DY9 DY10 DY11 DY12
R34
INSULATING
TAPE
DIVIDER
ASSEMBLY
DY1 DY2 DY3 DY4 DY5 DY6 DY7
GND
0.3
45 ± 1
8
ANODE #1 to #8
OUTPUT ( 0.46)
0.8 MAX.
7
PMT:
R7600-00-M16
TERMINAL PINS
-HV
3
26
2 GND
1
4
6
6
5
5
7
4
8
2.54 × 5=12.7
3
35.0 ± 0.5
21.6
2
30.0 ± 0.5
GND
1
13
1
TOP VIEW
GND INPUT
TERMINAL ( 0.46)
TERMINAL PINS
2
14
-HV INPUT
TERMINAL ( 0.46)
4.2
18.1
3
15
25.7
4
16
M2 MAX. L5
ANODE8 OUTPUT
4- 0.3
GUIDE MARKS
GND
4 × 16
4.5 PITCH
2
2.8
2.5
ANODE2 OUTPUT
@2 H8711
ANODE1 OUTPUT
@1 H9530-20
TPMHA0332EC
-HV INPUT
SIG
* MAGNETIC SHIELD IS CONNECTED
TO GND INSIDE OF THIS PRODUCT.
R21
: 240 kΩ
: 360 kΩ
: 390 kΩ
: 120 kΩ
: 180 kΩ
: 100 kΩ
: 150 kΩ
: 300 kΩ
: 51 Ω
: 100 Ω
: 10 kΩ
: 0.022 µF
: 0.047 µF
: 0.1 µF
: 0.22 µF
: 0.47 µF
: 470 pF
R1, R17
R2
R3
R4
R5
R6 to R13
R14, R15
R16
R18
R19, R20
R21
C1
C2
C3
C4
C5
C6
-H.V
: SHV-R
SIGNAL OUTPUT
: BNC-R
C6
R2
G1
K
-HV
R1, R5
R2, R10, R16
R3, R9
R4, R6 to R8, R14, R18
R11, R13, R17
R12, R15
R19
R20, R21
R22
C1
C2
C3
C4
C5
C6
SIGNAL
OUTPUT
: BNC-R
C2
R13
DY10
PMT: R1250 (H6527)
R1584 (H6528)
WITH HA COATING
40
70 ± 1
C3
R14
DY11
77
R6
R5
R4
R3
R2
R1
G
K
C4
R18 R15
DY12
R7
DY4
DY3
DY2
DY1
MAGNETIC SHIELD
CASE (t=0.8mm)
140 ± 1
DY12
C5
R19 R16
DY13
PHOTOCATHODE
C5
259 ± 2
40 ± 1
PHOTOCATHODE
R18
R21 R17
R16
R20 R15
R14
R19 R13
R12
R11
R10
R9
R8
R20 R17
DY14
56
P
SIGNAL
OUTPUT
: BNC-R
P
SIGNAL OUTPUT
: BNC-R
356 ± 6
1MAX.
120 MIN.
* TO MAGNETIC
SHIELD CASE
TPMHA0487EC
ANODE #32
C4
C1
3.3
R11
R1, R5 to R14 : 100 kΩ
R2 to R4, R15 : 200 kΩ
R16 : 300 kΩ
R17 to R19 : 51 Ω
R20 : 10 kΩ
R21 : 1 MΩ
C1 to C3 : 0.022 µF
C4 : 0.01 µF
R9
Dy7
R8
Dy6
ANODE OUTPUT
TERMINAL PINS
( 0.64,
2.54 PITCH 8 × 8)
GND
R7
Dy5
R6
Dy4
GND TERMINAL
PIN ( 0.64)
R5
ANODE #31
ANODE #1
R3
DY2
ANODE #2
ANODE #1 to #32 OUTPUT ( 0.46)
(16PIN × 2 LINE 2.54 PITCH)
Dy1
@5 H8500
TPMHA0455EC
32.7 ± 1.0
27.4 ± 0.9
1
10, 9, 2,
GND
+20
-0
450
52, 51
57, 50, 49
SIG4
52.0 ± 0.3
3.04
SIG1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
M3 DEPTH 5
SIDE VIEW
3.04
-HV: SHV-P
(COAXIAL CABLE, RED)
8.6
1.5
3.04 × 14=42.56
14.4 ± 0.5
36.4 ± 0.9
TOP VIEW
GR
SIDE VIEW
P256
P6
P62
P15
P255
P5
P61
P4
P60
P3
P59
P2
P58
P1
P57
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
GR
DIVIDER CURRENT
: 180 µA(at -1100 V)
R7
R8
C3
R19
R9
ACTIVE VOLTAGE
DIVIDER
4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR
TPMHA0498ED
ANODE OUTPUT (P16)
......
ANODE OUTPUT (P15)
ANODE OUTPUT (P2)
DIVIDER CURRENT 180 µA at -1100 V
GND
R1 to R9: 470 kΩ (±5 %, 0.125 W)
R16 to R18: 51 Ω (±5 %, 0.125 W)
R19: 10 kΩ (±5 %, 0.125 W)
R20: 1 MΩ (±5 %, 0.125 W)
R21, R22: 4.99 kΩ (±5 %, 0.125 W)
C1, C7: 0.01 µF (200 V)
C2: 0.022 µF (200 V)
C3: 0.033 µF (200 V)
C8: 0.0047 µF (2 kV)
ANODE OUTPUT (P1)
-HV
SHV-P
(COAXIAL CABLE, RED)
DY12 OUTPUT
ANODE OUTPUT (P64)
R22
....
......
......
ANODE OUTPUT (P256)
R6
ANODE OUTPUT (P255)
R5
R18
C2
ANODE OUTPUT (P242)
R4
R17
C1
ANODE OUTPUT (P241)
R3
C8
ANODE OUTPUT (P63)
ANODE OUTPUT (P8)
ANODE OUTPUT (P7)
ANODE OUTPUT (P6)
ANODE OUTPUT (P5)
ANODE OUTPUT (P4)
ANODE OUTPUT (P3)
ANODE OUTPUT (P2)
SIGNAL GND
DY12 OUTPUT
R1 to R9: 470 kΩ
R16 to R18: 51 Ω
R19: 10 kΩ
R20: 10 kΩ
R21: 1 MΩ
C1: 0.01 µF
C2: 0.022 µF
C3: 0.033 µF
C7: 0.0047 µF
C8, C9: 0.015 µF
ANODE OUTPUT (P1)
......
R2
R16
R21
ANODE OUTPUT (P62)
....
ANODE OUTPUT (P61)
R20
-HV
SHV-P
(COAXIAL CABLE, RED)
P241
(P225 to P240)
R1
ACTIVE VOLTAGE DIVIDER
C8
C9
P242
P1
(P17 to P32)
R9
ANODE OUTPUT (P60)
R8
ANODE OUTPUT (P59)
R7
R20
R19
ANODE OUTPUT (P58)
R6
C3
ANODE OUTPUT (P57)
R5
R18
C2
P2
C7
(P9 to P16)
R4
R17
C1
M3 DEPTH: 4
......
P16
......
P63
K
8.6
BOTTOM VIEW
P64
P7
(P49 to P56)
R3
R16
23.65
P8
C7
R21
SIG2 SIG1
4-SIGNAL CONNECTOR
; QTE-040-03-F-D-A, SAMTEC
(0.8 mm PITCH. DOUBLE ROW
WITH INTEGRAL GND PLATE)
33.3 ± 0.9
49
BOTTOM VIEW
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12
6
SIG3
58,
60, 59
61, 54, 53
56, 55
62
INSULATING TAPE
START MARK
4-SIGNAL OUTPUT CONNECTOR
TMM-118-03-G-D, mfg. SAMTEC
PC BOARD
TOP VIEW
3
14, 13, 6,
-HV
16, 15,
PLASTIC BASE
12, 11, 4,
5
H8500
2
INSULATING TAPE
BASE (POM)
3.04 × 14=42.56
6.26
2.6 MAX.
SOCKET HOUSING (POM)
SEPARATION MARK
ON FOCUSING ELECTRODE
46.24
6.08 × 6=36.48
SIG2
P57 P58 P59 P60 P61 P62 P63 P64
DY, 64, 63
P49 P50 P51 P52 P53 P54 P55 P56
SIG3
P41 P42 P43 P44 P45 P46 P47 P48
-HV: SHV-P
(COAXIAL CABLE, RED)
CAP HOUSING (POM)
SIG4
P33 P34 P35 P36 P37 P38 P39 P40
36
P25 P26 P27 P28 P29 P30 P31 P32
450 ± 20
52.0 ± 0.3
P17 P18 P19 P20 P21 P22 P23 P24
2 × 17=34
51.3
51.7 ± 0.5
P9 P10 P11 P12 P13 P14 P15 P16
0.5
P1 P2 P3 P4 P5 P6 P7 P8
12 × 3=36
4.5 ± 0.3
4
2
4
8, 7
14.4 ± 0.5
1.5
PHOTOCATHODE (EFFECTIVE AREA)
49
6.26
TPMHA0192EA
@6 H9500
START MARK
R2
R9
R1 to R7 : 220 kΩ
R8 : 51 Ω
R9 : 1 MΩ
R10 : 10 kΩ
C1 to C4 : 0.01 µF
DIVIDER CURRENT: 0.37 mA (at -900 V)
-HV
TERMINAL PIN
( 0.64)
TPMHA0488EC
6.08 × 6=36.48
R1
G
K
-HV INPUT
TERMINAL ( 0.5)
R1
R21
K
6.26
R2
DY1
R2
F
R1
GND TERMINAL PIN
DY3
ANODE #32
R4
R5
DY4
R4
R3
K
DY10 OUTPUT
R6
DY5
GND TERMINAL
PIN ( 0.5)
DY OUT A31-ANODE - A1 GND
Dy2
6.26
ANODE32 OUTPUT
DY6
A32-ANODE - A2 -HV
Dy3
BOTTOM VIEW
R7
DY10 OUTPUT
PIN ( 0.5)
7.62
P57
DY7
Dy8
PHOTOCATHODE (EFFECTIVE AREA)
49
Dy12 OUTPUT
TERMINAL PIN
( 0.64)
P64
C1
DY8
R10
-HV INPUT
TERMINAL PINS
( 0.64)
HV
2.54
DY
DY9
2.54
2.54
GND
P1
2.54 × 15 = 38.1
1.27
5.08
4-SCREWS (M2)
P8
ANODE31 OUTPUT
C2
Dy9
SIDE VIEW
C3
R8
C4
DY10
HOUSING (POM)
R12
ACTIVE VOLTAGE DIVIDER
C2
R13
R17
R10 SHIELD
7.5
5.2
Dy10
2.54
4.2
R14
R18
2.54×7=17.78
SHIELD
P31 P32
35.0 ± 0.5
Dy12
DIVIDER
ASSEMBLY
Dy11
2.54 × 9=22.86
P1 P2
R15
R19
POM CASE
ANODE1 OUTPUT
C3
R16
P63
P64
..
.
P1
P2
0.8 MAX.
45 ± 0.8
SOFT TAPE
0.8
ANODE #1
0.8 Typ.
R20
PMT:
R7600-00-M64
1
7
24.0 ± 0.5
31.8
TOP VIEW
30 ± 0.5
8 × 2 LINE
2.54 PITCH
52.0 ± 0.5
GND TERMINAL PIN ( 0.64)
GND TERMINAL PIN ( 0.64)
Dy12 OUTPUT
TERMINAL PIN ( 0.64)
..
.
1 2 3 4 5 6 7 8
0.3
2
18.1
ANODE63 OUTPUT
ANODE64 OUTPUT
4- 0.3
GUIDE MARKS
57 58 59 60 61 6263 64
25.7
ANODE1 OUTPUT
ANODE2 OUTPUT
TERMINAL PINS
(2.54 mm-PITCH,
0.64, 8 × 8)
-HV INPUT TERMINAL PIN
@4 H7260-20
ANODE2 OUTPUT
@3 H7546B
4 × 0.8 mm PITCH HEADER
(P/N QTE-040-03-F-D-A, SAMTEC)
TPMHA0504EB
71
Photomultiplier Tube Socket Assemblies
Photomultiplier Tube Socket Assemblies
Hamamatsu provides a wide variety of socket assemblies specifically designed
for simple and reliable operation of photomultiplier tubes (often abbreviated as
PMTs). These socket assemblies consist primarily of a high quality socket and
voltage divider circuit integrated into a compact case. Variant types are available
with internal current-to-voltage conversion amplifiers, gate circuits and high voltage power supply circuits.
TACCF0178
Types of Socket Assemblies
The circuit elements used in Hamamatsu socket assemblies
are represented by the three letters below. The socket assembly types are grouped according to the combination of
these letters.
D : Voltage Divider
A : Amplifier
P : High Voltage Power Supply
DP-Type Socket Assemblies (C6270, C8991)
DP-type socket assemblies comprise a built-in high-voltage
power supply circuit added to a D-type socket assembly.
Figure 3: DP-Type Socket Assembly
SOCKET
HIGH VOLTAGE POWER SUPPLY
SIGNAL OUTPUT
SIGNAL GND
LOW VOLTAGE INPUT
PMT
D-Type Socket Assemblies (E717, E990 Series, etc.)
The D-type socket assemblies contain a voltage divider circuit along with a socket in a compact metallic or plastic case.
Plastic case types are potted with silicone compound to ensure high environmental resistance.
Refer to page 78 for the selection guide to D-type socket assemblies.
Figure 1: D-Type Socket Assembly
SOCKET
SIGNAL OUTPUT
HIGH VOLTAGE CONTROL
VOLTAGE DIVIDER
TACCC0003EB
DAP-Type Socket Assemblies (C6271)
This type of socket assembly has a current-to-voltage conversion amplifier and a high voltage power supply, efficiently
added to the circuit components of the D-type socket assembly.
Figure 4: DAP-Type Socket Assembly
SOCKET
SIGNAL GND
PMT
POWER SUPPLY GND
AMPLIFIER
SIGNAL OUTPUT
SIGNAL GND
POWER SUPPLY GND
HIGH VOLTAGE INPUT
LOW VOLTAGE INPUT
PMT
HIGH VOLTAGE CONTROL
POWER SUPPLY GND
VOLTAGE DIVIDER CIRCUIT
VOLTAGE DIVIDER
HIGH VOLTAGE POWER SUPPLY
TACCC0001EB
TACCC0054EA
DA-Type Socket Assemblies (C7246, C7247 Series)
In addition to the circuit elements of the D-type socket assemblies, the DA-type socket assemblies include an amplifier that converts the low-level, high-impedance current output
of a photomultiplier tube into a low-impedance voltage output. Possible problems from noise induction are eliminated
since the high-impedance output of the photomultiplier tube
is connected to the amplifier at the minimum distance.
Figure 2: DA-Type Socket Assembly
SOCKET
AMP
LOW VOLTAGE INPUT
PMT
SIGNAL OUTPUT
SIGNAL GND
HIGH VOLTAGE INPUT
VOLTAGE-DIVIDER CIRCUIT
TACCC0002ED
72
Basics of Voltage Dividers
The following information describes voltage divider circuits
which are basic to all types of socket assemblies. Refer to
this section for information on proper use of the socket assemblies.
Voltage Divider Circuits
To operate a photomultiplier tube, a high voltage of 500 volts
to 2000 volts is usually supplied between the photocathode
(K) and the anode (P), with a proper voltage gradient set up
along the photoelectron focusing electrode (F) or grid (G),
secondary electron multiplier electrodes or dynodes (Dy)
and, depending on photomultiplier tube type, an accelerating
electrode (Acc). Figure 5 shows a schematic representation
of photomultiplier tube operation using independent multiple
power supplies, but this is not a practical method. Instead, a
voltage divider circuit is commonly used to divide, by means
of resistors, a high voltage supplied from a single power supply.
Figure 5: Schematic Representation of Photomultiplier
Tube Operation
LIGHT
K
F
Dy1
ePHOTOELECTRONS
Dy2
Dy3
P
SECONDARY ELECTRONS
eeeANODE CURRENT
Ip
A
V2
V1
V3
V4
V5
Figure 8: Equally Divided Voltage Divider Circuit
POWER SUPPLIES
TACCC0055EA
Figure 6 shows a typical voltage divider circuit using resistors, with the anode side grounded. The capacitor C1 connected in parallel to the resistor R5 in the circuit is called a
storage capacitor and improves the output linearity when the
photomultiplier tube is used in pulse operation, and not necessarily used in providing DC output. In some applications,
transistors or Zener diodes may be used in place of these resistors.
Figure 6: Anode Grounded Voltage Divider Circuit
K
F
Dy1
Dy2
Dy3
P
Ip
OUTPUT
RL
R2
R1
R3
R4
R5
C1
-HV
TACCC0056EB
Anode Grounding and Photocathode Grounding
In order to eliminate the potential difference between the
photomultiplier tube anode and external circuits such as an
ammeter, and to facilitate the connection, the generally used
technique for voltage divider circuits is to ground the anode
and supply a high negative voltage (-HV) to the photocathode, as shown in Figure 6. This scheme provides the signal output in both DC and pulse operations, and is therefore
used in a wide range of applications.
In photon counting and scintillation counting applications,
however, the photomultiplier tube is often operated with the
photocathode grounded and a high positive voltage (+HV)
supplied to the anode mainly for purposes of noise reduction.
This photocathode grounding scheme is shown in Figure 7,
along with the coupling capacitor Cc for isolating the high
voltage from the output circuit. Accordingly, this setup cannot
provide a DC signal output and is only used in pulse output
applications. The resistor RP is used to give a proper potential to the anode. The resistor RL is placed as a load resistor,
but the actual load resistance will be the combination of RP
and RL.
Figure 7: Photocathode Grounded Voltage Divider Circuit
K
F
Dy1
Dy2
Dy3
P
CC
OUTPUT
Ip
RP
R1
R2
R3
R4
R5
RL
C2
C1
+HV
Standard Voltage Divider Circuits
Basically, the voltage divider circuits of socket assemblies
listed in this catalog are designed for standard voltage distribution ratios which are suited for constant light measurement. Socket assemblies for side-on photomultiplier tubes in
particular mostly use a voltage divider circuit with equal interstage voltages allowing high gain.
TACCC0057EB
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
OUTPUT
1R
1R
1R
1R
1R
1R
C1
C2
RL
-HV
TACCC0058EB
Tapered Voltage Divider Circuits
In most pulsed light measurement applications, it is often
necessary to enhance the voltage gradient at the first and/or
last few stages of the voltage divider circuit, by using larger
resistances as shown in Figure 9. This is called a tapered
voltage divider circuit and is effective in improving various
characteristics. However it should be noted that the overall
gain decreases as the voltage gradient becomes greater. In
addition, care is required regarding the interstage voltage tolerance of the photomultiplier tube as higher voltage is supplied. The tapered voltage circuit types and their suitable applications are listed below.
Tapered circuit at the first few stages (resistance: large / small)
Photon counting (improvement in pulse height distribution)
Low-light-level detection (S/N ratio enhancement)
High-speed pulsed light detection (improvement in timing properties)
Other applications requiring better magnetic characteristics and uniformity
Tapered circuit at the last few stages (resistance: small / large)
High pulsed light detection (improvement in output linearity)
High-speed pulsed light detection (improvement in timing properties)
Other applications requiring high output across the load resistor
Figure 9: Tapered Voltage Divider Circuit
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
OUTPUT
2R
1.5R
1R
1R
-HV
2R
3R
C1
C2
RL
TACCC0059EB
Voltage Divider Circuit and Photomultiplier Tube Output Linearity
In both DC and pulse operations, when the light incident on
the photocathode increases to a certain level, the relationship between the incident light level and the output current
begins to deviate from the ideal linearity. As can be seen
from Figure 10, region A maintains good linearity, and region
B is the so-called overlinearity range in which the output increase is larger than the ideal level. In region C, the output
goes into saturation and becomes smaller than the ideal level. When accurate measurement with good linearity is essential, the maximum output current must be within region A. In
contrast, the lower limit of the output current is determined by
the dark current and noise of the photomultiplier tube as well
as the leakage current and noise of the external circuit.
73
Photomultiplier Tube Socket Assemblies
Figure 10: Output Linearity of Photomultiplier Tube
10
K
C
I1 (=IK)
IK
I2
Dy1
IDy1
I4 (=IP)
I3
Dy2
Dy3
IDy2
IR1
P
IP
IDy3
IR2
IR3
IR4
B
1.0
ACTUAL
CURVE
0.1
R1
R2
R3
R4
V1
V2
V3
V4
IDEAL
CURVE
-HV
ID
TACCC0061EA
0.01
A
RATIO OUTPUT CURRENT
TO DIVIDER CURRENT
Figure 12: Operation without Light Input
TACCB0005EA
0.001
0.001
0.01
0.1
1.0
10
LIGHT FLUX (A.U.)
Output Linearity in DC Mode
Figure 11 is a simplified representation showing photomultiplier tube operation in the DC output mode, with three stages
of dynodes and four dividing resistors R1 through R4 having
the same resistance value.
Figure 11: Basic Operation of Photomultiplier Tube
and Voltage Divider Circuit
K
Dy1
Dy2
Dy3
I2
I1
I4
I1' < I2' < I3' < I4'
Ip
IK
IDy1
IDy2
Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller
at the latter stages, as follows:
A
IDy3
R1
R2
R3
R4
IR1
IR2
IR3
IR4
IRn' = ID' - In'
Where In' is the interelectrode current which has the following relation:
P
I3
[When light is incident on the tube]
When light is allowed to strike the photomultiplier tube under
the conditions in Figure 12, the resulting currents can be
considered to flow through the photomultiplier tube and the
voltage divider circuit as schematically illustrated in Figure
13. Here, all symbols used to represent the current and voltage are expressed with a prime ( ' ), to distinguish them
from those in dark state operation.
The voltage divider circuit current ID' is the sum of the voltage
divider circuit current ID in dark state operation and the current flowing through the photomultiplier tube ∆ID (equal to
average interelectrode current). The current flowing through
each dividing resistor Rn becomes as follows:
V1' > V2' > V3' > V4'
ID
-HV
TACCC0060EA
Figure 13: Operation with Light Input
K
[When light is not incident on the tube]
In dark state operation where a high voltage is supplied to a
photomultiplier tube without incident light, the current
components flowing through the voltage divider circuit will be
similar to those shown in Figure 12 (if we ignore the
photomultiplier tube dark current). The relation of current and
voltage through each component is given below
Interelectrode current of photomultiplier tube
I1' (=IK')
Ik'
Dy2
IDy1'
IR1'
I4' (=IP')
I3'
I2'
Dy1
Dy3
IDy2'
IR2'
P
IDy3'
IR3'
R1
R2
R3
V1'
V2'
V3'
IP'
IR4'
R4
V 4'
-HV
ID' =ID + ∆ID
TACCC0062EA
I1=I2=I3=I4 (= 0 A)
Electrode current of photomultiplier tube
IK=IDy1=IDy2=IDy3=IP (= 0 A)
Voltage divider circuit current
4
IR1=IR2=IR3=IR4=ID= (HV/ Σ Rn)
n=1
Voltage divider circuit voltage
V1=V2=V3=V4=ID • Rn (= HV/4)
74
Figure 14 shows changes in the interstage voltages as the
incident light level varies. The interstage voltage V4' with light
input drops significantly compared to V4 in dark state operation. This voltage loss is redistributed to the other stages, resulting an increases in V1', V2' and V3' which are higher than
those in dark state operation. The interstage voltage V4' is
only required to collect the secondary electrons emitted from
the last dynode to the anode, so it has little effect on the
anode current even if dropped to 20 or 30 volts. In contrast,
the increases in V1', V2' and V3' directly raise the secondary
emission ratios (δ1, δ2 and δ3) at the dynodes Dy1, Dy2 and
Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is
the cause of overlinearity in region B in Figure 10. As the incident light level further increases so that V4' approaches 0
volts, output saturation occurs in region C.
Figure 14: Changes in Interstage Voltages at Different
Incident Light Levels
120
TACCB0017EA
INTERSTAGE VOLTAGE (%)
MODERATE
LIGHT INPUT
HIGH LIGHT INPUT
110
2Using the active voltage divider circuit
Use of a voltage divider circuit having transistors in place of
the dividing resistors in last few stages (for example, Hamamatsu E6270 series using FETs) is effective in improving the
output linearity. This type of voltage divider circuit ensures
good linearity up to an output current equal to 60 % to 70 %
of the voltage divider current, since the interstage voltage is
not affected by the interelectrode current inside the photomultiplier tube. A typical active voltage divider circuit is
shown in Figure 16. (See page 93 for DC linearity characteristics examples.)
100
NO OR FAINT
LIGHT INPUT
90
80
V1
V2
V3
V4
POSITION OF INTERSTAGE VOLTAGE
Linearity Improvement in DC Output Mode
To improve the linearity in DC output mode, it is important to
minimize the changes in the interstage voltage when photocurrent flows through the photomultiplier tube. There are several specific methods for improving the linearity, as discussed below.
1Increasing the voltage divider current
Figure 15 shows the relationship between the output linearity
of a 28 mm (1-1/8") diameter side-on photomultiplier tube
and the ratio of anode current to voltage divider current. For
example, to obtain an output linearity of 1 %, it can be seen
from the figure that the anode current should be set approximately 1.4 % of the divider circuit current. However, this is a
calculated plot, so actual data may differ from tube to tube
even for the same type of photomultiplier tube, depending on
the supply voltage and individual dynode gains. To ensure
high photometric accuracy, it is recommended that the voltage divider current be maintained at least twice the value obtained from this figure.
The maximum linear output in DC mode listed for the D-type
socket assemblies in this catalog indicates the anode current
equal to 1/20 of the voltage divider current. The output linearity at this point can be maintained within ±3 % to ±5 %.
Figure 15: Output Linearity vs. Anode Current to
Voltage Divider Current Ratio
10
As stated above, good output linearity can be obtained simply by increasing the voltage divider current. However, this is
accompanied by heat emanating from the voltage divider. If
this heat is conducted to the photomultiplier tube, it may
cause problems such as an increase in the dark current, and
variation in the output.
TACCB0031EA
Figure 16: Active Voltage Divider Circuit
K
Dy2
Dy3
Dy4
P
Dy5
RL
TWO
TRANSISTORS
-HV
TACCC0063EA
3Using Zener Diodes
The output linearity can be improved by using Zener diodes
in place of the dividing resistors in the last few stages, because the Zener diodes serve to maintain the interstage voltages at a constant level. However, if the supply voltage is
greatly varied, the voltage distribution may be imbalanced
compared to other interstage voltages, thus limiting the adjustable range of the voltage with this technique. In addition,
if the supply voltage is reduced or if the current flowing
through the Zener diodes becomes insufficient due to an increase in the anode current, noise may be generated from
the Zener diodes. Precautions should be taken when using
this type of voltage divider circuit. Figure 17 shows a typical
voltage divider circuit using Zener diodes.
Figure 17: Voltage Divider Circuit Using Zener Diodes
K
OUTPUT LINEARITY (%)
Dy1
Dy1
Dy2
Dy3
Dy4
Dy5
P
1
TWO
ZENER DIODES
RL
0.1
-HV
TACCC0064EA
0.01
0.1
1
10
RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%)
75
Photomultiplier Tube Socket Assemblies
4Using Cockcroft-Walton Circuit
When a Cockcroft-Walton circuit as shown in Figure 18 is
used to operate a 28 mm (1-1/8") diameter side-on photomultiplier tube with a supply voltage of 1000 volts, good DC
linearity can be obtained up to 200 µA and even higher.
Since a high voltage is generated by supplying a low voltage
to the oscillator circuit, there is no need for using a high voltage power supply.
This Cockcroft-Walton circuit achieves superior DC output
linearity as well as low current consumption.
RL
Since this method directly supplies the pulse current with
electrical charges from the capacitors, if the count rate is increased and the resulting duty factor becomes larger, the
electrical charge will be insufficient. Therefore, in order to
maintain good linearity, the capacitance value obtained from
the above equation must be increased according to the duty
factor, so that the voltage divider current is kept at least 50
times larger than the average anode current just as with the
DC output mode.
The active voltage divider circuit and the booster method using multiple power supplies discussed previously, provide superior pulse output linearity even at a higher duty factor.
OSCILLATION
CIRCUIT
Figure 20: Equally Divided Voltage Divider Circuit and
Storage Capacitors
Figure 18: Cockcroft-Walton Circuit
K
Dy1
Dy2
Dy3
Dy4
Dy5
C > 100 • Q/V
where Q is the charge of one output pulse (coulombs) and V
is the voltage (volts) across the last dynode and the anode.
P
-HV
GENERATED
TACCC0065EA
5Using multiple high voltage power supplies
As shown in Figure 19, this technique uses multiple power
supplies to directly supply voltages to the last few stages
near the anode. This is sometimes called the booster method, and is used for high pulse and high count rate applications in high energy physics experiments.
K
Dy1
Dy2
Dy3
Dy1
Dy2
Dy3
Dy4
Dy5
Dy5
P
RL
1R
1R
1R
1R
Figure 19: Voltage Divider Circuit Using Multiple Power
Supplies (Booster Method)
K
Dy4
1R
1R
C1
C2
TWO STORAGE CAPACITORS
-HV
P
TACCC0067EB
RL
AUXILIARY
POWER SUPPLY 2
AUXILIARY POWER SUPPLY 1
MAIN POWER SUPPLY
TACCC0066EA
Output Linearity in Pulsed Mode
In applications such as scintillation counting where the incident light is in the form of pulses, individual pulses may
range from a few to over 100 milliamperes even though the
average anode current is small at low count rates. In this
pulsed output mode, the peak current in extreme cases may
reach a level hundreds of times higher than the voltage divider current. If this happens, it is not possible to supply interelectrode currents from the voltage divider circuit to the last
few stages of the photomultiplier tube, thus leading to degradation in the output linearity.
Improving Linearity in Pulsed Output Mode
1Using storage capacitors
Using multiple power supplies mentioned above is not popular in view of the cost. The most commonly used technique is
to supply the interelectrode current by using storage capacitors as shown in Figure 20. There are two methods for connecting these storage capacitors: the serial method and the
parallel method. As Figures 20 and 21 show, the serial method is more widely used since it requires lower tolerance voltages of the capacitors. The capacitance value C (farads) of
the storage capacitor between the last dynode and the
anode should be at least 100 times the output charge as follows:
76
2Using tapered voltage divider circuit with storage
capacitors
Use of the above voltage divider circuit having storage capacitors is effective in improving pulse linearity. However,
when the pulse current increases further, the electron density
also increases, particularly in last stages. This may cause a
space charge effect which prevents interelectrode current
from flowing adequately and leading to output saturation. A
commonly used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage
distribution ratios in the latter stages are enhanced as shown
in Figure 21. Care should be taken in this case regarding
loss of the gain and the breakdown voltages between electrodes.
Since use of a tapered voltage divider circuit allows an increase in the voltage between the last dynode and the
anode, it is possible to raise the voltage across the load resistor when it is connected to the anode. It should be noted
however, that if the output voltage becomes excessively
high, the voltage between the last dynode and the anode
may drop, causing a degradation in output linearity.
Figure 21: Tapered Voltage Divider Circuit Using
Storage Capacitors
K
Dy1
Dy2
Dy3
Dy4
Dy5
P
RL
1R
1R
1R
1.5R
2.5R
3R
C1
C2
TWO STORAGE CAPACITORS
-HV
TACCC0068EB
D-Type Socket Assemblies
The D-type socket assemblies are grouped as follows:
(a) For DC output (-HV supply)
Available only upon request
(b) For DC or pulsed output (-HV supply)
ex. E717-63
(c) For pulsed output (+HV supply)
ex. E990-08
(d) For DC or pulsed output (-HV supply), or pulsed output
(+HV supply)
ex. E717-35
Connection of D-Type Socket Assemblies to External
Circuits
Figure 22 shows typical examples of connecting various Dtype socket assemblies to external circuits.
Figure 22: Connection of D-Type Socket Assemblies to Extrernal Circuits
(a) For DC output (-HV supply)
K
F
SIG
P
Dy1
Dy2
Eo=Ip • RL
Dy3
Ip
TO VOLTMETER,
AMPLIFIER UNIT OR OSCILLOSCOPE
RL
SIGNAL GND
R2
R1
R3
R4
R5
AMMETER
A
Ip
Rf
-HV
POWER SUPPLY
GND
-
Cf
Ip
-HV
Eout=-Ip • Rf
TO VOLTMETER OR
SIGNAL PROCESSING CIRCUIT
+
FET INPUT OP AMP
(b) For DC or pulsed output (-HV supply)
K
TACCC0069EA
F
SIG
P
Dy1
Dy2
Eo = Ip • RL
Dy3
Ip
TO VOLTMETER
AMPLIFIER UNIT OR OSCILLOSCOPE
RL
SIGNAL GND
R2
R1
R3
R4
R5
C1
C2
AMMETER
A
Ip
Rf
-HV
POWER SUPPLY
GND
-
Cf
Ip
-HV
Eout=-Ip • Rf
TO VOLTMETER OR
SIGNAL PROCESSING CIRCUIT
+
FET INPUT OP AMP
K
(c) For pulsed output (+HV supply)
TACCC0070EA
AMPLIFIER UNIT
F
SIG
P
Dy1
Dy2
Dy3
Cp
Ip
TO SIGNAL PROCESSING
CIRCUIT
CL
RL
Rp
SIGNAL GND
R2
R1
R3
R4
R5
C1
C2
CHARGE AMP
Cf
C3
Rf
—
TO SIGNAL PROCESSING
CIRCUIT
Qs
+HV
POWER SUPPLY
GND
+
Vout =-Qs/Cf
+HV
(d) For DC or pulsed output (-HV supply),
or pulsed output (+HV supply)
K
TACCC0071EB
F
SIG
P
Dy1
Dy2
Eo=Ip • RL
Dy3
d-1. For DC or pulsed output (-HV supply)
SIGNAL GND
R1
* GND should be connected externaly.
R2
R3
R4
R5
C1
C2
Ip
Ip
∗
RL
A
TO VOLTMETER,
AMPLIFIER UNIT OR OSCILLOSCOPE
AMMETER
Rf
+
-
-
Cf
Ip
-HV
POWER SUPPLY
GND
-HV
Eout =- Ip • Rf
TO VOLTMETER OR
SIGNAL PROCESSING CIRCUIT
+
FET INPUT OP AMP
* GND and CB should be connected externally.
K
0.001 µ F to 0.005 µ F
AMPLIFIER UNIT
CERAMIC DISK
(2 kV to 3 kV)
F
P
Dy1
R1
R2
Dy2
R3
Dy3
R4
C1
CP SIG
10 kΩ to 1 MΩ
d-2. For pulsed output/+HV supply
For general scintillation counting and
photon counting applications, recommended values for CP and RP are 0.001
µF to 0.005 µF and 10 kΩ to 1 MΩ.
Since a high voltage is supplied to
these parts, care must be taken when
handling this circuit.
R5
Ip
CL
RL
Rp
CHARGE AMP
Cf
-
+
+HV
TO SIGNAL PROCESSING
CIRCUIT
SIGNAL
GND
∗
C2
-
POWER SUPPLY
GND
TACCC0072EA
∗
Rf
TO SIGNAL
PROCESSING CIRCUIT
Qs
+
Vout=- Qs/Cf
CB
TACCC0073EC
77
D-Type Socket Assemblies
B
Maximum Ratings
Socket
Assembly
Type No.
Applicable
PMT
Diameter
Outline
and
Diagram
Grounded
Electrode/
Supply
Voltage
Polarity
C
Total
Maximum
A Leakage
Insulation
Linear
Voltage Supply Voltage Current in Voltage
between
Divider Output in
Divider Signal
Voltage
Case and
Max. Resistance DC Mode
Current
Pins
(V)
(V)
(mA)
(A)
(MΩ)
(µA)
Signal
Output
Note
For Side-on Types
q
Anode/-
1500
1250
0.38
1 × 10-10
3.30
E850-22
w
Anode/-
1500
1250
0.38
1 × 10-10
3.30
E717-63
e
Anode/-
1500
1500
0.45
1 × 10-10
3.30
E717-74
28 mm (1-1/8") r
Anode•
Cathode
/+•-
1500
1500
0.45
1 × 10-10
3.30
t
Anode/-
1250
1250
0.38
1 × 10-10
3.30
y
Anode/-
1500
1500
0.41
1 × 10-10
3.63
u
Anode/-
1500
1500
0.37
1 × 10-10
4.02
E1761-05
i
Anode/-
1500
1500
0.37
1 × 10-10
4.02
E849-35
o
Anode/-
1500
1250
0.34
1 × 10-10
3.63
!0
Anode/-
1500
1250
0.34
1 × 10-10
3.63
E849-68
!1
Anode/-
1500
1250
0.27
1 × 10-10
4.48
E849-52
!2
Anode/-
1500
1250
0.31
1 × 10-10
3.98
E2183-04
!3
Anode/-
2250
2250
0.59
1 × 10-10
3.81
E974-13
!4
Anode/-
1800
1800
0.47
1 × 10-10
3.81
E974-14
!5
Cathode/+
1800
1800
0.47
—
3.81
!6
Anode/-
1800
1800
0.47
1 × 10-10
3.81
E974-22
!7
Anode/-
1800
1800
0.43
1 × 10-10
4.16
E2253-05
!8
Anode/-
1800
1800
0.35
1 × 10-10
5.13
E2253-08
!9
Cathode/+
1800
1800
0.35
—
5.13
E974-18
@0
Anode/-
1500
1500
0.37
1 × 10-10
3.98
E2924-11
@1
Anode/-
1800
1800
0.41
1 × 10-10
4.47
@2
Anode/-
1500
1250
0.3
1 × 10-10
4.29
E2924-500
@3
Anode/-
1500
1250
0.3
1 × 10-10
4.29
E2924-05
@4
Cathode/+
1500
1250
0.3
—
4.30
E850-13
13 mm (1/2")
E717-500
18
(at 1250 V)
18
(at 1250 V)
22
(at 1500 V)
22
(at 1500 V)
18
(at 1250 V)
DC/Pulse
DC/Pulse
E850-13,
with connector
DC/Pulse
DC/Pulse Pin output
DC/Pulse
E717-63,
with connector
For Head-on Types
E1761-04
E1761-22
10 mm (3/8")
E849-90
13 mm (1/2")
E974-17
19 mm (3/4")
E2924
25 mm (1")
E990-07
@5
Anode/-
1500
1500
0.38
1 × 10-10
3.96
E990-08
@6
Cathode/+
1500
1500
0.38
—
3.96
@7
Anode/-
1500
1500
0.38
1 × 10-10
3.96
E2624
@8
Anode/-
2500
2500
0.53
1 × 10-10
4.80
E2624-05
@9
Cathode/+
2500
2500
0.53
—
4.80
E2624-14
#0
Anode/-
2500
2500
0.53
1 × 10-10
4.80
E990-501
28 mm (1-1/8")
NOTE: AMeasured with the maximum supply voltage
BMeasured with a supply voltage of 1000 V
CThe current at which the output linearity is kept within ±5 %
78
20
(at 1500 V)
19
(at 1500 V)
19
(at 1500 V)
17
(at 1250 V)
17
(at 1250 V)
13
(at 1250 V)
15
(at 1250 V)
29
(at 2250 V)
23
(at 1800 V)
—
DC/Pulse
DC/Pulse
For R2496,
with connector
DC/Pulse For R2496
DC/Pulse
DC/Pulse
E849-35,
with connector
DC/Pulse For R4124
DC/Pulse
For R2557,
with connector
DC/Pulse
DC/Pulse
Pulse
For Scintillation Counting
E974-13,
23
DC/Pulse
with connector
(at 1800 V)
For R1450,
21
DC/Pulse
with connector
(at 1800 V)
For R3478,
17
DC/Pulse
with connector
(at 1800 V)
For R3478,
Pulse
—
for Scintillation Counting
For R1878,
18
DC/Pulse
with connector
(at 1500 V)
20
DC/Pulse For R7899
(at 1800 V)
14
DC/Pulse
(at 1250 V)
E2924,
14
DC/Pulse
with connector
(at 1250 V)
—
Pulse
For Scintillation Counting
18
DC/Pulse
(at 1500 V)
—
Pulse
For Scintillation Counting
E990-07,
18
DC/Pulse
with connector
(at 1500 V)
26
DC/Pulse For R6427,
(at 2500 V)
For R6427,
Pulse
—
for Scintillation Counting
E2624,
26
DC/Pulse
with connector
(at 2500 V)
Temperature ranges of D-type socket assemblies.
Operating: 0 °C to +50 °C
Storage : -15 °C to +60 °C
B
Maximum Ratings
Socket
Assembly
Type No.
Applicable
PMT
Diameter
Outline
and
Diagram
Grounded
Electrode/
Supply
Voltage
Polarity
C
Total
Maximum
A Leakage
Insulation
Linear
Voltage Supply Voltage Current in Voltage
between
Divider Output in
Divider Signal
Voltage
Case and
Max. Resistance DC Mode
Current
Pins
(V)
(V)
(mA)
(A)
(MΩ)
(µA)
Signal
Output
Note
For Head-on Types
#1
Anode/-
1500
1500
0.35
1 × 10-10
4.29
#2
Anode/-
1500
1500
0.34
1 × 10-10
4.48
#3
Anode/-
2000
1750
0.45
1 × 10-10
3.97
E2183-502
#4
Cathode/+
2000
1750
0.45
—
3.96
E1198-26
#5
Anode/-
1500
1500
0.38
1 × 10-10
4.01
#6
Cathode/+
1500
1500
0.38
—
4.01
#7
Anode/-
1500
1500
0.46
1 × 10-10
3.3
E1198-20
#8
Cathode/+
1500
1500
0.46
—
3.3
E1198-07
#9
Anode/-
1750
1750
0.44
1 × 10-10
3.98
$0
Anode/-
3000
3000
0.70
1 × 10-10
4.31
E2979-501
$1
Anode/-
2500
2500
0.67
1 × 10-10
3.75
E1198-23
$2
Cathode/+
2200
2000
0.50
—
3.97
$3
Anode/-
2200
2000
0.50
1 × 10-10
3.97
$4
Cathode/+
2200
2000
0.50
—
3.97
E6316-01
$5
Anode/-
2200
2000
0.50
1 × 10-10
3.97
E5859-05
$6
Anode/-
1500
1500
0.38
1 × 10-10
3.98
$7
Anode/-
2700
2700
0.67
1 × 10-10
4.06
$8
Anode/-
2700
2700
0.75
1 × 10-10
3.62
$9
Cathode/+
2700
2700
0.75
—
3.63
E990-500
28 mm (1-1/8")
E990-29
E2183-500
38 mm (1-1/2")
E1198-27
E1198-05
E2979-500
E1198-22
E6316
E5859
E5859-01
51 mm (2")
76 mm (3")
51 mm (2")
51 mm (2")
76 mm (3")
127 mm (5")
51 mm (2")
76 mm (3")
E5859-03
E1435-02
51 mm (2")
%0
Anode/-
1500
1500
0.38
1 × 10-10
3.96
E7693
127 mm (5")
%1
Anode/-
3000
3000
1.02
1 × 10-10
2.94
%2
Anode/-
1800
1800
0.39
1 × 10-10
4.71
%3
Cathode/+
1800
1800
0.39
—
4.71
%4
Anode/-
1000
1000
0.36
1 × 10-10
2.8
%5
Anode/-
900
900
0.33
1 × 10-10
2.75
%6
Anode/-
900
900
0.33
1 × 10-10
2.75
%7
Anode/-
900
900
0.38
1 × 10-10
2.42
%8
Anode/-
1000
1000
0.34
1 × 10-10
2.97
%9
Cathode/+
2500
2500
0.45
—
5.62
E7694
208 mm (8")
E7694-01
E5780
E5996
E7083
E6736
E7514
E6133-04
Metal Package PMT
R7400U Series
Metal Package PMT
R7600U Series
Metal Package PMT
R7600U-M4 Series
Metal Package PMT
R5900U-L16
Metal Package PMT
R8520U-C12
for High Magnetic
Environments
25 mm (1")
17
DC/Pulse
(at 1500 V)
16
DC/Pulse For R3998-02
(at 1500 V)
22
DC/Pulse With connector
(at 1750 V)
With connector,
Pulse
—
for scintillation counting
18
DC/Pulse
(at 1500 V)
—
Pulse
For scintillation counting
22
DC/Pulse
(at 1500 V)
—
Pulse
For scintillation counting
22
DC/Pulse For R2154-02
(at 1750 V)
For R1828-01,
34
DC/Pulse with rear panel connector,
(at 3000 V)
with magnetic shield
For R3234-01,
33
DC/Pulse with rear panel connector,
(at 2500 V)
with magnetic shield
—
Pulse
For scintillation counting
25
DC/Pulse
(at 2000 V)
—
25
(at 2000 V)
18
(at 1500 V)
33
(at 2700 V)
37
(at 2700 V)
—
Pulse
For E1198-23,
with rear panel connector,
for scintillation counting
DC/Pulse
For E1198-22,
with rear panel connector
DC/Pulse With rear panel connector
DC/Pulse With rear panel connector
DC/Pulse With rear panel connector
Pulse
With rear panel connector,
for scintillation counting
18
DC/Pulse
(at 1500 V)
For R1250, for R1584,
51
DC/Pulse
with rear panel connector
(at 3000 V)
For R5912,
19
DC/Pulse
with rear panel connector
(at 1800 V)
For R5912,
Pulse
—
with rear panel connector
17
DC/Pulse
(at 1000 V)
16
DC/Pulse
(at 900 V)
4 D
DC/Pulse
(at 900 V)
1.16 D
DC/Pulse
(at 900 V)
1.4 D
DC/Pulse
(at 1000 V)
For R5505,
Pulse
—
with connector
NOTE: DCurrent of one anode
CAUTION: Socket assemblies are not designed to operate in a vacuum.
79
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
w E850-22
q E850-13
SOCKET
PIN No.
DY9
10
12.6 ± 0.5
DY8
9
12.4 ± 0.5
DY7
8
DY6
7
C3
R9
C2
R8
HOUSING
(INSULATOR)
450 ± 10
POTTING
COMPOUND
0.5 MAX.
R10
C1
R7
14.0 ± 0.3
10 5
10 5
35.0 ± 0.5
P
P
12.6 ± 0.5
12.4 ± 0.5
6
R5
DY4
5
DY3
4
DY2
3
DY1
K
2
R4
R3
10
DY8
9
R10
C3
R9
C2
R8
C1
8
R7
HOUSING
(INSULATOR)
DY6
7
DY5
6
DY4
5
DY3
4
DY2
3
DY1
K
2
R6
POTTING
COMPOUND
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
DY9
DY7
R6
DY5
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
11
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
R5
450 ± 10
0.5 MAX.
11
14.0 ± 0.3
SOCKET
PIN No.
PMT
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG22 (BLACK)
35.0 ± 0.5
PMT
R4
R3
R2
R2
R1
R1
-HV
RG-174/U (RED)
SHV CONNECTOR
1
-HV
AWG22 (VIOLET)
1
TACCA0096EC
TACCA0240EB
r E717-74
e E717-63
HOUSING
(INSULATOR)
10
P
R10
R9
38.0 ± 0.3
49.0 ± 0.3
DY8
8
DY7
7
DY6
26.0±0.2
4
DY5
5
0.7
R5
DY4
31.0 ± 0.5
A
G
10
R3
2
22.4±0.2
°
30°
0.7
6
DY5
5
DY4
4
DY3
3
DY2
2
DY1
K
1
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
R1
-HV (K)
11
-HV
AWG22 (VIOLET)
* "Wiring diagrm at left applies when -HV is supplied."
To supply +HV,connect the pin "G" to+HV, and the pin
"K" to the GND.
TACCA0277EA
y E1761-04
3.5
PMT
PMT
SOCKET
PIN No.
P
10.6 ± 0.2
29.0 ± 0.3
9
DY8
8
DY7
7
DY6
6
R10
C3
R9
C2
4
R8
C1
R7
R6
31.0 ± 0.5
HOUSING
(INSULATOR)
DY5
5
DY4
4
R to R10 : 330 kΩ
C1 to C3 : 10 nF
DY8
7
DY7
5
DY6
8
DY5
4
DY4
9
DY3
3
DY2
10
2
R2
1
C2
R9
C1
R1 to R11 : 330 kΩ
C1 to C3 : 10 nF
R6
POTTING
COMPOUND
R4
R3
DY1
R1
11
R10
R5
3
R3
DY1
K
C3
R7
R4
DY2
R11
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG24 (BLACK)
R8
HOUSING
(INSULATOR)
R5
DY3
POTTING
COMPOUND
P
3
49.0 ± 0.3
DY9
50.0 ± 0.5
38.0 ± 0.3
SOCKET
PIN No.
6
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
10
450 ± 10
33.0 ± 0.3
C1
R2
5
0.7
DY6
R1
t E717-500
2
R2
-HV
RG-174/U (RED)
SHV CONNECTOR
R1
K
11
TACCA0241EC
80
R8
R3
4- 2.8
TACCA0002EH
41.0 ± 0.5
7
R5
K
1
11
450 ± 10
DY7
R6
R13
R2
DY1
K
C2
R4
3
DY2
POTTING
COMPOUND
8
4
DY3
C3
R9
R7
R4
HOUSING
(INSULATOR)
DY8
2
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
R10
9
32.0±0.5
C1
7
6
R6
450 ± 10
DY9
R7
SIGNAL
OUTPUT (A)
GND (G)
10
P
C2
R8
29.0 ± 0.3
30.0 +0
-1
C3
9
SOCKET
PIN No.
PMT
14.0±0.5
DY9
SIGNAL GND
SIGNAL OUTPUT
RG-174/U(BLACK)
POWER
SUPPLY GND
AWG22 (BLACK)
26.0±0.2
SOCKET
PIN No.
2.7
33.0 ± 0.3
3.5
PMT
32.0±0.5
5
-HV
AWG24 (VIOLET)
TACCA0019ED
i E1761-05
u E1761-22
SOCKET
PIN No.
PMT
3
10.6 ± 0.2
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
6
SOCKET
: E678-11N
3
10.6 ± 0.2
50.0 ± 0.5
P
P
DY8
7
DY7
5
R10 C3
DY8
450 ± 10
R9 C2
DY7
5
DY6
8
DY5
4
DY4
9
50.0 ± 0.5
POTTING
COMPOUND
7
R8 C1
R7
R1 to R4 : 510 kΩ
R5 to R10 : 330 kΩ
C1 to C3 : 10 nF
R6
3
DY2
10
DY1
2
R10
C3
R9
C2
R8
C1
8
DY5
4
DY4
9
DY3
3
DY2
10
DY1
2
R6
HOUSING
(INSULATOR)
R5
R4
R3
R2
R1
-H.V
: RG-174/U or
COAXIAL CABLE (RED)
SHV CONNECTOR
11
POTTING
COMPOUND
R1 to R4 : 510 kΩ
R5 to R10 : 330 kΩ
C1 to C3 : 10 nF
R4
R3
R2
R1
K
-HV
AWG24
(VIOLET)
11
TACCA0076EC
P
12.6
DY10
7
DY9
5
R11
C3
R10
C2
C1
R9
12.4
POWER SUPPLY GND
AWG22 (BLACK)
8
DY8
14.0 ± 0.3
DY7
4
DY6
9
DY5
3
R6
R11 C3
DY10
7
DY9
5
DY8
8
DY7
4
DY6
9
DY5
3
DY4
10
DY3
2
R10 C2
R8
450 ± 10
10
DY4
R7
POTTING
COMPOUND
R5
R4
R6
R5
R4
2
DY3
R3
R3
11
DY2
DY2
11
DY1
1
K
13
R2
R2
1
DY1
K
R1 to R11: 330 kΩ
C1 to C3: 10 nF
R9 C1
HOUSING
(INSULATOR)
R1 to R11 : 330 kΩ
C1 to C3 : 10 nF
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
P
12.6
12.4
R7
POTTING
COMPOUND
SOCKET
PIN No.
6
R8
HOUSING
(INSULATOR)
PMT
450 ± 10
0.5MAX.
10 5
14.0 ± 0.3
0.5 MAX.
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
6
10 5
SOCKET PIN No.
45.0 ± 0.5
PMT
45.0 ± 0.5
TACCA0208EB
!0 E849-90
o E849-35
-HV
COAXIAL CABLE (RED)
SHV CONNECTOR
R1
R1
-HV
13
AWG22 (VIOLET)
TACCA0022EB
SOCKET
PIN No.
12.6
DY9
6
12.4
DY8
9
DY7
5
C3
R10
C2
R9
C1
POWER SUPPLY GND
AWG22 (BLACK)
R8
HOUSING
(INSULATOR)
DY6
10
DY5
4
DY4
11
R5
R1: 1 MΩ
R3: 510 kΩ
R2, R4 to R11: 330 kΩ
C1 to C3: 10 nF
R4
DY3
3
DY2
12
DY1
K
2
R3
R1
SOCKET
PIN No.
6
P
DY10
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
R11
C3
R10
C2
R9
C1
7
12.6
DY9
5
12.4
DY8
8
R8
DY7
4
DY6
9
DY5
3
R7
R6
POTTING
COMPOUND
R5
DY4
10
DY3
2
DY2
11
DY1
K
1
R1: 680 kΩ
R2 to R11: 330 kΩ
C1 to C3: 10 nF
R4
R3
R2
R2
13
14.0 ± 0.3
HOUSING
(INSULATOR)
R7
R6
POTTING
COMPOUND
0.5 MAX.
R11
8
450 ± 10
0.5 MAX.
10 5
P
DY10
10 5
SIGNAL OUTPUT
RG-174/U (BLACK)
7
14.0 ± 0.3
PMT
SIGNAL GND
45.0 ± 0.5
PMT
45.0 ± 0.5
TACCA0077EC
!2 E849-52
!1 E849-68
450 ± 10
POWER SUPPLY GND
AWG24 (BLACK)
R7
R5
DY3
K
DY6
450 ± 10
HOUSING
(INSULATOR)
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
6
SOCKET
PMT PIN No.
-HV
AWG22 (VIOLET)
TACCA0210EB
R1
13
-HV
COAXIAL CABLE (RED)
SHV CONNECTOR
TACCA0209EB
81
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
!4 E974-13
!3 E2183-04
PMT
SOCKET
PIN No.
6
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
SOCKET
PIN No.
5
PMT
P
P
DY10
5
C2
DY8
8
DY7
4
DY6
9
DY5
3
DY4
10
8.2
17.4 ± 0.2
4
R9
DY8
7
R8
DY7
3
DY6
8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
12
R1 : 180 kΩ
R2 to R12 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R6
HOUSING
(INSULATOR)
11
R3
1
R2
C4
POTTING
COMPOUND
R6
R2
-HV
SHIELD CABLE (RED)
12
R1
K
11
POWER SUPPLY GND
!6 E974-17
!5 E974-14
PMT
R12
C4
R11
23.0 ± 0.5
DY10
6
17.4 ± 0.2
DY9
4
DY8
7
DY7
3
DY6
8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
12
R10
R9
C3
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
+HV
AWG22 (RED)
P
23.0 ± 0.5
DY8
7
DY7
3
DY6
8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
K
12
HOUSING
(INSULATOR)
R3
R1
R4
POTTING
COMPOUND
R3
R2
R2
11
R1 : 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
R6
R5
450 ± 10
450 ± 10
R4
K
C1
R7
R5
POTTING
COMPOUND
C2
R9
R8
R1
: 510 kΩ
R2 to R11 : 330 kΩ
R12
: 100 kΩ
C1 to C3 : 10 nF
C4 to C5 : 4.7 nF
47.5 ± 1.0
R6
C3
R10
4
DY9
C1
R11
6
DY10
17.4 ± 0.2
C2
43.0 ± 0.5
47.5 ± 1.0
43.0 ± 0.5
R7
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
5
R8
HOUSING
(INSULATOR)
SOCKET
PIN No.
PMT
SOCKET
PIN No. C5
5
P
POWER
SUPPLY GND
AWG22 (BLACK)
R1
-HV
COAXIAL CABLE (RED)
SHV CONNECTOR
11
TACCA0100EB
SOCKET
PIN No.
5
21.0 ± 0.2
P
DY10
6
DY9
4
R9 C1
DY8
7
DY7
3
R8
R7
DY6
8
DY5
2
HOUSING
(INSULATOR)
R5
9
DY3
1
R4
DY2
DY1
K
DY7
3
DY6
8
DY5
2
DY4
9
POTTING
COMPOUND
DY3
1
R9
C1
R1:1 MΩ
R2:750 kΩ
R3:560 kΩ
R4, R6 to R11:330 kΩ
R5:510 kΩ
C1 to C3:10 nF
R5
DY2
10
DY1
12
K
11
R4
R3
R2
R1
R2
11
C3
C2
R8
10
R1
R11
R10
7
R3
12
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
R6
R6
DY4
P
R7
450 ± 10
POTTING
COMPOUND
0
0.4
DY8
R1:680 kΩ
R3:510 kΩ
R2, R4 to R11:330 kΩ
C1 to C3:10 nF
SOCKET
PIN No.
5
18.6 ±
R11 C3
R10 C2
HOUSING
(INSULATOR)
PMT
SIGNAL OUTPUT
RG-174/U(BLACK)
BNC CONNECTOR
55.0 ± 0.5
6.2
PMT
40.0 ± 0.5
TACCA0212EB
!8 E2253-05
!7 E974-22
450 ± 10
-HV
AWG22 (VIOLET)
TACCA0099EB
TACCA0242EB
-HV
COAXIAL CABLE(RED)
SHV CONNECTOR
TACCA0078EC
82
R1
: 510 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
R3
R1
K
C1
R4
450 ± 10
450 ± 10
R4
DY1
R9
R5
2
DY2
C2
R7
R5
DY3
C3
R10
R8
R7
POTTING
COMPOUND
R11
6
DY9
C1
R10
HOUSING
(METAL)
DY10
23.0 ± 0.5
47.5 ± 1.0
DY9
34.0 ± 0.3
48.5 ± 0.5
C3
R11
43.0 ± 0.5
52.0 ± 0.5
R12
7
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG22 (BLACK)
-HV
COAXIAL CABLE (RED)
SHV CONNECTOR
TACCA0079EB
@0 E974-18
!9 E2253-08
PMT
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
R13
6.2
P
65.0 ± 0.5
DY8
HOUSING
(INSULATOR)
+HV
AWG22 (RED)
C2
DY8
7
C1
DY7
3
DY6
8
DY5
2
DY4
9
DY3
1
DY2
10
DY1
K
12
R10
R9
7
3
DY6
8
DY5
2
DY4
9
DY3
1
DY2
10
R1, R14: 1 MΩ
R2: 750 kΩ
R3: 560 kΩ
R5: 510 kΩ
R4, R6 to R12: 330 kΩ
R13: 10 kΩ
C1 to C3: 10 nF
C4, C5: 4.7 nF
R7
R6
R5
450 ± 10
R4
R9
C1
12
R4
POTTING
COMPOUND
R3
R2
R1
K
-HV
COAXIAL CABLE (RED)
SHV CONNECTOR
R1
11
POWER SUPPLY GND
AWG22 (BLACK)
11
E974-18 attaches BNC and SHV connector
at the end of cables.
TACCA0214EB
TACCA0213EB
@2 E2924
@1 E2924-11
R13
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
C3 AWG22 (BLACK)
R12
C2
R11
C1
35.0 ± 0.3
DY9
DY8
6
11
DY7
5
DY6
12
7
4
0.8
R8
DY5
DY4
13
2- 3.5
R1 to R4,R6 to R13 : 330 kΩ
R5 : 510 kΩ
C1 to C3 : 10 nF
R9
43.0 ± 0.5
28.0 ± 0.5
HOUSING
(INSULATOR)
DY3
3
R5
DY2
DY10
10
DY9
6
DY8
C1
DY7
5
DY6
12
R1 to R13 : 330 kΩ
C1 to C3 : 10 nF
R9
26.0 ± 0.3
DY5
4
DY4
13
DY3
3
DY2
14
DY1
2
R7
R6
28.0 ± 0.5
14
HOUSING
(INSULATOR)
R5
R4
2
R3
R2
K
C2
R11
R10
450 ± 10
DY1
R12
11
R4
POTTING
COMPOUND
R13
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
C3 AWG22 (BLACK)
R8
R7
R6
SOCKET
PIN No.
7
35.0 ± 0.3
10
R10
26.0 ± 0.3
P
30.0 ± 0.3
30.0 ± 0.3
DY10
PMT
44.0 ± 0.3
7
P
SOCKET
PIN No.
7
0.8
PMT
44.0 ± 0.3
450 ± 10
R1 : 680 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
R6
R5
R2
43.0 ± 0.5
C2
R7
HOUSING
(INSULATOR)
R3
2- 3.5
C3
R10
R8
DY7
DY1
17.4 ± 0.2
4
C3
R11
6
DY10
DY9
R11
R8
POTTING
COMPOUND
P
23.0 ± 0.5
C4
R12
47.5 ± 1.0
0
0.2
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
5
R14
43.0 ± 0.5
18.0 ±
SOCKET
PIN No. C5
5
450 ± 10
PMT
SOCKET
PIN No.
POTTING
COMPOUND
R3
R2
R1
R1
K
-HV
AWG22 (VIOLET)
1
-HV
AWG22 (VIOLET)
1
TACCA0032EC
TACCA0032EC
@4 E2924-05
@3 E2924-500
44.0 ± 0.3
35.0 ± 0.3
Dy9
6
Dy8
11
28.0 ± 0.5
HOUSING
(INSULATOR)
450
POTTING
COMPOUND
Dy7
5
Dy6
12
Dy5
4
Dy4
13
Dy3
3
Dy2
14
Dy1
2
K
C3
R12
C2
R11
C1
DY10
DY9
R9
2- 3.5
R8
R1 to R13: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
R7
R6
R5
R4
R3
R1
R11
C3
R10
C2
R9
C1
6
11
R8
26.0 ± 0.3
DY7
5
DY6
12
R7
C4
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
DY8
C5
R6
DY5
4
DY4
13
DY3
3
DY2
14
DY1
2
R5
28.0 ± 0.5
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
+HV
SHIELD CABLE (RED)
POWER SUPPLY GND
10
R10
R2
1
R12
43.0 ± 0.5
0.8
43.0 ± 0.5
7
26.0 ± 0.3
R13
30.0 ± 0.3
10
P
7
2- 3.5
Dy10
SOCKET
PIN No. C4
7
35.0 ± 0.3
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
7
0.8
P
PMT
44.0 ± 0.3
HOUSING
(INSULATOR)
R1, R12 : 1 MΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
C4, C5 : 4.7 nF
R4
R3
450 ± 10
30.0 ± 0.3
PMT SOCKET
PIN No.
POTTING
COMPOUND
R2
R1
K
1
TACCA0081EC
TACCA0102EA
83
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
@6 E990-08
@5 E990-07
44.0 ± 0.3
35.0 ± 0.3
SOCKET
PIN No.
7
P
30.0 ± 0.3
R12
DY11
6
DY10
8
DY9
2- 3.5
C3
R11
C2
R10
C1
35.0 ± 0.3
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
POWER SUPPLY GND
AWG22 (BLACK)
9
4
2- 3.5
26.0 ± 0.3
DY5
3
28.0 ± 0.5
R5
DY4
28.0 ± 0.5
HOUSING
(INSULATOR)
450 ± 10
450 ± 10
12
R2
DY1
C2
R10
C1
5
DY8
9
DY7
4
DY6
10
DY5
3
DY4
11
DY3
2
DY2
12
DY1
14
R1 to R12
R13
C1 to C3
C4, C5
R6
14
POTTING
COMPOUND
R3
R2
R1
R1
K
-HV
AWG22 (VIOLET)
13
POWER SUPPLY GND
AWG22 (BLACK)
13
TACCA0103EB
TACCA0101EB
@8 E2624
@7 E990-501
44.0 ± 0.3
PMT
SOCKET
PIN No.
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
30.0 ± 0.3
P
DY11
26.0 ± 0.3
C3
R11
C2
R10
C1
5
DY8
9
DY7
4
7
0.8
28.0 ± 0.5
43.0 ± 0.5
43.0 ± 0.5
DY6
10
R6
DY5
3
DY4
11
R5
5
R14
C3
R16
R13
C2
R15
R12
C1
DY7
4
DY6
10
DY5
3
DY4
11
DY3
2
DY2
12
DY1
14
26.0 ± 0.3
C4
R7
HOUSING
(INSULATOR)
28.0 ± 0.5
R6
R5
2
R3
DY2
12
POTTING
COMPOUND
R4
R3
R2
DY1
14
R1
K
R1 to R5, R7 to R14 : 330 kΩ
R6 : 510 kΩ
R15 to R17 : 51 Ω
C1 to C3 : 10 nF
C4 : 4.7 nF
R10
R8
450 ± 10
DY3
POWER SUPPLY GND
AWG22 (BLACK)
9
R4
POTTING
COMPOUND
450 ± 10
DY9
R17
R9
R1 to R12 : 330 kΩ
C1 to C3 : 10 nF
R7
8
DY8
2- 3.5
R8
DY10
R11
R9
HOUSING
(INSULATOR)
P
8
DY9
SIGNAL OUTPUT
RG-174/U (BLACK)
35.0 ± 0.3
6
DY10
2- 3.5
R12
SIGNAL GND
7
30.0 ± 0.3
7
SOCKET
PIN No.
44.0 ± 0.3
7
PMT
0.8
35.0 ± 0.3
R2
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
13
E2924-500 attaches BNC
and SHV connector at the
end of cables.
R1
K
-HV
AWG22 (VIOLET)
13
TACCA0216EB
TACCA0243EA
#0 E2624-14
@9 E2624-05
R15
30.0 ± 0.3
P
DY10
8
DY9
5
DY8
9
DY7
4
DY6
10
R18
R14
C3
R17
R13
C2
R16
R12
C1
SIGNAL GND
44.0 ± 0.3
SIGNAL OUTPUT
RG-174/U (BLACK)
35.0 ± 0.3
DY5
3
DY4
11
R8
0.8
R7
28.0 ± 0.5
HOUSING
(INSULATOR)
DY3
2
DY2
12
DY1
14
R5
POTTING
COMPOUND
28.0 ± 0.5
HOUSING
(INSULATOR)
R6
450 ± 10
450 ± 10
43.0 ± 0.5
7
R9
43.0 ± 0.5
R10
P
26.0 ± 0.3
R1 to R5, R7 to R15 : 330 kΩ
R6 : 510 kΩ
R16 to R18 : 51 Ω
C1 to C3 : 10 nF
C4 : 4.7 nF
R4
R3
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
7
2- 3.5
R11
26.0 ± 0.3
PMT SOCKET
PIN No.
+HV
AWG22 (RED)
30.0 ± 0.3
35.0 ± 0.3
C4
7
SOCKET
PIN No.
7
0.8
PMT
44.0 ± 0.3
2- 3.5
: 330 kΩ
: 1 MΩ
: 10 nF
: 4.7 nF
R4
R3
K
R11
R5
2
DY2
8
+HV
AWG22 (RED)
R7
11
DY3
DY10
C3
R8
R4
POTTING
COMPOUND
6
7
R6
HOUSING
(INSULATOR)
DY11
DY9
0.8
10
R1 to R12 : 330 kΩ
C1 to C3 : 10 nF
R7
53.0 ± 0.5
7
0.8
43.0 ± 0.5
DY6
C5
R12
R9
R8
DY7
C4
R13
5
DY8
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
7
P
R9
26.0 ± 0.3
SOCKET
PIN No.
PMT
30.0 ± 0.3
PMT
44.0 ± 0.3
POTTING
COMPOUND
Dy10
8
Dy9
5
Dy8
9
Dy7
4
Dy6
10
Dy5
3
Dy4
11
Dy3
2
Dy2
12
K Dy1
14
R14 R11
C3
R13 R10
C2
R12 R9
C1
R8
R1:
R3:
R2, R4 to R11:
R12 to R14:
C1 to C3:
C4:
1320 kΩ
510 kΩ
330 kΩ
51 Ω
10 nF
4.7 nF
R7
R6
R5
R4
R3
R2
C4
R1
13
-H.V
: COAXIAL CABLE (RED)
SHV CONNECTOR
R2
R1
K
13
POWER SUPPLY GND
AWG22 (BLACK)
TACCA0217EB
84
TACCA0082EC
#2 E990-29
#1 E990-500
PMT
30.0 ± 0.3
DY11
6
DY10
8
DY9
5
DY8
9
DY7
4
DY6
10
2- 3.5
R13
C3
R12
C2
R11
C1
35.0 ± 0.3
PMT SOCKET
PIN No.
2- 3.5
7
0.8
HOUSING
(INSULATOR)
28.0 ± 0.5
DY5
3
DY4
11
43.0 ± 0.5
R7
R6
R5
DY3
2
R4
DY2
12
DY1
14
DY9
8
DY8
6
DY7
9
DY6
5
DY5
10
R10 C2
R9 C1
26.0 ± 0.3
R8
R6
DY4
3
DY3
12
DY2
2
R5
28.0 ± 0.5
HOUSING
(INSULATOR)
R4
R3
DY1
R3
R2
C4
R1
K
R1 : 1 MΩ
R2 to R6,R8 to R11 : 330 kΩ
R7 : 510 kΩ
C1 to C3 : 10 nF
R7
450 ± 10
450 ± 10
POTTING
COMPOUND
POWER SUPPLY GND
AWG22 (BLACK)
R11 C3
7
R1 to R13 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R8
SIGNAL OUTPUT
RG-174/U (BLACK)
P
0.8
R9
SIGNAL GND
6
R10
26.0 ± 0.3
43.0 ± 0.5
44.0 ± 0.3
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
7
P
30.0 ± 0.3
44.0 ± 0.3
35.0 ± 0.3
SOCKET
PIN No.
13
R2
POTTING
COMPOUND
G
1
R1
-HV
AWG22 (VIOLET)
14
K
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
13
TACCA0215EB
TACCA0244EA
#4 E2183-502
#3 E2183-500
52.0 ± 0.5
34.0 ± 0.3
8.2
DY9
DY8
PMT
SIGNAL OUTOPUT
RG-174/U (BLACK)
BNC CONNECTOR
R13
C3
R12
C2
R11
C1
7
40.0 ± 0.5
DY7
8
: 10 kΩ
R1
R2 to R13 : 330 kΩ
C1 to C3 : 10 nF
: 4.7 nF
C4
4
R9
DY6
HOUSING
(INSULATOR)
52.0 ± 0.5
34.0 ± 0.3
5
R10
9
HOUSING
(INSULATOR)
2
11
R2
K
R11
C2
R10
C1
C4
+HV
SHIELD CABLE (RED)
SHV CONNECTOR
8
R1 to R12 : 330 kΩ
: 1 MΩ
R13
C1, C5, C6 : 4.7 nF
C2 to C4 : 10 nF
4
DY6
9
DY5
3
DY4
10
DY3
2
DY2
11
DY1
1
R7
R5
R3
1
R3
C3
R4
R4
DY1
R12
R6
POTTING
COMPOUND
10
R5
DY2
5
C5
R8
3
R6
DY3
7
DY9
DY7
450 ± 10
450 ± 10
DY4
SIGNAL OUTPUT
RG-174/U (BLACK)
BNC CONNECTOR
C6
R9
R7
POTTING
COMPOUND
P
DY10
DY8
R8
DY5
SOCKET
PIN No.
6
R13
8.2
P
DY10
SOCKET
PIN No.
6
40.0 ± 0.5
PMT
R2
C4
R1
12
R1
K
-HV
SHIELD CABLE (RED)
SHV CONNECTOR
12
TACCA0166EC
TACCA0167EB
#6 E1198-27
#5 E1198-26
PMT
SOCKET
PIN No.
SIGNAL GND
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
12
SOCKET
PIN No.
12
R13
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C5
R11
C4
R12
R11
DY8
11
DY7
10
DY6
7
DY5
6
R10
C2
R9
C1
R1: 10 kΩ
R2, R3: 680 kΩ
R4 to R11: 330 kΩ
C1 to C3: 10 nF
C4: 4.7 nF
R8
64.0 ± 0.3
R7
56.0 ± 0.3
DY4
5
R6
4
DY2
3
R4
DY1
1
R3
G
K
R2
14
The housing is internally
connected to the GND.
R1
-HV
SHIELD CABLE (RED)
POWER SUPPLY GND
TACCA0224EC
11
DY7
10
DY6
7
DY5
6
DY4
5
DY3
4
DY2
3
DY1
1
R10
C3
R9
C2
R8
C1
+HV
SHIELD CABLE (RED)
POWER SUPPLY GND
R6
56.0 ± 0.3
R5
C4
13
DY8
R7
64.0 ± 0.3
38.0 ± 0.5
38.0 ± 0.5
R5
HOUSING
(METAL)
450 ± 10
DY3
P
C3
450 ± 10
P
R4
R3
HOUSING
(METAL)
R1 to R2 : 680 kΩ
R3 to R11 : 330 kΩ
R12 : 10 kΩ
R13 : 1 MΩ
C1 to C3 : 10 nF
C4, C5 : 4.7 nF
R2
G
K
13
R1
14
The housing is internally
connected to the GND.
TACCA0225EB
85
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
#8 E1198-20
#7 E1198-05
SOCKET
PIN No.
PMT
SIGNAL GND
11
P
6
DY5
5
R9
C2
DY8
8
R8
C1
DY7
7
DY6
6
DY4
4
R7
64.0 ± 0.3
R6
R5
C4
3
DY2
2
DY1
1
R3
R2
HOUSING
(METAL)
13
G
K
R1
-HV
AWG22 (VIOLET)
14
450 ± 10
C3
R9
C2
R8
C1
+HV
SHIELD CABLE (RED)
POWER SUPPLY GND
The housing is internally
connected to the GND.
DY5
5
DY4
4
DY3
3
DY2
2
DY1
1
R6
56.0 ± 0.3
R1 to R11: 330 kΩ
C1 to C3: 10 nF
C4, C5: 4.7 nF
R5
R4
38.0 ± 0.5
38.0 ± 0.5
R4
R1 to R10 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R3
HOUSING
(METAL)
R2
13
G
R1
K
450 ± 10
DY3
R10
R7
64.0 ± 0.3
56.0 ± 0.3
C4
R11
P
7
DY6
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C5
8
DY7
SOCKET
PIN No.
11
POWER SUPPLY GND
AWG22 (BLACK)
C3
R10
DY8
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
14
The housing is internally
connected to the GND.
TACCA0221EB
TACCA0223EB
$0 E2979-500
#9 E1198-07
62.0 ± 0.5
SOCKET
PIN No.
11
P
SIGNAL GND
10
DY9
9
DY8
8
DY7
7
DY6
6
R10
C2
R9
C1
DY12
MAGNETIC
SHILD CASE
R8
R7
R6
DY5
C4
5
R5
DY4
R1 : 680 kΩ
R2 to R11 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
4
38.0 ± 0.5
R4
DY3
2
R2
1
R1
12
DY9
7
DY8
13
6
DY5
5
DY4
15
DY3
3
DY2
17
DY1
G2
ACC
G1
K
2
R18
R21 R17
C7
C10
R16
R20 R15
C6
C9
R19 R14
R13
C5
C8
R12
R11
C3
C11
C4
R1: 10 kΩ
R2, R5: 240 kΩ
R3, R7 to R12, R18: 200 kΩ
R4, R6: 360 kΩ
R13 to R17: 300 kΩ
R19 to R21: 51 Ω
C1: 470 pF
C2 to C8, C11: 10 nF
C9: 22 nF
C10: 33 nF
C2
R10
R9
R8
R7
R6
R5
R4
R3
R2
19
20
C1
R1
-HV
AWG22 (VIOLET)
14
SIGNAL
OUTPUT
: BNC-R
SIG
The housing is internally
connected to the GND.
-H.V
450 ± 10
DY1
K
8
DY10
14
3
DY2
HOUSING
(METAL)
DY11
DY6
HOUSING
(METAL)
R3
11
DY7
3-M2
11
56.0 ± 0.3
82.0 ± 0.5
64.0 ± 0.3
SIGNAL OUTPUT
BNC CONNECTOR
10
P
POWER SUPPLY GND
AWG22 (BLACK)
C3
R11
DY10
SOCKET
PIN No.
PMT
SIGNAL OUTPUT
RG-174/U (BLACK)
164.0 ± 0.5
PMT
-HV
SHV CONNECTOR
The housing is internally
connected to the GND.
-H.V
: SHV-R
TACCA0220EC
TACCA0093EB
$2 E1198-23
$1 E2979-501
62.0 ± 0.5
PMT
PMT
SOCKET
PIN No.
SIGNAL OUTPUT
BNC CONNECTOR
10
HOUSING
(METAL)
8
DY10
12
DY9
7
DY8
13
DY7
6
DY6
14
DY5
5
DY4
15
DY3
3
DY2
17
DY1
G
ACC
2
K
20
C7
C10
R18 R15
C6
C9
R17 R14
C5
C8
R13
C4
R12
R11
C3
R1: 10 kΩ
R2,R3: 330 kΩ
R4,R7 to R16: 220 kΩ
R5: 270 kΩ
R6: 390 kΩ
R17 to R19: 100 Ω
C1: 470 pF
C2 to C9: 10 nF
C10: 33 nF
C2
R10
R9
R8
R7
R6
R5
C1
R1
SIG
-H.V
: SHV-R
C2
DY9
9
DY8
8
R10
C1
C4 R14
POWER SUPPLY GND
DY7
7
DY6
6
DY5
5
DY4
4
DY3
3
DY2
2
DY1
1
R8
56.0 ± 0.3
R7
R6
R1 to R12
R13
R14
C1 to C4
C5, C6
: 330 kΩ
: 1 MΩ
: 10 kΩ
: 10 nF
: 4.7 nF
R5
HOUSING
(METAL)
R4
R3
R2
G
K
13
R1
The housing is internally
connected to the GND.
TACCA0222EB
86
R11
14
Thie housing is internally
connected to the GND.
-H.V
SIGNAL
OUTPUT
: BNC-R
-HV
SHV CONNECTOR
C3
10
64.0 ± 0.3
R4
R3
R2
C5
R12
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
+HV
SHIELD CABLE (RED)
R9
38.0 ± 0.5
11
3-M2
DY11
R19 R16
450 ± 10
140.0 ± 0.5
82.0 ± 0.5
MAGNETIC
SHILD CASE
P
DY10
11
C6
R13
P
DY12
SOCKET
PIN No.
11
TACCA0169EC
$4 E6316
$3 E1198-22
PMT
SOCKET
PIN No.
11
P
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
DY10
PMT SOCKET
PIN No.
C3
R13
DY9
9
DY8
8
DY7
7
P
R12
C2
R11
C1
Dy8
DY5
5
R8
56.0 ± 0.3
R7
DY4
51.5 ± 0.5
64.0 ± 0.3
R1
R2 to R13
C1 to C3
C4
: 10 kΩ
: 330 kΩ
: 10 nF
: 4.7 nF
4
HOUSING
(METAL)
38.0 ± 0.5
R6
DY3
3
DY2
2
R5
HOUSING
(METAL)
DY1
5
Dy4
4
Dy3
3
Dy2
2
1
13
K
R3
C4
R2
R1
13
SIGNAL
OUTPUT
: BNC-R
-HV
SHIELD CABLE (RED)
14
SIG
450 ± 10
6
Dy5
POWER SUPPLY GND
14
C4
R14
+HV
SHV CONNECTOR
C1
R9
R8
R7
R6
R1 to R12: 330 kΩ
R13: 1 MΩ
R14: 10 kΩ
C1 to C4: 10 nF
C5, C6: 4.7 nF
R5
R4
R3
R2
R1
The housing is internally
nonnected to the GND.
+H.V
G
K
Dy6
Dy1
1
C2
7
G
R4
C3
R11
9
R10
8
Dy7
THREADED HOLES
FOR INSTLLATION
OR MAGNETIC
SHIELD CASE
C5
R12
10
Dy9
R9
6
SIGNAL OUTPUT
BNC CONNECTOR
R13
Dy10
64.0 ± 0.5
R10
DY6
C6
11
10
+HV
: SHV-R
The housing is internally
connected to the GND.
TACCA0226EB
TACCA0168EB
$6 E5859-05
$5 E6316-01
SOCKET
PIN No.
PMT
SOCKET
PIN
11 No.
10
DY9
9
DY8
8
R13
C3
R12
C2
R11
C1
51.5 ± 0.5
THREADED HOLES
FOR INSTLLATION
OR MAGNETIC
SHIELD CASE
7
DY6
6
R1 : 10 kΩ
R2 to R13 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
R9
R8
DY5
8
58.0 ± 0.5
Dy11
6
51.0 ± 0.4
Dy10
12
Dy9
5
Dy8
Dy7
13
5
Dy6
Dy5
14
Dy4
Dy3
15
Dy2
Dy1
G
16
3-M2
THREADED HOLES
FOR INSTLLATION
OR MAGNETIC
SHIELD CASE
R7
HOUSING
(METAL)
DY4
4
DY3
3
DY2
2
DY1
1
HOUSING (METAL)
R22
R26 R20
R19
R25 R18
SIG
-H.V
G
R3
C4
R2
R1
SIG
SIGNAL
OUTPUT
:BNC-R
-H.V
14
-HV
SHV CONNECTOR
The housing is internally
connected to the GND.
-H.V
:SHV-R
R14
R13
R12
4
R11
3
R9
R8
R7
2
C1
R1
The housing is internally
connected to the GND.
SOCKET
PIN No.
R24
-HV
SHV CONNECTOR
TACCA0219EC
R27 R23
Dy11
6
51.0 ± 0.4
Dy10
12
3-M2
(THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE)
HOUSING (METAL)
Dy9
5
Dy8
Dy7
13
Dy6
Dy5
14
60.0 ± 0.5
3
R17
R16
R15
R14
Dy2
Dy1
G
R9
R8
R7
16
K
21
C2
R6
R5
R4
R3
R2
C1
R1
-HV
SHV CONNECTOR
58.0 ± 0.5
Dy11
51.0 ± 0.4
Dy10
3-M2
(THREADED HOLES
FOR INSTALLATION
OF MAGNETIC
SHIELD CASE)
HOUSING (METAL)
60.0 ± 0.5
SIGNAL
OUTPUT
:BNC-R
SIG
15
1
R1 : 10 kΩ
R2, R12, R16, : 180 kΩ
R17, R20, R21
R3, R13, R18, R19, : 226 kΩ
R22 to R24
R4, R5, R7, R8 : 121 kΩ
R6, R9 to R11, : 150 kΩ
R14, R15
R25 : 51 kΩ
R26, R27 : 100 Ω
C1 : 470 pF
C2 : 22 nF
C3 : 47 nF
C4 : 0.1 µF
C5 to C7 : 0.22 µF
R11
Dy4
Dy3
17
C4
C3
R13
R12
R10
2
C5
-H.V
SIG
-H.V
-H.V
:SHV-R
4
R26 R20
R19
R25 R18
10
SH
Dy12
R22
58.0 ± 0.5
SIGNAL OUTPUT
BNC CONNECTOR
7
C7
8
R21
SOCKET
PIN No.
P
C6
12.5 9
Dy12
PMT
SIGNAL OUTPUT
BNC CONNECTOR
7
P
55.0 ± 0.5
PMT
12.5 9
21
$8 E5859-01
$7 E5859
55.0 ± 0.5
R6
R5
R4
R3
R2
1
17
K
TACCA0245EB
SIGNAL
OUTPUT
:BNC-R
R1 : 10 kΩ
R2 to R5,R8 to R13 : 220 kΩ
R6 : 560 kΩ
R7,R14 to R21,R23,R24 : 110 kΩ
R22,R25 to R27 : 0 Ω
C1 : 470 pF
C2,C3 : 10 nF
C4 : 22 nF
R10
60.0 ± 0.5
13
K
C2
R15
R4
-HV
: SHV-R
C3
R17
R16
R6
R5
SIGNAL
OUTPUT
: BNC-R
C4
R27 R23
Dy12
R21
R10
DY7
R24
12.5 9
64.0 ± 0.5
P
DY10
SIGNAL OUTPUT
BNC CONNECTOR
7
P
SIGNAL OUTPUT
BNC CONNECTOR
55.0 ± 0.5
PMT
Dy9
Dy8
Dy7
Dy6
Dy5
C4
C3
C2
R1 : 10 kΩ
R2 to R6,R9 to R13 : 220 kΩ
R7,R8 : 154 kΩ
R14 to R21,R23,R24 : 110 kΩ
R22 : 0 Ω
R25 : 51 Ω
R26,R27 : 100 Ω
C1 : 470 pF
C2,C3 : 10 nF
C4 : 22 nF
3
SH
Dy4
Dy3
10
R10
15
Dy2
Dy1
G
16
R9
R8
R7
R6
R5
R4
R3
R2
K
-H.V
:SHV-R
R24
R27 R23
8
R22
R21
R26 R20
6
R19
R25 R18
12
R17
R16
5
R15
R14
13
R13
4
R12
14
R11
2
1
17
21
C1
R1
-HV
SHV CONNECTOR
The housing is internally
connected to the GND.
The housing is internally
connected to the GND.
TACCA0176ED
TACCA0178EC
87
D-Type Socket Assemblies Dimensional Outlines and Diagrams (Unit: mm)
$9 E5859-03
%0 E1435-02
C5
PMT
SOCKET
PIN No.
R29
SIGNAL OUTPUT
BNC CONNECTOR
7
P
R24
R23
R20
60.0 ± 0.5
5
Dy8
Dy7
13
2
R13
R12
R11
4
Dy6
Dy5
14
SH
Dy4
Dy3
10
R9
15
Dy2
Dy1
G
R8
R7
R6
16
R10
3
2
R5
R4
R3
R2
R1
1
17
K
R1 to R5,R8 to R12 : 220 kΩ
R6, R7 : 154 kΩ
R13 to R20, R22, R23 : 110 kΩ
R21 : 0 Ω
R24 : 10 kΩ
R25 : 51 Ω
R26, R27 : 100 Ω
R28 : 100 kΩ
R29 : 1 MΩ
C1, C2 : 10 nF
C3 : 22 nF
C4, C5 : 2.2 nF
C6 : 470 pF
C7 to C9 : 4.7 nF
R14
21
R1 to R12 : 330 kΩ
C1 to C3 : 10 nF
C4 : 4.7 nF
9
DY7
C7
R16
R15
C1
R9
R8
36.0 ± 0.5
Dy9
C1
C2
R10
3
DY8
DY6
2
DY5
10
DY4
1
DY3
11
DY2
15
DY1
12
R7
HOUSING
(METAL)
C4
R6
R5
R4
POTTING
COMPOUND
R3
R2
14
G
K
R1
13
-HV
SHIELD CABLE (RED)
The housing is internally
connected to the GND.
The housing is internally
connected to the GND.
POWER SUPPLY GND
TACCA0246EB
TACCA0218EC
%1 E7693
%2 E7694
PMT
SOCKET
PIN No.
10
P
Dy14
Dy13
8
Dy12
12
Dy11
7
Dy10
13
100 ± 0.5
74.0 ± 0.5
11
HOUSING
(METAL)
Dy9
6
Dy8
14
Dy7
5
Dy6
15
Dy5
4
Dy4
16
Dy3
3
Dy2
G1 G2
Dy1
R18
C5
R20
R17
C4
R19
R16
C3
R15
C2
R14
C1
2
20
SOCKET
PIN No.
SIGNAL OUTPUT
BNC CONNECTOR
8
P
R1 : 10 kΩ
R2, R18 : 240 kΩ
R3 : 360 kΩ
R4 : 390 kΩ
R5 : 120 kΩ
R6 : 180 kΩ
R7 to R14 : 100 kΩ
R15, R16 : 150 kΩ
R17 : 300 kΩ
R19 : 51 Ω
R20, R21 : 100 Ω
C1 : 22 nF
C2 : 47 nF
C3 : 100 nF
C4 : 220 nF
C5 : 470 nF
C6 : 470 pF
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
C6
R2
R1
74.0 ± 0.5
7
13
Dy7
5
Dy6
14
4
Dy4
16
Dy3
3
Dy2
17
Dy1
F3
F2
F1
1
2
19
18
K
20
R20
R17
C3
R19
R16
C2
R18
R15
C1
R14
R1 : 10 kΩ
R2, R3, R7 : 750 kΩ
R4, R9 : 200 kΩ
R5 : 91 kΩ
R6 : 510 kΩ
R8 : 300 kΩ
R10 : 100 kΩ
R11 to R17 : 150 kΩ
R18 to R20 : 51 Ω
C1 to C3 : 10 nF
C4 : 4.7 nF
R13
R12
R10
R9
R8
R7
R6
SIG
-H.V
SIG
-H.V
Dy5
HOUSING
(METAL)
SIGNAL
OUTPUT
(BNC-R)
-H.V
: SHV-R
12
Dy9
R11
-HV
SHV CONNECTOR
The housing is internally
connected to the GND.
Dy10
Dy8
19
K
SIGNAL
OUTPUT
(BNC-R)
R21
17
PMT
SIGNAL OUTPUT
BNC CONNECTOR
100 ± 0.5
SIG
+H.V
+H.V
:SHV-R
12
C3
R11
8
C8
450 ± 10
12.5 9
55.0 ± 0.5
HOUSING (METAL)
Dy10
40.0 ± 0.5
C2
R26 R19
6
R18
R25 R17
R12
4
DY9
52.0 ± 0.5
R21
Dy11
SIGNAL
OUTPUT
:BNC-R
C9
8
51.0 ± 0.4
3-M2
TH READED HOLES
FOR INSTLLATION
OR MAGNETIC
SHIELD CASE
P
DY10
+HV
SHV CONNECTOR
C3
R27 R22
Dy12
SIGNAL GND
SIGNAL OUTPUT
RG-174/U (BLACK)
C6
R28
58.0 ± 0.5
SOCKET
PIN No.
6
PMT
C4
R5
R4
C4
R3
R2
R1
-HV
SHV CONNECTOR
The housing is internally
connected to the GND.
-H.V
: SHV-R
TACCA0229EB
TACCA0227EC
%3 E7694-01
%4 E5780
6
R18
C5
R17
P
Dy10
74.0 ± 0.5
12
Dy9
7
Dy8
13
Dy7
5
Dy6
14
Dy5
4
Dy4
16
R22
R16
C3
R21
R15
C2
R20
R14
C1
100 ± 0.5
SIG
+H.V
SIGNAL
OUTPUT
: BNC-R
3
Dy2
17
R11
R9
R7
R6
R5
Dy1
F3
F2
F1
2
19
18
K
20
1
P
+HV
SHV CONNECTOR
17 ± 0.2
R4
R3
R2
DY8
7
DY7
4
DY6
R1, R2,R6 : 750 kΩ
R3, R8 : 200 kΩ
R4 : 91 kΩ
R5 : 510 kΩ
R7 : 300 kΩ
R9 : 100 kΩ
R10 to R16 : 150 kΩ
R17 : 100 kΩ
R18 : 1 MΩ
R19 : 10 kΩ
R20 to R22 : 51 Ω
C1 to C3 : 10 nF
C4, C5 : 4.7 nF
R9
C3
R8
C2
R7
C1
POWER SUPPLY GND
AWG22 (BLACK)
8
R6
HOUSING
(INSULATOR)
DY5
3
DY4
9
R5
R4
DY3
2
DY2
10
DY1
11
R1 to R8 : 330 kΩ
R9 : 160 kΩ
C1 to C3 : 10 nF
R3
R2
R1
K
12
R1
-HV
AWG22 (VIOLET)
The housing is internally
nonnected to the GND.
+H.V
: SHV-R
TACCA0247EB
88
GUIDE MARK
R12
R8
Dy3
R19
SIGNAL OUTPUT
RG-174/U (BLACK)
5
SIGNAL OUTPUT
BNC CONNECTOR
R13
R10
HOUSING
(METAL)
SIGNAL GND
C4
8
15 ± 0.5
SOCKET
PIN No.
450
PMT
TACCA0060EH
%5 E5996
%6 E7083
SOCKET
PIN No.
SIGNAL GND
PIN No.1
DY10
24
DY9
23
DY8
22
R14
R11
C3
R13
R10
C2
R12
HOUSING
(INSULATOR)
R9
15.0 ± 0.5
21
C1
DY6
20
DY5
19
R1 to R3 : 330 kΩ
R4 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R7
POTTING
COMPOUND
450 ± 10
R6
7
DY3
6
POTTING
COMPOUND
P1
24
DY9
23
R14
R11
C3
R13
R10
C2
R12
R9
C1
22
R8
DY7
21
DY6
20
DY5
19
P3
DY4
7
-HV
RG-174/U (RED)
DY3
6
DY2
5
DY1
4
R1 to R3 : 330 kΩ
R4 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R7
R5
P2
POTTING
COMPUND
5
R2
DY1
SIGNAL OUTPUT
P2 : 0.8D-QEV (GRAY)
R6
R3
K
DY10
DY8
R4
DY2
P3
P4 P3 P2 P1
R5
DY4
P4
15
31
HOUSING
(INSULATOR)
R8
DY7
SIGNAL GND
27
11
15.0 ± 0.5
30.0 ± 0.5
P
SOCKET
PIN No.
PMT
30.0 ± 0.5
PIN No.1
30.0 ± 0.5
SIGNAL OUTPUT
RG-174/U (BLACK)
30
450 ± 10
PMT
30.0 ± 0.5
R4
R3
4
R2
R1
R15
-HV
: RG-174U (RED)
1
POWER SUPPLY GND
GUIDE MARK
P1
K
P4
R15
R1
-HV
: RG-174U (RED)
1
P1 to P4 :SIGNAL OUTPUT
COAXIAL CABLE (GRAY)
POWER SUPPLY GND
TACCA0162ED
TACCA0234EC
%7 E6736
%8 E7514
SOCKET
PIN No.
28
29
27
3
23
4
22
5
21
6
20
7
19
11
13
12
450 ± 10 15.0 ± 0.5
POM
HOUSING
5 10
Dy10
P11
P9
P1
P2
-HV
RG-174/U (RED)
P4
P7 P5
P6
P8
P10
P12
K
GUIDE MARKE
P15
Dy9
10
Dy8
24
Dy7
8
Dy6
2
Dy5
18
•
•
•
•
•
•
•
P8
•
•
•
•
•
•
P1
R14 R11
C3
R13 R10
C2
R12 R9
C1
R8
R1 to R11 : 220 kΩ
R12 to R14 : 51 Ω
R15 : 1 MΩ
C1 to C3 : 10 nF
R6
31
Dy3
15
Dy2
32
Dy1
16
SOCKET
R20
PIN No. C6
10
P
55.0 ± 0.5
450 ± 10
PX2
PY2
PX1
PY6
15
PX5
23
PY5
14
PX4
22
PY4
12
PX3
20
PY3
11
PX2
19
PY2
10
PX1
-HV
RG-174/U (RED)
POWER SUPPLY GND
PY1
13
DY11
8
DY10
27
DY9
SIGNAL OUTPUT
: 0.8D-QEV (GRAY)
R18 R14
C3
R17 R13
C2
R16 R12
C1
7
R11
PMT
R19
Dy15
9
Dy14
11
8
Dy13
8
Dy12
12
Dy11
Dy10
+H.V
: SHIELD CABLE (RED)
SHV CONNECTOR
PY3
PX6
24
R2
R15 R1
PX2
PX1
POTTING
COMPOUND
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
PY4
PX3
R3
17
POTTING
COMPOUND
POM
HOUSING
POTTING
COMPOUND
-H.V
: RG-174/U (RED)
HOUSING
(INSULATOR)
PY5
PX4
16
R4
%9 E6133-04
SOCKET:
E678-17C
PX5
PY1
TACCA0158ED
22.0 ± 0.5
PY6
R5
P1 to P16 : SIGNAL OUTPUT
COAXIAL CABLE (GRAY)
24.0 ± 0.5
PX6
SIGANL OUTPUT
: 0.8D-QEV (GRAY)
R7
Dy4
P14
P16
26
SIGNAL GND
25.4 ± 0.5
P16
P16
P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
POTTING
COMPOUND
PIN No. 1
25.4 ± 0.5
Pin No.1
P3
P13
SIGNAL GND
15.0 ± 0.5
30.0 ± 0.5
PMT
450 ± 10
30.0 ± 0.5
R24
R18
C5
R23
R17
C4
R22
R16
C3
R15
C2
R14
C1
7
R13
13
Dy9
6
Dy8
14
R12
R11
R10
Dy7
5
Dy6
15
C7
R1
SIGNAL OUTPUT
: RG-174/U (BLACK)
BNC CONNECTOR
GUIDE MARK
DY8
28
DY7
6
DY6
29
DY5
5
DY4
30
DY3
4
DY2
31
R10
PY1 PX4
PX5
PX3
PX6
R9
PY2
PY3
R8
R7
PY4
PY5
PY6
R6
R5
R4
+HV
SHIELD CABLE (RED)
SHV CONNECTOR
R3
DY1
G
K
3
R2
1
R15
32
R1 : 10 kΩ
R2 to R18 : 330 MΩ
R19 : 100 kΩ
R20, R21 : 1 MΩ
R22 to R24 : 51 Ω
C1 to C5 : 10 nF
C6, C7 : 4.7 nF
R1, R14: 110 kΩ
R2: 330 kΩ
R3 to R13: 220 kΩ
R15: 1 MΩ
R16 to R18: 51 Ω
C1 to C3: 10 nF
R1
-H.V
: RG-174/U (RED)
POWER
SUPPLY GND
TACCA0236EB
R9
R8
Dy5
4
Dy4
16
Dy3
3
Dy2
17
Dy1
2
R7
R6
R5
R4
R21
K
R3
R2
1
TACCA0248EA
89
DA-Type Socket Assemblies
DA-TYPE SOCKET ASSEMBLIES C7246 SERIES, C7247 SERIES
The C7246 and C7247 series are DA type socket assemblies designed for 28 mm (1-1/8 inch) diameter side-on and head-on photomultiplier tubes. A voltage-divider circuit and an amplifier are incorporated in the same package.
The C7247 series uses an amplifier with a wide bandwidth of 0 Hz to 5 MHz, while the C7246 uses an amplifier with a practical
bandwidth of 0 Hz to 20 kHz to improve the effective S/N ratio. The photomultiplier tube low-level, high-impedance current can be
converted into a low-impedance voltage output by a factor of 0.3 V/µA.
Both the C7246 and C7247 series use an active voltage-divider circuit that ensures excellent DC linearity at low power consumption. The C7246 series also has a gain adjustment function that does not affect amplifier frequency bandwidth.
Specifications
Parameter
C7246/C7246-20
C7246-01/C7246-21 C7247/C7247-20
C7247-01/C7247-21
28 mm Dia. Head-on
28 mm Dia. Head-on
R316-02, R374, R2228
28 mm Dia. Side-on
28 mm Dia. Side-on R316-02, R374, R2228
R5929, R6094, R6095, etc.
R5929, R6094, R6095, etc.
Applicable PMTs
Unit
—
MAXIMUM RATINGS
Parameter
Input Voltage for Amplifier
Supply Voltage for Divider
Operating Temperature
Storage Temperature
C7246/C7246-20
C7246-01/C7246-21
±18
-1500
0 to +40
-15 to +60
C7247/C7247-20
C7247-01/C7247-21
±18
-1500
0 to +40
-15 to +60
Unit
V
V
°C
°C
C7246/C7246-20
C7246-01/C7246-21
±12 to ±15
C7247/C7247-20
C7247-01/C7247-21
±12 to ±15
Unit
V
GENERAL
Parameter
Input Voltage for Amplifier
Input Current for Amplifier
Typ.
(at ±15 V)
Recommended
Supply Voltage for Divider
Divider Current
Typ.
-400 to -1000 A
-300 to -1000 A
-400 to -900
-300 to -600
V
174
(at HV = -1000 V)
211
(at HV = -1000 V)
219
(at HV = -900 V)
166
(at HV = -600 V)
µA
10
190
(at HV = -1000 V)
55 / 170
V/µA
V
V
µA
µA
—
Ω
mV
mV
dB
0.3
10
3
33
33
0 Hz to 5 MHz
50
±3
9
0.3
10
0.9
33
33
0 Hz to 20 kHz
50
±1
0.09
Current to Voltage Conversion Factor (with no load resistor)
Maximum Output Voltage (with no load resistor)
Output Voltage (with 50 Ω load resistor)
Maximum input Signal Current DC
(with no load resister) Pulse
Frequency Bandwidth (-3 dB)
Output Impedance
Max.
Offset Voltage
Output Noise Voltage (rms) Typ.
Adjustable Gain Range Min.
Total Power Consumption
Typ.
(at ±15 V)
Typ.
Weight
mA
12
0.53
30
227
(at HV = -1000 V)
50 / 170
—
558
(at HV = -900 V)
55 / 170
—
460
(at HV = -600 V)
50 / 170
mW
g
NOTE: A Keep more than 600 V at -HV input when input signal gives more than 10 µA. (C7246/-01/-20/-21)
Circuit Diagrams
C7246 (-01B/-20/-21B)
C7247 (-01B/-20/-21B)
K
K
P
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8
DY9
DY10
DY11
SIGNAL
OUTPUT
AMP
50 Ω
C1
C2
C3
C1
-HV
90
DY10
DY11
AMP
C2
C3
SIGNAL
OUTPUT
C4
ACTIVE VOLTAGE DIVIDER
C1,C2 : 0.01 µF
C3 : 0.022 µF
C4 : 0.047 µF
VR = 5 MΩ
* GAIN ADJ. CIRCUIT
DY9
50 Ω
C4
ACTIVE VOLTAGE DIVIDER
P
DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8
C1,C2 : 0.01 µF
C3 : 0.022 µF
C4 : 0.047 µF
-HV
* PATENT
TACCC0103EC
NOTE: BC7246-01/-21 are for 28 mm side-on PMT so that the last dynode number is "DY9"
TACCC0115EB
NOTE: BC7247-01/-21 are for 28 mm side-on PMT so that the last dynode number is "DY9"
Frequency Response of Built-in Amplifier
C7246/-01/-20/-21
C7247/-01/-20/-21
TACCB0065EA
10
5
5
0
-3dB
-5
-10
-15
RELATIVE GAIN (dB)
RELATIVE GAIN (dB)
TACCB0046EB
10
0
-3dB
-5
-10
-15
-20
0.1
1
10
-20
0.01
1000
100
0.1
1
FREQUENCY (kHz)
100
10
FREQUENCY (MHz)
Dimensional Outlines (Unit : mm)
C7246-01/-21, C7247-01/-21
5
33.0 ± 0.3
3.5
C7246/-20, C7247/-20
[BOTTOM VIEW]
C7246/-20
C7246-01/-21
38.0 ± 0.3
49.0 ± 0.3
1)
POT (VR)
25.2
GAIN ADJ.
GAIN ADJ.
31.7 ± 0.3
[BOTTOM VIEW]
1)
POT (VR)
4
40.0 ± 0.5
29.0 ± 0.3
C7247-01/-21
37.7 ± 0.5
0.7
C7247/-20
HOUSING
(METAL)
31.7 ± 0.3
HOUSING
(METAL)
TACCA0175EE
Type No.
Input/output
-HV
Signal Output
±15 V
-HV
C7246-20/-21
Signal Output
C7247-20/-21
±15 V
C7246/-01
C7247/-01
TACCA0197EC
Cable Type
Cable Length Connector
COAXIAL CABLE 2) (RED)
—
COAXIAL CABLE: RG-174/U (BLACK) 450 ± 10
—
—
TWISTED PAIR CABLE WITH SHIELD 3) (GRAY)
SHV
COAXIAL CABLE (RED)
BNC
COAXIAL CABLE: RG-174/U (BLACK) 1500 ± 25
TWISTED PAIR CABLE WITH SHIELD (GRAY)
MIYAMA MC-032
NOTES: 1) Turning this pot clockwise increases the PMT gain. (25 turns max.)
2) At the end of HV cable, it's possible to attach SHV connector fitting RG-174/U.
3) Connect as follow.
WHITE........ -15 V
ORANGE.... +15 V
SHIELD....... GND
Sold Separately
HOUSING E7718 (for C7246/-20 or C7247/-20)
FLANGE A7709* (for C7246-01/-21 or C7247-01/-21)
[Including part 1, 4, 5, 6, 8 and !0]
1.5
M42 P = 1.5
(FOR FIXING)
1
[HOW TO USE THE HOUSING WITH FLANGE]
2
3
4
5
HOUSING
MAGNETIC SHIELD CASE
PMT
O-RINGS
4-M2 SCREWS L = 6
C7246/-20 or C7247/-20
2
3
4
5
6
35.2 ± 1.0
1
2
3
4
5
6
26
42
1
7
60
132
54
[Including part 1, 2, 4 and 5]
6
[SUGGESTED FIXTURE LAYOUT FOR THE FLANGE]
8
80 ± 2
5
1
2
3
4
5
6
7
8
9
!0
INSULATOR (CUSHION)
PMT
E989 MAGNETIC SHIELD CASE
CLAMPING METAL PARTS
2-M3 SCREWS L = 5
FLANGE
C7246-01/-21 or C7247-01/-21
O-RING
FIXTURE
2-M3 SCREWS L = 5
9 !0
43
60
3-M3
48
54
46
[SUGGESTED FIXTURE LAYOUT FOR THE FLANGE]
1
54 ± 0.
1
3
FLANGE *
4-M3
0°
DIRECTION OF LIGHT
12
12
* O-RING
0°
54 ± 0.
10.2
* THE FLANGE AND O-RING ARE AVAILABLE TO SOLD SEPARATELY AS P/N; A7719.
TACCA0198EA
* A7709 can be attached to the E717-63/-500
TACCA0199EB
91
DP / DAP-Type Socket Assemblies
HIGH VOLTAGE POWER SUPPLY SOCKET ASSEMBLY C6270, C8991 (DP Type)
HIGH VOLTAGE POWER SUPPLY SOCKET ASSEMBLY WITH TRANSIMPEDANCE AMPLIFIER C6271 (DAP Type)
C6270 is a high voltage power supply socket assembly for 28 mm (1-1/8 inch) diameter side-on photomultiplier tubes (PMTs), incorporating a regulated high voltage power supply and an active voltage divider. It enables simple yet stable photomultiplier tube
operations with extended DC output linearity by only supplying +15 V and connecting to a potentiometer or a 0 V to +5 V for high
voltage adjustments.
C6271 further incorporates a transimpedance amplifier which converts the photomultiplier tubes high impedance current signal to
low impedance voltage signal.
The C8991 uses a Cockcroft-Walton type high voltage power supply that ensures high output linearity of photomultiplier tube while
maintaining low power consumption.
Features (C6270)
Features (C6271)
● Superior DC Output Linearity
● Fast High Voltage Programming
Response
● Wide High Voltage Output Range
● Low Ripple/Noise
Features (C8991)
● With Transimpedance Amplifier
● Superior DC Output Linearity
● Fast High Voltage Programming
Response
● Wide High Voltage Output Range
● Low Ripple / Noise
● Superior DC Output Linearity
● Low Power Consumption
Common Specifications
GENERAL
Parameter
Applicable PMTs
Input Voltage
Input Current
Linear DC Output Current
at -1000 V
of PMT A
at -500 V
Operating Temperature
Storage Temperature
Weight
C6270
Typ.
Typ.
Typ.
45
100
50
Typ.
50
C8991
C6271
28 mm (1-1/8 inch) Dia. side-on types
+15 ± 1
+11.5 to +15.5
8
55
100
43
50
43
0 to +40
0 to +50
-15 to +60
57
53
Unit
—
V
mA
µA
µA
°C
°C
g
NOTE: A Within: ±2 % linearity
HIGH VOLTAGE POWER SUPPLY
Parameter
Output Voltage Range
Line Regulation Against ±1 V Input Change Typ.
Ripple/Noise (p-p) in High Voltage Output Typ.
Anode Ripple Noise B (p-p)
High Voltage Control
C6270
C6271
C8991
-200 to -1200
0 to -1250
±0.01
0.008
—
1
0 V to +5 V or external 50 kΩ potentiometer
C
High Voltage Programming Response
Typ.
Settling Time D
Temperature Coefficient of High Voltage Output Typ.
80
—
±0.01
0 V to +1.2 V or
external 10 kΩ potentiometer
—
10
±0.005
Unit
V
%
%
mV
—
ms
s
%/°C
NOTE: B Load resistance = 1 MΩ, Load capacitance = 22 pF
C for 0 %/99 % HV change
D The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V.
C6271 Specifications
TRANSIMPEDANCE AMPLIFIER SECTION
Parameter
Current to Voltage Conversion Factor
Maximum Linear Signal Output Voltage Typ.
Bandwidth (-3 dB)
Signal Output Offset Voltage
Typ.
Induced Ripple (p-p) on Signal Output
Typ.
92
Value
0.3
+13 (Anode Current=43 µA)
0 Hz to 10 kHz
-0.3 to +0.3
2
Unit
V/µA
V
—
mV
mV
Schematic Diagrams
C6270
C6271
ACTIVE
VOLTAGE
DIVIDER
C8991
TRANSIMPEDANCE
AMP
PMT
SOCKET
PMT
SOCKET
PMT
SOCKET
HIGH
VOLTAGE
POWER
SUPPLY
+15 V IN (RED)
Vref (5 V) OUT (BLUE)
HV CONTROL (WHITE)
GROUND (BLACK)
GROUND (BLACK)
ACTIVE
VOLTAGE
DIVIDER
+15 V IN (RED)
Vref (5 V) OUT (BLUE)
HV CONTROL (WHITE)
GROUND (BLACK)
GROUND (BLACK)
HIGH
VOLTAGE
POWER
SUPPLY
+15 V IN (RED)
Vref (+1.2 V) OUT (BLUE)
HV CONTROL (WHITE)
GROUND (BLACK)
HIGH VOLTAGE
ADJUSTMENT
CIRCUIT
SIGNAL OUT (COAX)
SIGNAL OUT (COAX)
TACCC0095EC
TACCC0096EE
DC Linearity Characteristics
20
COCKCROFTWALTON
CIRCUIT
(HIGH VOLTAGE
DIVIDER)
SIGNAL OUT (COAX)
TACCC0124EA
Practical PMT DC Output Limits
TACCB0040EC
140
TACCB0042EB
PMT OUTPUT CURRENT ( µ A)
DEVIATION (%)
PMT SUPPLY VOLTAGE: -1000 V
(Reference)
330 kΩ/STAGE
RESISTIVE DIVIDER
10
C6270
0
C6271
-10
1
10
C8991
100
1000
120
C6270, C8991
100
80
60
C6271
40
(Reference)
330 kΩ/STAGE
RESISTIVE DIVIDER
20
0
-400
-600
-800
PMT OUTPUT CURRENT (µA)
-1000
-1200
-1400
PMT SUPPLY VOLTAGE (V)
High Voltage Controlling Characteristics
Dimensional Outlines
C6270, C6271
TACCB0041EC
(Unit: mm)
C8991
-1500
2- 3.2
33.0±0.3
32
DIRECTION
OF LIGHT
-1000
C6270, C6271
-750
38
38.0±0.3
45
49.0±0.3
29.0±0.3
48.5
10.5
+1
+0.2
+2
+0.4
+3
+0.6
+4
+0.8
CONTROL VOLTAGE (V)
+5
+1.0
31.7±0.3
CONDUCTIVE
PLASTIC
+6 (C6270, C6271)
+1.2 (C8991)
450±10
0
0
0.7
R1
37.7±0.5
4
2.5
C8991
-250
0
4
31.5
-500
450 MIN.
OUTPUT VOLTAGE (V)
DIRECTION
OF LIGHT
3.5
5
-1250
32
HOUSING
(METAL)
OTHER WIRES: AWG24
SIGNAL OUT
(COAXIAL CABLE: RG-174/U)
TACCA0156ED
SIGNAL OUTPUT
+15 V INPUT
HV CONTROL INPUT
Vref OUTPUT
GND
COAX RG-174/U
AWG 22, RED
AWG 22, WHITE
AWG 22, BLUE
AWG 22, BLACK
TACCA0053EE
93
Amplifier Units
Amplifier Units C7319, C6438, C9663, C5594
Hamamatsu provides four types of amplifier units for photomultiplier tubes.
Features of each type are as follows.
Select the one that best matches your application.
Features
From left: C9663, C7319, C6438, C5594
● C7319
• Switchable frequency bandwidth (2 ranges) and current-to-voltage
conversion factor (3 ranges)
• Ideal for applications requiring low noise and high gain
● C6438
• Wide bandwidth from 0 Hz up to 50 MHz
● C9663
• Wide bandwidth from DC to 150 MHz and gain of 38 dB
● C5594
• 1.5 GHz cutoff frequency for reliable amplification of high-speed
output pulse from PMT
• Choice of SMA or BNC input and output connector
Characteristics
C7319
Parameter
C9663
C5594-44
C6438
C6438-01
Frequency Bandwidth DC to 20 kHz or DC to
DC to 50 MHz
DC to 50 MHz
DC to 150 MHz 50 kHz to 1.5 GHz
(-3 dB)
200 kHz (switchable) A
Voltage Gain
—B
20 ± 3 D (Approx. 10 times) 54 ± 3 D (Approx. 500 times) 38 D (Approx. 80 times) 36 D (Approx. 63 times)
Current-to-Voltage
0.1 V/µA, 1 V/µA
0.5 mV/µA E
25 mV/µA E
4 mV/µA E
3.15 mV/µA E
Conversion Factor
or 10 V/µA (switchable)
Amplifier Input (output) ±Current (inverted) ±Voltage (non-inverted) ±Voltage (non-inverted) ±Voltage (non-inverted) -Voltage (non-inverted)
Input Impedance
—B
50
50
50
50
50
50
Recommended Load Resistance
—
50
50
±1 D
±1 D
±13 C
Max. Output Signal Voltage
±1.4 D
-2.5 D
BNC-R
BNC-R
BNC-R
Input
BNC-R
BNC-R
BNC-R
BNC-R
BNC-R
Connector
Output
BNC-R
BNC-R
DIN (6-pin)
DIN (6-pin)
DIN (6-pin)
Power
DIN (6-pin)
—
±5 to ±15
±5
±5
Input Voltage
±5
+12 to +16
±16
±55
±80
Input Current Max.
±80
+95
60 × 43.2 × 65
60 × 43.2 × 65
Dimensions (W × H × D) 60 × 43.2 × 65
60 × 43.2 × 65
54 × 17 × 33
Approx.170
Approx.160
Approx.160
Weight
Approx.180
Approx.80
NOTE: AFrequency bandwidth is limited to DC to 100 kHz
at conversion coefficient of 10 V/µA.
BC7319 is current input type.
CAt ±15 V Supply voltage and 10 kΩ load resistance.
DAt 50 Ω load resistance.
EValue after current-to-voltage conversion by input impedance.
FContact our sales office for other connectors for C5594.
94
Unit
—
dB
—
—
Ω
Ω
V
—
—
—
V
mA
mm
g
C5594 Input connector and type No.
Input
SMA plug (male)
SMA jack (female)
BNC plug (male)
BNC jack (female)
Output
SMA jack (female)
BNC jack (female)
C5594-12
C5594-14
C5594-22
C5594-24
C5594-34
C5594-32
C5594-44
C5594-42
Frequency Response
C6438
C7319
+10
TACCB0044ED
10
5
RELATIVE GAIN (dB)
+5
RELATIVE GAIN (dB)
at 50 Ω load resister
TACCB0039EC
0
-5
-10
0 Hz to 200
0 Hz to 20 kHz
0
-5
-10
kHz A
-15
-15
-20
100
101
102
-20
10-1
103
100
101
102
FREQUENCY (MHz)
FREQUENCY (kHz)
A To be limited to 0 Hz to 100 kHz at 10 V/µA
(Current to voltage conversion factor)
C9663
10
C5594
at 50 Ω load resister
TACCB0074EA
TACCB0006EB
10
5
RELATIVE GAIN (dB)
RELATIVE GAIN (dB)
5
0
-5
-10
-15
0
-5
-10
-15
-20
100
101
102
-20
10-2
103
10-1
100
FREQUENCY (MHz)
102
103
(Unit: mm)
C7319
C6438
DIN TYPE
(6 PINS)
OUTPUT
GAIN
H
DIN TYPE
(6 PINS)
ALUMINUM HOUSING
105 106 107 V/A
SIG IN
±5 V
SIG OUT
43.2 ± 0.5
±15 V
INPUT
BW
BNC-R
BNC-R
43.2 ± 0.5
ALUMINUM HOUSING
BNC-R
104
FREQUENCY (MHz)
Dimensional Outlines
L
101
OFFSET
VR OFFSET
∗ Exclusiver cable with a plug
connector attached at one end
will be provided for ±5 V supply
connection together with the
unit.
65.0 ± 0.5
65 ± 0.5
TACCA0174EA
OFFSET
BNC-R
OUTPUT
C5594
9.6
54
43.2 ± 0.5
±5 V
INPUT
9.6
17
HIGH SPEED AMPLIFIER
IN
VR OFFSET
C5594
50k-1.5GHz
36dB
GND
+15V
OUT
16.5
DIN TYPE (6 PINS)
ALUMINUM HOUSING
BNC-R
ATTACHMENT SCREW HOLES (2-M3)
* Exclusiver cable with a plug
connector attached at one
end will be provided for ±5 V
supply connection together
with the unit.
65.0 ± 0.5
18
9.5
11.4
47.5 ± 0.2
18
60.0 ± 0.5
C9663
TACCA0134EA
33
47.5 ± 0.2
∗ Exclusiver cable with a plug
connector attached at one end
will be provided for ±15 V supply
connection together with the
unit.
60 ± 0.5
ATTACHMENT
SCREW HOLES (2-M3)
SCREW HOLES FOR FIXTURE(2-M3)
47.5 ± 0.2
SWITCH OF
CONVERSION RATIO
60.0 ± 0.5
SWITCH OF
FREQUENCY
BANDWIDTH
TACCA0262EA
TACCA0051EB
95
High Voltage Power Supplies
Voltage Dependence of Photomultiplier Tube Gain
Hamamatsu regulated high voltage power supplies are
products developed based on our years of experience as a
photomultiplier tube manufacturer and our leading edge
technology. All models are designed to conform to stability
requirements demanded of photomultiplier tube operations.
Various models are provided, ranging from on-board unit
types to general-purpose bench-top types, allowing you to
choose the desired power supply that suits your application.
Gain vs. Supply Voltage
108
TPMOB0082EB
107
106
GAIN
The photoelectrons emitted from the photocathode of a photomultiplier tube are channeled by the electron lens to impinge on the first dynode where several times the number of
secondary electrons are then emitted. This multiplicative increase of secondary electrons is repeated at the latter dynodes and as a result, the number of electrons reaching the
anode is approximately 105 to 107 times the original number
of photoelectrons emitted from the photocathode.
The relationship of the secondary electron emission δ for
each dynode to the supplied voltage is expressed as follows:
δ = A • Eα
where A is a constant, E is the interstage voltage, and α is
another constant determined by the dynode material and
geometric structure. The value of α is usually in the range
0.7 to 0.8. When a voltage V is supplied between the anode
and the photocathode of a photomultiplier tube having n dynode stages, the overall gain µ is given by
µ = (A • Eα)n = {A • [V/n+1]α}n = {An/ (n+1)αn}Vαn
Here, if {An/ (n+1)αn} is substituted for K, µ becomes
µ = K • Vαn
Typical photomultiplier tubes have 9 to 12 dynode stages
and as shown in Figure 23, the gain is proportional to the 6th
to 10th power of the voltage supplied between the photocathode and the anode. This essentially means that the output
of a photomultiplier tube is extremely sensitive to variations
in the supplied voltage. Thus the power supply stability such
as drift, ripple, temperature regulation, input regulation and
load regulation must be at least 10 times as stable as the
output stability required of the photomultiplier tube.
105
104
103
102
200
300
500
700
1000
1500
SUPPLY VOLTAGE (V)
Selection Guide to High Voltage Power Supplies
Type
Type No.
C4900
Unit Type
C4710
C3830
Bench-top Type
C4720
C4840
* Order made products
** Excluding projecting parts
96
—
-01
-50
-51
—
-01
-02
-50*
-51*
-52*
—
-22
—
-22
-01
-02
Max. Output Output Current
Input Voltage
Voltage (V)
(mA)
+15 V
0.6
-1250
+12 V
0.5
+15 V
0.6
+1250
+12 V
0.5
+15 V
+12 V
-1500
+24 V
1
+15 V
+12 V
+1500
+24 V
AC 100 V/120 V
-1500
AC 230 V
1
AC 100 V/120 V
+1500
AC 230 V
AC 120 V
±3000
10
AC 230 V
Dimensions**
(W × H × D) (mm)
Weight
46 × 24 × 12
31 g
65 × 27.5 × 45
105 g
255 × 54 × 230
2.8 kg
245 × 135 × 385
10 kg
Compact High Voltage Power Supply Units C4900 Series
The C4900 series is an on-board type high voltage power supply unit, with
a design that aims at providing both "compactness and high performance".
The newly developed circuit achieves high performance and low power
consumption. The C4900 series in addition provides enhanced protective
functions yet is offered at lower costs.
The C4900 and -01 are designed for negative output, while the C4900-50
and -51 have positive output.
Features
● Very compact and lightweight
● Low power consumption
● Variable output voltage range from 0 V
TACCF0154
EN61010-1: 2001
● High stability
● Quick response
● Ample protective functions
Specifications
Parameter
C4900
C4900-01
C4900-50
C4900-51
+15 ± 1
+12 ± 0.5
+15 ± 1
+12 ± 0.5
Input Voltage Range
with no load Typ.
14
15
14
15
A
Input Current
with full load Typ.
90
95
90
95
Variable Output Range
0 to -1250
0 to +1250
Specification Guaranteed Output Voltage Range
-200 to -1250
+200 to +1250
Max.
0.6
0.5
0.6
0.5
Output Current
±0.01
Line Regulation Against ±1 V/0.5 V Input Change AB Typ.
±0.01
Load Regulation Against 0 % to 100 % Load Change A Typ.
Typ.
Ripple/Noise (p-p) AB
0.007
Output Voltage Control
By external controlling voltage (0 V to +5 V) or external potentiometer (50 kΩ ±2.5 kΩ)
Controlling Voltage Input
80
Typ.
Impedance
Output Voltage Setting (Absolute Value) Typ.
(Controlling Voltage × 250) ± 0.5 %
Output Voltage Rise Time (0 % ➝ 99 %) AB Typ.
50
Typ.
Temperature Coefficient AB
±0.01
Operating Ambient Temperature AB
0 to +50
Storage Temperature
-20 to +70
Operating Ambient Humidity ABCD Max.
65 RH at 40 °C
Max.
Storage Humidity D
75
Weight
31
Units protected against reversed power input, reversed/excessive controlling
Protective Functions
voltage input, continuous overloading/short circuit in output
NOTE: AAt maximum output voltage. BAt maximum output current.
CPlease ask our sales representative in case of higher humidity use.
12
3.81
mA
V
V
mA
%
%
%
—
kΩ
V
ms
%/°C
°C
°C
%
%
g
—
DNo condensation.
Output Voltage Controlling
Characteristic
Dimensional Outlines (Unit: mm)
46
Unit
V
15.88
15.88
4-φ2
(C4900, -01)
(C4900-50, -51)
TACCB0043EB
+1500
-1250
+1250
-1000
+1000
-750
+750
-500
+500
-250
+250
5 MIN.
10.16
0.3
1.5
2.5
MOUNTING TABS
15.88
3.81
15.88
6-φ0.8
(
• The
•
mounting tabs can be
bent to the right angle only once
The mounting tabs are solderable.
0.5×0.25
)
17.78
PIN ASSIGNMENT
q +15 V /+12 V IN
wGND 1 (INPUT/OUTPUT GND)
eGND 2 (CONTROLLING VOLTAGE GND)
rHV ADJ (CONTROLLING VOLTAGE INPUT)
tVref OUT
yHV OUT
∗The housing is internally connected to pin w.
Pins w and e are internally connected.
0
2.54
10.16
0
+1
+2
+3
+4
+5
5.3
OUTPUT VOLTAGE (V)
2.54
y
q w ert
OUTPUT VOLTAGE (V)
24
29
11.7
-1500
0
+6
17.78
(BOTTOM VIEW)
TACCA0157EC
TACCA0159EB
CONTROLLING VOLTAGE (V)
97
High Voltage Power Supplies
Compact High Voltage Power Supply Units C4710 Series
The C4710 series comprises on-board type high voltage power supply
units, designed specifically for photomultiplier tube operations. The C4710
series is designed for ease of use and high performance, and can be selected from among 6 models to meet your various needs.
Features
● Compact and lightweight
● High stability
● High output voltage up to 1500 V
● Ample protective functions
● Fully enclosed metal-shielded package
TACCF0113
Specifications
Parameter
Input Voltage
Input Current A
with no load Typ.
(at maximum output voltage) with full load Typ.
Specification Guaranteed Output Voltage Range
Max.
Output Current
AB
Typ.
Line Regulation Against ±1 V Input Change
Load Regulation Against 0 % to 100 % Load Change A Typ.
Typ.
Ripple/Noise (p-p) AB
Output Voltage Control
Controlling Voltage
Typ.
Input Impedance
Output Voltage Setting (Absolute Value) Typ.
Output Voltage Rise Time (0 % ➝ 99 %) AB Typ.
Temperature Coefficient AB Typ.
Operating Ambient Temperature AB
Storage Temperature
Weight
C4710
+15 ± 1
95
260
C4710-01
+12 ± 1
120
340
-240 to -1500
C4710-50 C
+15 ± 1
95
260
C4710-02
+24 ± 1
65
145
C4710-51 C C4710-52 C
+12 ± 1
+24 ± 1
120
65
340
145
+240 to +1500
1
±0.015
±0.015
±0.01
±0.01
±0.015
±0.01
±0.02
±0.01
±0.02
±0.01
±0.015
±0.01
0.005
By external controlling voltage (+0.8 V to +5 V) or external potentiometer (10 kΩ)
40
—
Output Voltage Controlling
Characteristic
−1800
55
HV ADJ
4
V REF OUT
HV OUT
5
45
COMMON
3
35
2
10
+12/15/24 V IN
OUTPUT VOLTAGE (V)
1
1
5
45
8
25
27.5
(C4710−50, −51, −52)
TACCB0009EB
+1800
−1500
+1500
−1200
+1200
−900
+900
−600
+600
−300
+300
2-MOUNTING THREADS (M2.3)
SIDE VIEW
0
BOTTOM VIEW
TACCA0124EA
98
0 0.43
1
2
3
4
CONTROLLING VOLTAGE
5 5.3
6
0
OUTPUT VOLTAGE (V)
(C4710, −01, −02)
65
V
mA
%
%
%
—
V
ms
%/°C
°C
°C
g
NOTE: AAt maximum output voltage.
BAt maximum output current.
COrder made products
Dimensional Outlines (Unit: mm)
mA
kΩ
56
(Controlling Voltage × 300) ± 0.5 %
100
±0.01
0 to +40
-20 to +60
105
Units protected against reversed power input, reversed/excessive controlling
voltage input, continuous overloading/short circuit in output
Protective Functions
Unit
V
Compact Bench-Top Regulated DC Power Supplies C3830 Series, C4720 Series
The C3830 series and C4720 series are multipurpose power supplies designed to provide a high voltage output for photomultiplier tube operation
and low voltage outputs (±5 V, ±15 V) for peripheral devices such as Hamamatsu amplifier units and photon counting units. The C3830 series provides a negative high voltage of -200 V to -1500 V, and the C4720 series a
positive high voltage of +200 V to +1500 V. In either model, the high voltage output is accurately displayed in four digits on the digital panel meter.
TACCF0080
Specifications
Parameter
High Voltage Power Supply Section
C3830/C3830-22 -200 V to -1500 V (Variable)
C4720/C4720-22 +200 V to +1500 V (Variable)
1 mA
Maximum Output Current
±0.005 %
Line Regulation Against ±10 % Line Voltage Change AB Typ.
±0.01 %
Load Regulation Against 0 % to 100 % Load Change A Typ.
0.005 %
Ripple/Noise (p-p) AB
Typ.
±0.03 %/h
Typ.
Drift AB
±0.03 %/°C
Typ.
Temperature Coefficient AB
4-digit display
High Voltage Output Monitor
±0.5 %
High Voltage Output Monitoring Accuracy A Typ.
Output Voltage
Output Receptacle
C3830/C4720
C3830-22/C4720-22
C3830/C4720
AC Input Voltage
C3830-22/C4720-22
Max.
Power Consumption AB
Operating Ambient Temperature/Humidity ABC
Specification Guaranteed Temperature/Humidity ABC
Storage Temperature/Humidity C
Weight
C3830/C4720
CE Marking
C3830-22/C4720-22
Low Voltage Power Supply Section
±5 V Power Supply Section ±15 V Power Supply Section
±4.75 V to ±5.25 V (fixed)
±14.25 V to ±15.75 V (fixed)
500 mA
200 mA
±0.005 %
±0.015 %
±0.5 %
±0.5 %
0.16 %
0.06 %
±0.05 %/h
±0.05 %/h
±0.03 %/°C
±0.03 %/°C
—
—
—
—
Two 4-pin receptacles
One 4-pin receptacle
One SHV receptacle
(MIYAMA MC-032)
(HIROSE SR30-10R-4S)
One SHV receptacle
Two 6-pin DIN connectors (HOSHIDEN TCS0260-01-1201)
100 V / 120 V (±10 %) (50/60 Hz)
230 V (±10 %) (50/60 Hz)
Approx. 40 V·A
0 °C to +40 °C / 90 % RH Max.
+5 °C to +35 °C / 85 % RH Max.
-20 °C to +50 °C / 95 % RH Max.
Approx. 2.8 kg
—
Conforms to EMC directive (89/336/EEC)/EN61326: 1997 + A1: 1998 + A2: 2001 Class B
Conforms to low voltage directive (73/223/EEC)/EN61010-1: 2001
NOTE: AAt maximum output voltage. BAt maximum output current. CNo condensation.
Accessories
1High voltage output cable (1.5 m long) terminated with SHV-P plugs E1168-17 .........................................................1
2Spare fuses ..................................................................................................................................................................2
3Low voltage power supply section mating plugs
C3830/C4720; ±5 V mating plugs (HIROSE SR30-10PE-4P) .....................................................................................2
±15 V mating plugs (MIYAMA MC-032)
.................................................................................................1
C3830-22/C4720-22; ±5 V, ±15 V mating plugs (6-pin DIN plgus, HOSIDEN TCP0566-71-5201) ............................2
4AC line Cable (2 m) .....................................................................................................................................................1
Dimensional Outlines (Unit: mm)
269
Low voltage cable (sold separately)
*Between C3830/C4720 and following product
Product
Low Voltage Cable
C7319
E1168-24
C9744, C9663, C6438
E1168-25
230
255
HV-POWER SUPPLY
HV ADJ
VOLTAGE
54
HV OUT
62
POWER
*Between C3830-22/C4720-22 and following product
Product
Low Voltage Cable
C9744, C9663, C7319, C6438 E1168-26
TACCA0016EC
99
High Voltage Power Supplies
Bench-Top High Voltage Power Supply C4840 (±3 kV Output)
The C4840 series are highly regulated, bench-top power supply that provides high output voltage up to ±3 kV/10 mA. The LED panel meter on the
front panel allows easy and precise voltage monitoring. The C4840 is ideally suited for operating photomultiplier tubes or proportional counter tubes.
TACCF0188
Specifications
Parameter
Output Voltage
Specification Guaranteed Output Voltage
Maximum Output Current
Line Regulation Against ±10 % Line Voltage Change AB Max.
Load Regulation Against 0 % to 100 % Load Change A Max.
Max.
Ripple/Noise (p-p) AB
Max.
Drift (after 1 h Warm-up) AB
Max.
Temperature Coefficient AB
Output Voltage Monitor
Max.
Output Voltage Monitoring Accuracy A
Protection Circuit
C4840-01
AC Input Voltage
C4840-02
Power Consumption AB
Operating Ambient Temperature/Humidity C
Specification Guaranteed Temperature/Humidity ABC
Storage Temperature/Humidity C
Output Receptacles
Weight
CE Marking
NOTE: AAt maximum output voltage.
Value/Description
0 V to ±3000 V
±250 V to ±3000 V
10 mA
±(0.005 % + 10 mV)
±(0.01 % + 50 mV)
0.0007 %
±(0.02 % + 10 mV)/8 h
±0.01 %/°C
4-digit digital meter
±(0.1 % ± 3 V)
For short circuit and excess output current
120 V (±10 %) (50/60 Hz)
230 V (±10 %) (50/60 Hz)
Approx. 100 V·A
0 °C to +40 °C / 80 % RH Max.
+5 °C to +35 °C / 80 % RH Max.
-20 °C to +50 °C / 85 % RH Max.
Two SHV receptacles
10 kg
Conforms to EMC directive (89/336/EEC)/EN61326: 1997 + A1: 1998 + A2: 2001 Class B
Conforms to low voltage directive (73/223/EEC)/EN61010-1: 2001
BAt maximum output current.
CNo condensation
Accessories
1AC line cable (2.4 m long) .....................................................................................................1
2High voltage output cable (1.5 m long) terminated with SHV-P plugs E1168-19 .................1
3Spare fuses ...........................................................................................................................1
43P/2P connector AC adapter (C4840-01 only) .....................................................................1
Dimensional Outlines (Unit: mm)
135 ± 1
245 ± 1
24
385 ± 1
V
10
MODEL C4840 HIGH VOLTAGE POWER SUPPLY
100
FRONT VIEW
SIDE VIEW
REAR VIEW
TACCA0256EB
Thermoelectric Coolers
Photomultiplier Tube Dark Current and Cooling Effect
Causes of Dark Current
Thermal electron Emission and Cooling Effect
A small amount of current flows in a photomultiplier tube operated at a high voltage even when no light enters it. This output current is called the dark current. Since the dark current
degrades the S/N ratio, it is the factor that determines the
lower limit of detection when the output current is extremely
low such as in low-level-light measurement. Major causes of
the dark current can be classified into the seven described
below. The extent to which each of these causes affects the
dark current depends on the type of photomultiplier tube and
varies from tube to tube or according to operating conditions.
Specific Causes
1 Thermionic emission of electrons from the photocathode
and dynode surfaces
2 Leakage current between electrodes and lead pins
(Mainly due to impurities on the electrode supporting materials,
glass stem, plastic base surfaces and on the socket surface)
3 Ion current flowing as a result of ionization of residual gases inside the bulb
4 Photoelectron emission caused by internal electrons and
ions colliding with the electrode support materials and glass
5 Photoelectron emission by the glass scintillation as a result
of gamma rays emitted from radioactive elements (chiefly
40K) inside the bulb
6 Photoelectron emission caused by Cherenkov radiation
due to cosmic ray passing through the glass
7 Field emission of electrons from the photocathode and dynode surfaces
Figure 23 shows the relationship between the voltage supplied across the photomultiplier tube cathode and anode, and
the anode dark current. This characteristic curve can be divided into three regions. In the low-voltage region a, the major
cause of dark current is the leakage current 2 and in the
high-voltage region c, 3, 4, and 7 become the governing
factors that determine the dark current. In contrast, in region
b which approximates actual operating conditions, thermal
electron emission is predominant. From this behavior, it can
be seen that cooling the photocathode and dynodes would be
very effective in reducing the dark current when the photomultiplier tube is operated at the normal voltage range.
Figure 24 shows a comparison of the temperature characteristics of dark current for various photocathode materials used
in photomultiplier tubes of the same configuration and dynode
structure. From this figure, it is clear that photocathodes with
higher sensitivity at longer wavelengths (multialkali and Ag-OCs) exhibit larger dark currents as the temperature increases.
In other words, the cooling effect on the dark current and S/N
ratio is more remarkable in such photocathodes. In this figure,
the cooling effect is limited in the region below -20 °C to -30
°C, due to the fact that contribution of factors other than thermionic emission becomes relatively large in this region. In
photon counting applications, since the leakage current can
be ignored, greater cooling effect can be achieved.
Thermal electrons are emitted not only from the photocathode
but also from the dynodes. However, thermal electrons emitted from the latter dynodes multiply less, and therefore the
real problems are electrons from the photocathode and the
first or second dynode. Cooling these portions can considerably reduce the dark current.
Figure 24: Dark Current vs. Temperature for Various photocathodes
10-5
TPMOB0065EC
ANODE DARK CURRENT (A)
10-6
R316
(HEAD-ON TYPE, Ag-O-Cs)
10-7
10-8
R374
(HEAD-ON TYPE,
MULTIALKALI)
10-9
10-10
10-11
10-12
R3550A
(HEAD-ON TYPE,
LOW-NOISE BIALKALI)
R6095
(HEAD-ON TYPE, BIALKALI)
10-13
-60
-40
-20
0
20
40
TEMPERATURE (°C)
Figure 23: Dark Current vs. Supply Voltage
TPMOB0064EA
10-5
c
ANODE DARK CURRENT (A)
ANODE SIGNAL OUTPUT (A)
10-6
SIGNAL OUTPUT
Selection Guide
10-7
Type No.
b
10-8
DARK
CURRENT
10-9
a
IDEAL LINE BY
THERMIONIC
EMISSION ONLY
10-10
10-11
200
300
500
1000
C4877 Series
C4878 Series
C9143
C9144
Applicable PMTs
28 mm (1-1/8"), 38 mm (1-1/2") and
51 mm (2") Head-on
MCP-PMT (R3809U-50 series)
28 mm (1-1/8") Side-on
28 mm (1-1/8") Side-on
1500 2000
SUPPLY VOLTAGE (V)
101
Thermoelectric Coolers
High Performance Thermoelectric Coolers C4877, C4878 Series
The C4877 series and C4878 series are thermoelectric coolers constructed
with enhanced electrostatic and magnetic shielding (C4877 Series). This
minimizes the influence of external noise on the photomultiplier tube and
thus significantly improves photometric accuracy. These coolers offer userfriendly functions such as easy temperature control and pilot lamp blanking.
The C4877 series is designed for use with 51 mm (2"), 38 mm (1-1/2") or 28
mm (1-1/8") diameter head-on photomultiplier tubes, and the C4878 series
for MCP-PMTs.
Features
Left: C4877 Power Supply
Right: C4877 Cooled PMT Housing
TACCF0161
● Thermoelectric cooling using peltier module
● About -30 °C cooling temperature (with +20 °C cooling water)
● Evacuated, double-pane window with heater for frost prevention
● Built-in electrostatic and magnetic shielding (C4877 Series)
● Water shut-off protection to guard the peltier module
● Stable operation due to a regulated power supply
Specifications
[Cooled PMT Housing]
Parameter
Cooling
Heat Exchange Medium
Amount of Cooling Water
Cooling Temperature (with cooling water at +20 °C)
Temperature Controllable Range (with cooling water at +20 °C)
Cooling Time
Optical Window Material
C4877 Series
Applicable PMTs (Optional)
C4878 Series
C4877 Series
Applicable Socket Assembly
C4878 Series
or PMT Holder (Optional)
Operating Ambient Temperature B
Storage Temperature B
Weight
NOTE: ASee P.103
Value/Description
Thermoelectric cooling using peltier module
Water
1 L/min to 3 L/min
Approx. -30 °C
-30 °C to 0 °C (continuously adjustable)
Approx. 120 min
Evacuated double-pane synthetic silica window with heater
28 mm (1-1/8") Dia., 38 mm (1-1/2") Dia. and 51 mm (2") Dia. Head-on
MCP-PMT (R3809U-50 Series)
E2762 Series A
E3059-500 (R3809U-50 Series)
0 °C to +40 °C
0 °C to +40 °C
C4877 5.8 kg / C4878 5.5 kg
BNo condensation
[Power Supply]
Parameter
C4877, C4878
C4877-01, C4878-01
AC Input Voltage
C4877-02, C4878-02
Power Consumption
Output Voltage
Output Current
Protection Circuit
Operating Ambient Temperature B
Storage Temperature B
Weight
Value/Description
100 V ± 10 V (50 Hz/60 Hz)
120 V ± 12 V (50 Hz/60 Hz)
230 V ± 23 V (50 Hz/60 Hz)
270 V·A
28 V
4.3 A
Functions against cooling water suspension and over current/short circuit
0 °C to +40 °C
0 °C to +40 °C
8.5 kg
NOTE: BNo condensation
[Components and Accessories]
●Cooled PMT housing (Including an input window) ●Power supply ●Light shield cap
●Spare fuse ●Water hose clamps
●Connection cable (1.5 m) ●AC line cable (2.5 m: -02 type, 2 m: other types)
* To operate C4877 and C4878, water hoses with an inner diameter of 15 mm are required.
**
C4877-02 and C4878-02 conform to the EMC directive (89/336/EEC) and the LVD (73/223/EEC) of the European Union.
102
Spectral Transmission Characteristics of Optical Window
Cooling Characteristics
-10
COOLING WATER
: +20 °C
AMBIENT TEMPERATURE : +20 °C
+20
+10
0
-10
-20
-30
-40
0
20
40
60
80
100
100
TACCB0036EA
80
-20
-30
-40
60
40
20
-50
120
TACCB0035EA
TRANSMITTANCE (%)
TACCB0034EA
COOLING TEMPERATURE (°C)
COOLING TEMPERATURE (°C)
+30
TIME (min)
0
+10
+20
0
100 200
+30
400
COOLING WATER TEMPERATURE (°C)
600
800
1000
1200
WAVELENGTH (nm)
Dimensional Outlines (Unit: mm)
160
30
215
200
8
275
35
200
16
104±1.5
180
126
POWER SUPPLY
140
HOUSING
140
205
302
30
35 MAX.
50 +2
-0
61.5
8
6-M3 THREAD
8
6-M3 THREAD
S-100 O-RING
S-100 O-RING
PMT
52
86
95
100
130
52
95
100
130
86
12
12
0
0
PMT
EVACUATED WINDOW
EVACUATED WINDOW
WINDOW FLANGE
WINDOW FLANGE
HOUSING
FRONT PANEL
WINDOW FLANGE
(C4877 Series)
HOUSING
FRONT PANEL
WINDOW FLANGE
(C4878 Series)
TACCA0172EB
TACCA0173EB
Sold Separately (Unit: mm)
Socket Assemblies for C4877 Series
E2762 Series
222 ± 2
SIGNAL OUTPUT: BNC CONNECTOR
-HV: SHV CONNECTOR
HOUSING (INSULATOR)
35 MAX.
-HV
: SHV CONNECTOR
192
73
67.2 ± 0.2
69
106
73
60
13
119
SIGNAL OUTPUT
: SMA CONNECTOR
R3809U
-50
85 ±
69
SOCKET
MCP-PMT Holder for C4878 Series
E3059-500 (For R3809U-50 Series)
5
119
L
35 MAX.
HOUSING (METAL)
HOUSING (INSULATOR)
HIGH VOLTAGE CONTACT RING
TACCA0130ED
L: E2762-502...133.5
E2762-506...144.5
E2762-509...106.5
NOTE: A
E2762-510...106.5
E2762-511...120.5
E2762-513...120.5
E2762 Series
E2762-502
E2762-506
E2762-509
E2762-510
E2762-511
E2762-513
* The high voltage contact ring
is used for internal electrical
connection to the magnetic
shield case in the cooler.
PMT
R1767, R980, R1387, R2066
R943-02, R3310-02
R464, R585, R649
R329-02, R331-05, R2257
R316-02, R374, R2228, R5929, R6249
R375, R669
HOUSING (METAL)
N2 GAS INLET
TACCA0133EC
103
Thermoelectric Coolers
High Performance Thermoelectric Coolers for 28 mm Dia. Side-on PMTs C9143, C9144 Series
The C9143 and the C9144 are thermoelectric coolers designed for 28mm diameter side-on photomultiplier tubes (PMT). The C9143 and the C9144 improve S/N (signal to noise ratio) of PMT measurement because of reduction
of thermal electrons, which are emitted from PMT photocathode, and minimization of external noise by a built-in electrostatic and magnetic shield. The
C9143 and the C9144 can communicate with a PC via an RS-232C serial interface. It enables the PC to control the cooling temperature, high voltage
output of C9145 (optionally available socket assembly with a built in Cockcloft-Wolton high voltage power supply) and ±5 V power supply for external
equipment. The C9143 and the C9144 use water and forced air respectively
to exchange heat of the thermoelectric cooler (Peltier module).
Features
▲Left: Controller for C9144 and C9143
Center: C9144 and socket assembly C9145
Right: C9143 and socket assembly E9146
Specifications
● Thermoelectric cooling using peltier module
● Built-in electrostatic and magnetic shield
● Protective function for peltier module in case of suspension
of water flow or fan operation
● Low voltage output for driving C9145 (sold separately)
● Control and monitor function of high voltage output of C9145
● ±5 V output for external equipment
● Built-in interface for controlling external equipment (D-Sub)
● PMT temperature control by PC
[Cooled PMT Housing]
Parameter
C9144/-01/-02 A
C9143/-01/-02 A
Cooling Method
Thermoelectric cooling using peltier module
Water
Forced air
Heat Exchange Medium
Approx. -30 B (with cooling water of +20 °C) Approx. -25 C (with ambient temperature of +25 °C)
Cooling Temperature
-30
Maximum Cooling Temperature
Approx. 70
Approx. 90
Time to Stable Cooling Temperature
Synthetic silica (185 nm to 2200 nm)
Optical Window Material
8 × 24
Light Input Aperture Dimension
28 mm Dia. Side-on Type
Applicable PMTs (sold separately)
Applicable Socket Assembly (sold separately)
C9145 (DP-type), E9146 (D-type)
+5 °C to +40 °C / 75 % RH Max.
+5 °C to +35 °C / 75 % RH Max.
Operating Ambient Temperature/Humidity D
Storage Temperature/Humidity D
-20 °C to +50 °C / 85 % RH Max.
Approx. 1
Approx. 1.7
Weight
Easy operation
Law infuluence by ambient temperature
Feature
Unit
—
—
°C
°C
min
—
mm
—
—
—
—
kg
—
NOTE: AC9143/C9144: For AC 100 V operation. C9143-01/C9144-01: For AC 120 V operation. C9143-02/C9144-02: For AC 230 V operation.
BC9143
achieves cooling temperature of approx. -30 °C with water temperature of +20 °C. If the water temperature is higher, the possible lowest cooling temperature becomes higher (Note: Maximum cooling temperature is -30 °C).
CC9144 achieves cooling temperature of approx. -25 °C with ambient
temperature of +25 °C. If the ambient temperature is higher, the possible lowest cooling temperature becomes higher. If the ambient temperature is
lower, the possible lowest cooling temperature becomes lower (Note: Maximum cooling temperature is -30 °C).
DNo condensation
[Controller]
Parameter
AC Input Voltage
Maximum Power Consumption
Temperature Controllable Range
Protective Functions
Power Supply Unit for
External Equipment
Control Interface
Output Voltage
Output Current
Connector
DI (Input)
DO (Output)
Serial Interface
Operating Temperature / Humidiy C
Storage Temperature / Humidity C
Weight
Value/Description
100 to 240 (±10 %) (50 Hz / 60Hz)
120
-30 to -5 (0.5 °C step) D
Protection for peltier module in case of suspension of water flow
or Fan operation, protection in case of over current / short circuit
±5 (±0.25)
0.5
HIROSE SR30-10R-4S
4 bit (TTL input)
4 bit (TTL open collector output)
RS-232C, 9600 bps
+5 °C to +40°C / 75 % RH Max.
-20 °C to +50°C / 85 % RH Max.
Approx. 4
Unit
V
V·A
°C
—
V
A
—
—
—
—
—
kg
NOTE: CNo condensation
DPMT temperature may not achieve set up cooling temperature controlled by the operator if ambient temperature
and/or water temperature is high. The cooling temperature is controlled on personal computer.
[Components and Accessories]
●Cooled PMT housing ●Controller ●Light shield cap ●AC line cable (2.5 m: -02 type, 2 m: other types) ●Connection cable
(1.5 m) between cooled PMT housing and controller ●Serial communication cable (RS-232C crossing cable 1.5 m) ●D-Sub 15
pin connecter plug ●Cable terminated with a ±5 V plug (1.5 m, one end unterminated) ●CD-R (Instruction manual, sample
software for control of cooling temperature and C9145 voltage) ●Spare fuses (2 pcs)
* To operate C9143, water hoses with an outer diameter of 6 mm and an inner diameter of 4 mm are required.
**
C9143 series and C9144 series conform to the EMC directive (89/336/EEC) and the LVD (73/223/EEC) of the European Union.
104
Cooling Characteristics
30
●C9144
TACCB0069EA
COOLING WATER: +20 °C
AMBIENT TEMPERATURE: +25 °C
COOLING TEMPERATURE (°C)
20
10
0
-10
-20
-30
-40
0
10
20
30
40
50
60
70
80
90
TACCB0070EA
30
AMBIENT TEMPERATURE: +25 °C
20
COOLING TEMPERATURE (°C)
●C9143
10
0
-10
-20
-30
-40
100 110 120
0
10
20
30
40
50
60
70
80
90
100 110 120
2-M3 L=5
(SCREW)
(2-M3 L=5)
(SCREW)
TIME (min)
TIME (min)
Dimensional Outlines (Unit: mm)
●C9144
(60)
80
60
4-M3 L=5 (SCREW)
50
7.5
72
50
60
●C9143
7.5
40
LIGHT SHIELD CAP
6
93
TOP VIEW
50
LIGHT SHIELD CAP
C9145 (sold separately)
BOTTOM VIEW
C9145 (sold separately)
32
21
32
PHOTOMULTIPLIER COOLER
C9143
73.9
TOP VIEW
50
CONNECTOR FOR
POWER INPUT
26
4.5
40
BOTTOM VIEW
PHOTOMULTIPLIER COOLER
C9144
26
INPUT
56
WATER
105
30
100
M56 P=0.75
(FOR INPUT OPTICAL SYSTEM)
FRONT VIEW
SIDE VIEW
3.6
5
19
24
3.6
8
CONNECTOR FOR
POWER INPUT
132
24
132
20
56
24
INPUT
8
102
COOLING WATER IN/OUT
Plastic hose attachment port with OD6 and ID4
FRONT VIEW
REAR VIEW
5
155
21
M56 P=0.75
(FOR INPUT OPTICAL SYSTEM)
SIDE VIEW
REAR VIEW
TACCA0253EB
TACCA0254EB
●CONTROLLER
ALARM
READY
EXT
EXT POWER OUT
POWER
ON
RS232C
I/O
HV ADJ
TO C9145
OFF
L
±5 V
121
130
H
MONITOR
OUTPUT
+
–
POWER
FUSE
T4AL 250V
LINE IN
100 V–240 V ~
50 Hz–60 Hz 120V·A
PHOTOMULTIPLIER COOLER
195
295
SIDE VIEW
FRONT VIEW
REAR VIEW
TACCA0255JA
Sold Separately (Unit: mm)
●C9146 (D Type)
HOUSING (METAL)
-HV CONTROL
HR10A-7R-6S, HRS
SOCKET
E678-11M
50.0 ± 0.5
43.8
35.0 ± 0.5
HOUSING
(INSULATOR)
27
34
3
59.0 ± 0.5
4-M3 L=14
(SCREW)
SIGNAL OUTPUT
BNC CONNECTOR
1: HV MONITOR
2: Vref OUTPUT
3: HV CONTROL
4: LOW VOLTAGE INPUT (+)
5: GND
6: LOW VOLTAGE INPUT (-)
-HV
CONT
SIG
34
2
5
16
43.8
50.0 ± 0.5
SPACER (INSULATOR)
HOUSING (METAL)
HOUSING
(INSULATOR)
SOCKET
E678-11M
-HV
SHV CONNECTOR
50.0 ± 0.5
43.8
SPACER (INSULATOR)
35.0 ± 0.5
●C9145 (DP Type)
27
34
3
59.0 ± 0.5
4-M3 L=14
(SCREW)
-HV
SIG
SIGNAL
OUTPUT
BNC CONNECTOR
43.8
50.0 ± 0.5
HR10A-7P-6P, HRS
SHIELD CABLE
4.3
POWER SUPPLY CABLE ASSEMBLY (SUPPLIED)
HR10A-7P-6P, HRS
TO C9143
or C9144
TO C9145
1500
CONNECTOR BODY
1:
2:
3:
4:
5:
6:
HV MONITOR
Vref OUTPUT
HV CONTROL
LOW VOLTAGE INPUT (+)
GND
LOW VOLTAGE INPUT (-)
CONNECTOR BODY
105
Magnetic Shield Cases
Magnetic Shield Cases E989 Series
Photomultiplier tubes are extremely sensitive to magnetic fields and exhibit
output variations even from sources such as terrestrial magnetism.
Hamamatsu E989 series magnetic shield cases are designed specifically
to protect photomultiplier tubes from the influence of such magnetic fields.
The E989 series uses permalloy, a material that has an extremely high permeability (approximately 105). The magnetic field intensity within the shield
case can be attenuated from 1/1000 to 1/10000 of that outside the shield
case (this ratio is called the shielding factor). The E989 series ensures a
stable output for photomultiplier tubes operating in proximity to magnetic
fields.
Features
TACCF0093
● Made of high-permeability permalloy (Ni: 78 %, Fe and others: 22 %)
● Various sizes available with inner diameters from 12 mm to 138 mm
● Lusterless black paint finish
Specifications
Photomultiplier Tube Diameter
13 mm (1/2")
Side-on
28 mm (1-1/8") *
10 mm (3/8")
13 mm (1/2")
19 mm (3/4")
25 mm (1")
28 mm (1-1/8")
Head-on
38 mm (1-1/2")
51 mm (2")
76 mm (3")
127 mm (5")
Internal Dia. D ( mm) Thickness t (mm) Length L (mm)
47 ± 0.5
14.5
0.5
80 ± 1
33.6 ± 0.8
0.8
48 ± 0.5
12 ± 0.5
0.5
75 ± 0.5
16 ± 0.5
0.8
95 ± 1
23 ± 0.5
0.8
48 ± 0.5
29 ± 0.5
0.8
120 ± 1
32 ± 0.5
0.8
100 ± 1
44 +1
0.8
-0
130 ± 1
60 +1
0.8
-0
+1.5
120 ± 1
80 -0
0.8
170 ± 1
138 ± 1.5
0.8
Type No.
E989-10
E989
E989-28
E989-09
E989-02
E989-39
E989-03
E989-04
E989-05
E989-15
E989-26
Weight (g)
10
66
9
28
50
32
90
102
180
200
600
* Photomultiplier tubes with HA coating extending to the base portion cannot be used. Please consult our sales offices for details.
Dimensional Outlines (Unit: mm)
E989
E989-02 to -05, -09*, -39*
120°
E989-10
E989-15
E989-26
12
22.0 ± 0.3
°
90
°
90
120°
E989-28
3-No.5
40UNC
0°
18.0 ± 0.1
2- 2.3
6
10
40
5
°
90
0.5
90
14.5
°
12
0°
12
0°
12
0°
12
0°
± 0.
R35.0
D
33.6 ± 0.8
12
5
t
0.8
80.0+1.5
-0
12.0 ± 0.5
0°
138.0 ± 1.5
0.8
0.5
0.8
48.0 ± 0.5
10
0.5
1
°
170 ± 1
50
23
26
4- 4
3.5
37
*3-
5
3-M2.6
45
120 ± 1
80 ± 1
L
24
47.0 ± 0.5
8
60.0 ± 1.5
10
10
10
68.0 ± 1.5
* No
mounting hole is provided for
E989-09 and E989-39.
TACCA0117EB
106
TACCA0118EA
TACCA0119EC
TACCA0120EC
TACCA0121EC
TACCA0122EC
Housings, Power and Signal Cables, Connector Adapters
Housing E1341-01 (For E5859 series socket assemblies)
The E1341-01 is a metal housing designed for 51 mm (2") diameter head-on
photomultiplier tubes operated at room temperature. The E1341-01 ensures
complete light-shielding and also accommodates a magnetic shield case
E989-62 (sold separately).
The E1341-01 housing can be easily attached to a monochromator by preparing a simple adapter.
TACCF0177
MOUNT FLANGE (SUPPLIED)
3
7
8
70
M61 P=0.75
10
M61 P=0.75
CUSHION
M61 P=0.75
4-M2, L=8
(HEX SCREW)
183.0 ± 0.5
52
3
70
61.35
69
CAP (SUPPLIED)
MOUNT RING
83
2
70
Dimensional Outlines (Unit: mm)
4-M3.2
GND TERMINAL
O-RING
TACCA0228EB
Power and Signal Cables E1168 Series, Connector Adapters A4184 Series
Hamamatsu offers the E1168 series cables for connection of photomultiplier
tube assemblies and their accessories. A variety of cables are available, for
handling high voltage, low voltage and signals.
In addition, Hamamatsu also provides the A4184 series connector adapters
designed for SHV/MHV connector conversion.
Dimensional Outlines (Unit: mm)
1500
E1168 Series
MHV-P
MHV-P
TACCA0141EA
300
A5026 Series
TACCF0153
SMA-P
Selection Guide
Cable Type Cable Diameter Maximum Voltage Connector Types
MHV-P—MHV-P
RG-59B/U
MHV-P—SHV-P
6.2 mm
2.3 kV
(Red)
SHV-P—SHV-P
MHV-P—MHV-P
Custom
6.15 mm
High Voltage
SHV-P—SHV-P
5 kV
Cable (Red) ±0.3 mm
MHV-P—SHV-P
● For Low Voltage
Type No.
E1168-13
E1168-14
E1168-24
E1168-25
E1168-26
Cable Type
MVVS 3 × 0.3
MVVS 2 × 0.3
Multiconductor
Cable with Shield
TACCA0052EA
● For Signal
● For High Voltage
Type No.
E1168
E1168-10
E1168-17
E1168-18
E1168-19
E1168-20
SMA-P
Connector Types
MC-032—MC-032
SR30-10PQ-4P—SR30-10PQ-4P
MC-032—DIN6P Plug
SR30-10PQ-4P—DIN6P Plug
DIN6P Plug—DIN6P Plug
Cable Type
Type No.
E1168-01
3D-2V
E1168-02
3C-2V
E1168-03
3D-2V
E1168-05
A5026
SPECIAL
A5026-01 COAXIAL CABLE
Impedance
50 Ω
75 Ω
50 Ω
50 Ω
Connector Types
N-P—N-P
N-P—BNC-P
BNC-P—BNC-P
BNC-P—BNC-P
SMA-P—SMA-P
SMA-P—SMA-J
● Connector Adapters
Type No.
A4184-02
A4184-03
Connector Types
MHV Plug—SHV Jack
SHV Plug—MHV Jack
● Relay Adapters
Type No.
A5074
A7992
Connector Types
SHV Jack—SHV Jack
BNC Jack—BNC Jack
107
Related Products for Photon Counting
Photon Counting Unit C9744
This photon counting unit contain an amplifier and discriminator to convert
the single photoelectric pulses from a photomultiplier tube into a 5 V digital
signal.
The C9744 has an output linearity up to 1 × 107 S-1, and a high-speed counter
is not required when set to division by 10.
▲C9744
TACCF0195
Specifications
Parameter
Input Impedance
Discrimination Level (input conversion)
PMT Gain
Prescaler
Count Linearity
Pulse-pair Resolution
Output Pulse
Output Pulse Width
Supply Voltage
Input
Connector
Output
Power
Dimensions
Operating Ambient Temperature A
Storage Temperature A
Weight
C9744
50
-0.4 to -16
3 × 106
÷1
4 × 106
25
CMOS 5 V, POSITIVE LOGIC
10
Depends on count rate
+5.0 ± 0.2 V, 130 mA / -5.0 ± 0.2 V, 50 mA
BNC-R
BNC-R
DIN (6-pin) B
90 × 3.5 × 140
0 to +50
-15 to +60
Approx. 250
NOTE: ANo condensation
BSupplied with a cable (1.5 m) attached to the mating plug.
Dimensional Outlines
C9744
(Unit: mm)
+1.0
DISCRI
POWER
90 - 0
MONITOR
(–)
(+)
+1.0
INPUT
PRESCALER OUTOPUT
÷1
÷10
140 - 0
PHOTON COUNTING UNIT C9744
DIN TYPE (6 PIN)
TPHOA0002EB
108
÷10
1 × 107
10
Unit
Ω
mV
—
—
s-1
ns
—
ns
—
—
—
—
mm
°C
°C
g
Counting Board M9003 / Counting Unit C8855
▲M9003
▲C8855
The M9003 and the C8855 can be used as a photon counter when cambined with a photon counting head, etc. The M9003 and the
C8855 have two counter circuits (double counter method) which enable the user to count signal without dead time.
The M9003 does not have its own memory so it sends measurement data directly to the PC's main memory by DMA (direct
memory access) transfer.
The C8855 has a USB interface to allow users to operate it at various fields by connecting to a notebook personal computer. When
used with a photon counting head, the C8855 supplies power (+5 V / 200 mA) necessary to operate the photon counting head.
Specifications
M9003
Parameter
Number of Channels
Input
Signal Input Level
Section Signal Pulse Width
Input Impedance (Switchable)
Counter Method
Maximum Count Rate
Counter
Maximum Count
Capacity
Gate Section Gate Time Resolution
Trigger Signal Input Method
Trigger Signal Level
Trigger
Trigger Signal Pulse Width
Trigger Signal Output Timing
Input Signal
General
Input Strobe Signal
Input/
Output Signal
Output
Output Strobe Signal
Compatible OS
Bus Format
Data Transfer Method
Data Transfer Quantity
C8855
Description / Value
2
TTL positive logic
8 ns or more
50 Ω (at SW ON), 100 kΩ (at SW OFF)
Gate mode A / Reciprocal mode B
50 MHz (gate mode) / 20 MHz (reciprocal mode)
28 / 216 counts (gate mode) /
231 counts (reciprocal mode)
50 ns to 12.7 µs
External trigger / Software trigger
TTL negative logic
1 µs or more
At start of counting by software trigger
TTL level signal (7 bits)
TTL level signal
Open collector (8 bits)
Open collector
Microsoft Windows® 2000 / XP Pro
PCI bus interface; conforms to Rev 2.1.
DMA transfer (scatter-gather method)
Maximum 64 Mbytes
(data quantity transferable by one DMA.)
40 Mbytes/sec (depends on CPU and peripherals)
PCI standard (half size)
Approx. 150 g
Data Transfer Rate
Board Size
Weight
Operating Ambient
+5 °C to +45 °C / Below 80 %
Temperature / Humidity C
Storage Temperature / Humidity C
0 °C to +45 °C / Below 85 %
CE
Conforms to EMC directives (89 / 336 / EEC)
NOTE: AGate counter mode counts the input signal pulses only
during each specified gate time.
BReciprocal counter mode counts the number of internal clock
pulses generated between input signal pulses.
CNo condensation
Supplied: CD-R (containing instruction manual, device drivers, sample
software), Signal cables E1168-22 × 4 (LEMO-BNC: coaxial 1.5 m),
Flat cable plug TXA20A-26PH1-D2P1-D1 (manufactured by JAE)
Parameter
Description / Value
Number of Input Signals
1 ch
Signal Input Level
TTL positive logic
Input
Signal Pulse Width
8 ns or longer
Input Impedance
50 Ω
Counter Method
Double counter method
Counter Max.Count Rate
50 MHz
Max.Counter Capacity
232 counts/counter gate
Counter Counter Gate Mode
Internal counter gate only
Internal Counter Gate Time
Gate
50 µs to 10 s (1, 2, 5 step)
Trigger Method
Software or external trigger
Trigger
External Trigger Signal
TTL negative logic
General Output Section
Open collector / 2 bits
Voltage Output
+5 V / 200 mA Max.
Compatible OS
Windows® 98/98SE/Me/2000/XP Pro
Interface
USB (Ver. 1.1)
+7 V / 500 mA Max.
Supply Voltage
(supplied from accessory AC adapter)
148 mm × 30 mm × 96 mm
Dimensions (W × H × D)
(excluding rubber feet and projecting parts)
Weight
300 g
Operating Ambient Temperature / Humidity A +5 °C to +45 °C / 80 % or less
Storage Temperature / Humidity A
0 °C to +50 °C / 85 % or less
Conforms to the EMC directive (89/336/EEC)
CE Marking
and the low voltage directive (73/23/EEC)
of the European Union.
AC Input
AC
90 V to 264 V
Adapter Output
7 V / 1.6 A
NOTE: ANo condensation
Supplied: CD-ROM (containing instruction manual, device driver, DLL,
sample software*, etc.) USB cable, AC adapter, AC cable,
power output connector.
*: Sample software is configured from Lab VIEW™ of National Instruments, Inc.
109
Electron Multipliers
py and ESCA.
Each type has Cu-BeO dynodes connected by built-in divider
resistors of 1 MΩ per stage. The first dynode can be replaced
by a photocathode of Cs-I, K-Br, and so on for use in VUV
spectroscopy. In applications where the operating vacuum
level is inadequate, the R5150-10 is recommended. In TOFMS applications, the R2362 with mesh dynodes is recommended.
Electron multipliers (also called ion multipliers) are specially
designed for the detection and measurement of electrons,
ions, charged particles, VUV radiation and soft X-rays. Hamamatsu electron multipliers deliver high gain and low noise,
making them ideal for the detection of very small or low energy particles by using the counting method. Especially useful
applications include mass spectroscopy, field ion microscopy
and electron or VUV spectroscopy such as Auger spectrosco-
Dynode
Characteristics
A
Type No.
Outline
Number
of
Stages
Structure
Input
Supply
Material Aperture Voltage
Diameter
(mm)
Gain
Typ.
(V)
Max. Ratings
J
Anode Anode to Anode to
Rise to all Other First
Average Operating
Last
Time Electrode Dynode Dynode Anode
Vacuum
CapaciCurrent
Level
Voltage
Voltage
tance
Typ.
(Pa)
(ns)
(pF)
(V)
(V)
(µA)
Head-on Type
2000
5 × 106
1.7
4.0
3500
350
10
133 × 10-4
20
3450
5×
105
3.5
23
4000
350
10
133 × 10-4
Cu-BeO
8×6
2400
1 × 106
9.3
5.0
4000
350
10
133 × 10-4
Box and Grid
Cu-BeO
8×6
2400
1×
106
9.3
4.0
4000
350
10
133 × 10-4
Box and Grid
Cu-BeO
12 × 10
2400
1 × 106
10
9.0
4000
400
10
133 × 10-4
Cu-BeO
12 × 10
3000
4×
12
9.0
5000
400
10
133 × 10-4
R5150-10
1
R2362
2
23
Mesh
Cu-BeO
R474
3
16
Box and Grid
R515
4
16
R596
6
16
R595
5
Box and Line
17
Box and Grid
20
Cu-BeO
8
Spectral Response (Cu-BeO)
100
107
Gain
TEM B0021EA
1010
TEM B0022ED
R5
74
,R
51
5,
107
96
R5
15
0-1
0
10
R5
95
108
GAIN
106
36
2
R4
QUANTUM EFFICIENCY (%)
109
1
20
40
60
80
100
120
WAVELENGTH (nm)
110
140
160
104
1.0
R2
105
1.5
2.0
2.5
3.0 3.5 4.0 4.55.0
SUPPLY VOLTAGE (kV)
Dimensional Outlines (Unit: mm)
1 R5150-10
2 R2362
OUTPUT PIN (P)
OUTPUT PIN (P)
34.0 ± 0.5
P
P
8.0 ± 0.3
R17
DY17
GND PIN
R16
50.0 ± 0.1
DY23
44.0 ± 0.1
DY22
20
2-3.2
DY14
R13
RESISTORS
60 MAX.
72 ± 1
66.0 ± 0.5
HAMAMATSU
R1 : 3 MΩ
R2 : 1.5 MΩ
R3 to R17 : 1 MΩ
DY6
R8
R7
R6
DY6
30
R4
DY4
20
11 10
R9
DY7
R5
DY5
R5
DY5
R4
DY4
R3
DY3
IC (DY2)
R2
R3
DY3
HV PIN (DY1)
DY2
DY1
R10
DY8
GND PIN
OUTPUT PIN (P)
R2
DY2
HV PIN (DY1)
MOUNTING
PLATE
TEM A0015EB
TEM A0009EC
4 R515
OUTPUT (P)
8
2- 3.2
4
26.0 ± 0.5
GRID
SHIELD (SH)
6
GRID
26.0 ± 0.5
INPUT
WINDOW
R15
DY16
R14
DY15
R13
2- 3.2
DY14
OUTPUT (P) HOLDER
20.0 ± 0.5 INPUT
WINDOW
6
8
20.0 ± 0.5
SHIELD (SH)
3 R474
IC PIN (DY2)
R1
DY1
HV PIN
R1 to R23 : 1 MΩ
R11
DY9
1.5
R6
R1
R12
DY10
R7
HV PIN (DY1)
(3- 1.2)
R13
DY11
DY7
OUTPUT PIN (P)
R14
DY13
DY12
DY8
12
R15
DY14
DY11
R8
GND PIN
R16
DY15
R11
DY9
R17
DY16
DY12
R9
R18
DY17
R12
R10
R19
DY18
INPUT WINDOW
DY13
DY10
R20
DY19
R14
GND PIN
R21
DY20
R15
DY15
SHIELD CASE
R22
DY21
DY16
INPUT WINDOW
R23
4
DY14
R12
R11
DY13
DY12
R10
DY10
R8
DY9
R7
DY12
R10
DY11
79 ± 2
R1 to R15: 1 MΩ
86 MAX.
70 ± 2
90 MAX.
R11
RESISTORS
DY11
R9
R9
R8
DY9
R6
R7
HOLDER
DY7
DY8
R6
R5
DY6
OUTPUT (P)
17.0 ± 0.5
DY7
SHIELD (SH)
R4
DY2 LEAD
R5
DY6
DY5
R4
R3
R2
DY3
R1
DY2
DY2 LEAD
DY1 LEAD
DY1
DY5
DY2 LEAD
21.0 ± 0.5
DY4
DY1 LEAD
R1 to R15 : 1 MΩ
DY10
DY8
SHIELD (SH)
R14
DY15
R13
R12
DY13
RESISTORS
R15
DY16
R3
DY4
R2
2- 3.2
DY3
DY1 LEAD
DY2
DY2 LEAD
DY1
DY1 LEAD
R1
34.0 ± 0.5
OUTPUT (P)
39 MAX.
G
G
TEM A0005EC
6 R595
6.5
SHIELD (SH) PIN
R16
DY16
42.0 ± 0.2
12
GND PIN
2- 4.2
DY16 PIN
OUTPUT PIN (P)
6.5
R15
R16
R15
R12
DY15
R11
DY14
R14
150 MAX.
140 MAX.
131 ± 2
130 MAX.
120 MAX.
111.0 ± 1.5
DY12
DY11
R1 to R16 : 1 MΩ
DY10
R9
DY9
R13
DY13
R12
DY12
RESISTORS
R8
R7
DY10
R6
DY9
SHIELD (SH)
R4
DY7
R7
10.0 ± 0.5
R3
DY3
R2
DY2
R1
DY1
3- 3.5
DY3
G
DY3 PIN
7- 1.5
DY1 PIN
G PIN
DY1
SH
TEM A0007ED
R6
DY6
GND
DY20
DY2 PIN
50.0 ± 0.1
44
30
10.0 ± 0.5
50.0 ± 0.1
44
30
SH
DY8
DY4
P
R8
R5
DY5
DY2
G
R1 to R20 : 1 MΩ
R9
DY7
DY6
DY20
R11
DY11
R10
DY8
GND
R18
DY16
DY13
7- 1.5
DY19
DY17
R13
R10
DY20 PIN
R19
R17
R14
DY14
SHIELD (SH)
SHIELD (SH) PIN
R20
DY20
DY18
DY15
RESISTORS
GND PIN
SHIELD
GRID
OUTPUT PIN (P)
SHIELD
42.0 ± 0.2
12
2- 4.2
INPUT
WINDOW
10
MOUNTING PLATE
INPUT
WINDOW
10
GRID
MOUNTING PLATE
5 R596
TEM A0006ED
R5
DY5
DY2
G
R4
DY4
R3
DY3
P
R2
3- 3.5
DY3
DY1
DY2
R1
DY1
G
DY3 PIN
DY2 PIN
DY1 PIN
G PIN
TEM A0008ED
111
Caution and Warranty
SAFETY PRECAUTIONS
WARNING
HIGH
VOLTAGE
A high voltage is applied to a photomultiplier tube
during operation. Always provide adequate safety
measures to prevent the operator or service personnel from electrical shock and the equipment
from being damaged.
HANDLING PRECAUTIONS
●Handle tubes with extreme care.
Photomultiplier tubes have evacuated glass envelopes.
Allowing the glass to be scratched or subjected to
shock can cause cracks. Take extreme care during
handling, particularly for tubes with graded sealing on
synthetic silica bulbs.
●Keep faceplate and base clean.
Do not touch the faceplate and base with bare hands.
Dirt and grime on the faceplate causes loss of transmittance and dirt or grime on the base may cause ohmic
leakage. If the faceplate becomes soiled wipe it clean
using alcohol.
●Carefully handle tubes with a glass base.
Photomultiplier tubes with a glass base (also called button stem) are less rugged than tubes with a plastic
base, so sufficient care must be taken when handling
this type of tube. When fabricating a voltage-divider circuit by soldering resistors and capacitors to socket
lugs, solder them while the tube is fully inserted into the
socket.
●Helium permeation through silica bulb
Helium will permeate through silica bulbs and increase
noise, leading to damage that makes photomultiplier
tubes unusable. Avoid operating or storing them in an
atmosphere where helium is present.
●Do not expose to strong light.
The photocathode of photomultiplier tubes may be
damaged if exposed to direct sunlight or intense illumination. Never allow strong light to strike the photocathode.
WARRANTY
Hamamatsu photomultiplier tubes and related products are
warranted to the original purchaser for a period of 12
months after delivery. The warranty is limited to repair or
replacement of a defective product due to defects in workmanship or materials used in its manufacture.
However, even if within the warranty period the warranty
shall not apply to failures or damages caused by misoperation, mishandling, modification or accidents such as natural or man-made disasters.
The customer should inspect and test all products as soon
as they are delivered.
ORDERING INFORMATION
This catalog lists photomultiplier tubes and related products currently available from Hamamatsu Photonics.
Please select those products that best match your design
specifications. If you do not find the products you want in
this catalog, feel free to contact our sales office nearest
you. We will modify our current products or design new
types to meet your specific needs.
* Characteristics and specifications in this catalog are subject to change without prior notice due to product improvement or other
factors.
Before you design equipment according to the characteristics and specifications of our products listed in this catalog, please contact us to check the product specifications.
112
Typical Photocathode Spectral Response
Spectral Response
Curve Codes
Photocathode
Materials
Window
Materials
Peak Wavelength
Luminous
(Typ.)
Range
(nm)
(nm)
(mA/W) (nm)
PMT Examples
Q.E.
Radiant Sensitivity
(%)
(nm)
Semitransparent Photocathode
K
100M
Cs-I
MgF2
—
115 to 200
14
140
13
130
R972, R1081, R6835
K
200S
Cs-Te
Syinthetic silica
—
160 to 320
29
240
14
210
R759, R821, R1893, R6834
K
200M
Cs-Te
MgF2
—
115 to 320
29
240
14
200
R1080, R6836
201S
Cs-Te
Syinthetic silica
—
160 to 320
31
240
17
210
R2078
K
400K
Bialkali
Borosilicate
95
300 to 650
88
420
27
390
R329-02, R331-05, R464, R1635, R1924A,
K
400U
Bialkali
UV
95
185 to 650
88
420
27
390
R1584
K
400S
Bialkali
Syinthetic silica
95
160 to 650
88
420
27
390
R2496
K
401K
High temp. bialkali Borosilicate
40
300 to 650
51
375
17
375
R1288A, R1705, R3991A,R4177-01,
R2154-02, R5611A-01, others
R4607-01
K
402K
Low noise bialkali
Borosilicate
40
300 to 650
54
375
18
375
R2557, R3550A, R5610A
430U
Bialkali
UV
50
185 to 650
62
375
20
300
R2693
K
500K(S-20)
Multialkali
Borosilicate
150
300 to 850
64
420
20
375
R550, R649, R1387, R1513, R1617, R1878,
K
500U
Multialkali
UV
150
185 to 850
64
420
25
280
R374, R1463, R2368
K
500S
Multialkali
Syinthetic silica
150
160 to 850
64
420
25
280
R375
K
501K(S-25)
Multialkali
Borosilicate
200
300 to 900
40
600
8
580
R669, R2066, R2228, R2257
K
502K
Multialkali
Borosilicate (prism)
230
300 to 900
69
420
20
390
R5070A, R5929
K
700K(S-1)
Ag-O-Cs
Borosilicate
20
400 to 1200
2.2
800
0.36
740
R5108
R1894, R1925A
Reflection mode Photocathode
K
150M
Cs-I
MgF2
—
115 to 200
25.5
135
26
125
R7511, R8487
K
250S
Cs-Te
Syinthetic silica
—
160 to 320
62
240
37
210
R6354, R7154
K
250M
Cs-Te
MgF2
—
115 to 320
63
220
35
220
R7311, R8486
K
350K(S-4)
Sb-Cs
Borosilicate
40
300 to 650
48
400
15
350
R105, 1P21, 931A
K
350U(S-5)
Sb-Cs
UV
40
185 to 650
48
340
20
280
R212, R3810, R6350, 1P28
K
351U(Extd S-5)
Sb-Cs
UV
70
185 to 750
70
410
25
280
R6925
K
452U
Bialkali
UV
120
185 to 750
90
420
30
260
R3788, R6352
453K
Bialkali
Borosilicate
60
300 to 650
60
400
19
370
931B
456U
Low noise bialkali
UV
60
185 to 680
60
400
19
300
R1527, R4220, R5983, R6353, R7518
550U
Multialkali
UV
150
185 to 850
45
530
15
250
R3811, R6355
552U
Multialkali
UV
200
185 to 900
68
400
26
260
R2949
552S
Multialkali
Syinthetic silica
200
160 to 900
68
400
29
220
R955
555U
Multialkali
UV
525
185 to 900
90
450
30
260
R3896, R9110, R9220
556U
Multialkali
UV
200
185 to 850
80
430
27
280
R4632
561U
Multialkali
UV
200
185 to 830
70
530
24
250
R6358
K
562U
Multialkali
UV
300
185 to 900
76
400
26
260
R928, R5984
K
650U
GaAs(Cs)
UV
550
185 to 930
62
300 to 800
23
300
R636-10
K
650S
GaAs(Cs)
Syinthetic silica
550
160 to 930
62
300 to 800
23
300
R943-02
850U
InGaAs(Cs)
UV
100
185 to 1010
40
400
14
330
R2658
851K
InGaAs(Cs)
Borosilicate
150
300 to 1040
50
400
16
370
R3310-02
K
K
K
K
K: Spectral response curves are shown on page 114, 115
113
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
SEMITRANSPARENT PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS
TRANSMISSION MODE PHOTOCATHODE
100
UM
80
QUANT
60 50 %ICIENCY
EFF
40
400K
25 %
200M
20
10
8
6
4
400U
10 %
5%
2.5 %
1%
401K, 402K
400S
0.5 %
100M
200S
0.25
2
%
0.1 %
1.0
0.8
0.6
0.4
0.2
0.1
100
200
300
400
500 600 700800 1000 1200
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
WAVELENGTH (nm)
114
TRANSMISSION MODE PHOTOCATHODE
100
UM
80
QUANTY
%
0
5
60
NC
EFFICIE
500S
40
500K
25 %
20
502K
500U
10
8
6
4
TPMOB0077EE
10 %
5%
2.5 %
1%
0.5 %
0.25
2
501K
1.0
0.8
0.6
0.4
%
0.1 %
700K
0.2
0.1
100
200
300
400
500 600 700800 1000 1200
WAVELENGTH (nm)
TPMOB0078EG
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
OPAQUE PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS
REFLECTION MODE PHOTOCATHODE
100
UM
80
QUANT
60 50 %ICIENCY
EFF
40
350U
25 %
20
456U
10
8
6
4
10 %
5%
351U
250S
250M
2.5 %
1%
452U
0.5 %
150M
350K
2
0.25
%
0.1
%
1.0
0.8
0.6
0.4
0.2
0.1
100
200
300
400
500 600 700800 1000 1200
PHOTOCATHODE RADIANT SENSITIVITY (mA/W)
WAVELENGTH (nm)
REFLECTION MODE PHOTOCATHODE
100
UM
80
QUANTY
%
0
5
60
NC
EFFICIE
555U
40
%
25
20
10
8
6
4
TPMOB0079EF
10 %
5%
2.5 %
552U
1%
650S
0.5 %
650U
0.25 %
2
851K
1.0
0.8
0.6
0.4
562U
0.1 %
0.2
0.1
100
200
300
400
500 600 700800 1000 1200
WAVELENGTH (nm)
TPMOB0080EI
115
Notes
A Types marked ∗ are newly listed in this catalog.
B See pages 114 and 115 for typical spectral response charts.
C Photocathode materials
BA :
Bialkali
LBA :
Low noise bialkali
HBA :
High temperature bialkali
MA :
Multialkali
EMA :
Extended red multialkali
DIA :
Diamond
Other photocathodes are indicated by the element symbols.
D Window materials
MF :
Q:
K:
U:
MgF2
Quartz (Fused silica or synthetic silica)
Borosilicate glass
UV glass
E Base diagram
BASING DIAGRAM SYMBOLS
All base diagrams show terminals viewed from the base end of the tube.
Each symbol used in basing diagrams signifies the following.
Short (Index)
Pin
DY : Dynode
Pin
key
G(F) : Grid (Focusing electrode)
ACC : Accelerating electrode
K : Photocathode
P : Anode
SH : Shield
IC : Internal connection (Do not use.)
Flying
NC : No connection (Do not use.)
Lead
F Dynode structure
B:
VB :
CC :
L:
B+L:
FM :
CM :
MC :
Box-and-grid
Venetian blind
Circular-cage
Linear-focused
Box and linear-focused
Fine mesh
Coarse mesh
Metal channel
G See page 78 for suitable socket assemblies.
Mating sockets (E678 series)
*: A socket will be supplied with the tube.
No mark: Sockets may be obtained from electronics supply houses
or our sales office.
H Operating ambient temperature range for the photomultiplier itself
is -30 °C to +50 °C except for some types of tubes.
However, when photomultiplier tubes are operated below -30 °C at
their base section, please consult us in advance.
J Averaged over any interval of 30 seconds maximum.
K Measured at the peak sensitivity wavelength.
L See page 62 for voltage distribution ratio.
M Anode characteristics are measured with the supply voltage and
voltage distribution ratio specified by Note L.
Cathode and anode characteristics are measured under the following
conditions if noted.
a at 122 nm
b at 254 nm
c at 852 nm
d Measured using a red filter Toshiba IR-D80A
e at 4 A/lm
f at 10 A/lm
g at 1000 A/lm
h Dark count per second (s-1)
j Dark count per second (s-1) after one hour storage at -20 °C
k Background noise per minute (min-1)
How to Use This Folding Page
To read this catalog, open this page
as shown below.
●"NOTES" are listed on the inside of this
page so that you can refer to them while
looking at the specification tables.
Related Product Catalogs
Photomultiplier Tube Modules
PHOTOMULTIPLIER
TUBE MODULES
PHOTOMULTIPLIER
TUBE MODULES
The photomultiplier tube module is basically comprised of a photomultiplier
tube, a high-voltage power supply circuit to operate the photomultiplier tube,
and a voltage divider circuit to distribute
the optimum voltage to each dynode,
all integrated into a compact case. In
addition to these basic configurations,
Hamamatsu also provides modules
having various added functions such as
signal conversion, photon counting,
cooling and interfacing to a PC.
Photomultiplier Tubes and Assemblies
for Scintillation Counting & High Energy Physics
PHOTOMULTIPLIER TUBES
AND ASSEMBLIES
This catalog is a selection guide for Hamamatsu photomultiplier tubes and assemblies specially fabricated and selected for scintillation counting and high
energy physics applications. These
photomultiplier tubes offer high quantum efficiency, high energy resolution,
wide dynamic range and fast time response, as well as remarkable resistance to harsh environments ranging
from strong magnetic fields to high temperatures. A wide variety of products
are listed here ranging in diameter from
3/8 inches up to 20 inches.
HAMAMATSU PHOTONICS K.K., Electron Tube Division
314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan
Telephone: (81)539/62-5248, Fax: (81)539/62-2205
www.hamamatsu.com
Main Products
Sales Offices
Electron Tubes
Photomultiplier Tubes
Light Sources
Microfocus X-ray Sources
Image Intensifiers
X-ray Image Intensifiers
Microchannel Plates
Fiber Optic Plates
ASIA:
HAMAMATSU PHOTONICS K.K.
325-6, Sunayama-cho,
Hamamatsu City, 430-8587, Japan
Telephone: (81)53-452-2141, Fax: (81)53-456-7889
Opto-semiconductors
Si Photodiodes
Photo IC
PSD
InGaAs PIN Photodiodes
Compound Semiconductor Photosensors
Image sensors
Light Emitting Diodes
Application Products and Modules
Optical Communication Devices
High Energy Particle/X-ray Detectors
Imaging and Processing Systems
Video Cameras for Measurement
Image Processing Systems
Streak Cameras
Optical Measurement Systems
Imaging and Analysis Systems
U.S.A.:
HAMAMATSU CORPORATION
Main Office
360 Foothill Road, P.O. BOX 6910,
Bridgewater, N.J. 08807-0910, U.S.A.
Telephone: (1)908-231-0960, Fax: (1)908-231-1218
E-mail: [email protected]
Western U.S.A. Office:
Suite 110, 2875 Moorpark Avenue
San Jose, CA 95128, U.S.A.
Telephone: (1)408-261-2022, Fax: (1)408-261-2522
E-mail: [email protected]
United Kingdom:
HAMAMATSU PHOTONICS UK LIMITED
Main Office
2 Howard Court, 10 Tewin Road Welwyn Garden City
Hertfordshire AL7 1BW, United Kingdom
Telephone: 44-(0)1707-294888, Fax: 44-(0)1707-325777
E-mail: [email protected]
South Africa Office:
PO Box 1112, Buccleuch 2066,
Johannesburg, South Africa
Telephone/Fax: (27)11-802-5505
France, Portugal, Belgiun, Switzerland, Spain:
HAMAMATSU PHOTONICS FRANCE S.A.R.L.
8, Rue du Saule Trapu, Parc du Moulin de Massy,
91882 Massy Cedex, France
Telephone: (33)1 69 53 71 00
Fax: (33)1 69 53 71 10
E-mail: [email protected]
Swiss Office:
Dornacherplatz 7
4500 Solothurn, Switzerland
Telephone: (41)32/625 60 60,
Fax: (41)32/625 60 61
E-mail: [email protected]
FEB. 2006 REVISED
Information in this catalog is
believed to be reliable. However,
no responsibility is assumed for
possible inaccuracies or omission.
Specifications are subject to
change without notice. No patent
rights are granted to any of the
circuits described herein.
© 2005 Hamamatsu Photonics K.K.
Germany, Denmark, Netherland, Poland:
HAMAMATSU PHOTONICS DEUTSCHLAND GmbH
Arzbergerstr. 10,
D-82211 Herrsching am Ammersee, Germany
Telephone: (49)8152-375-0, Fax: (49)8152-2658
E-mail: [email protected]
Danish Office:
Skovbrynet 3, DK-5610 Assens, Denmark
Telephone: (45)4346/6333, Fax: (45)4346/6350
E-mail: [email protected]
Netherlands Office:
PO Box 50.075, 1305 AB Almere The Netherland
Telephone: (31)36-5382123, Fax: (31)36-5382124
E-mail: [email protected]
Poland Office:
02-525 Warsaw, 8 St. A. Boboli Str., Poland
Telephone: (48)22-660-8340, Fax: (48)22-660-8352
E-mail: [email protected]
North Europe and CIS:
HAMAMATSU PHOTONICS NORDEN AB
Smidesvägen 12
SE-171 41 Solna, Sweden
Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01
E-mail: [email protected]
Russian Office:
Riverside Towers
Kosmodamianskaya nab. 52/1, 14th floor
RU-113054 Moscow, Russia
Telephone/Fax: (7)095 411 51 54
E-mail: [email protected]
Italy:
HAMAMATSU PHOTONICS ITALIA S.R.L.
Strada della Moia, 1/E
20020 Arese, (Milano), Italy
Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741
E-mail: [email protected]
Rome Office:
Viale Cesare Pavese, 435, 00144 Roma, Italy
Telephone: (39)06-50513454, Fax: (39)06-50513460
E-mail: [email protected]
Belgian Office:
7, Rue du Bosquet
B-1348 Louvain-La-Neuve, Belgium
Telephone: (32)10 45 63 34
Fax: (32)10 45 63 67
E-mail: [email protected]
Spanish Office:
Centro de Empresas de Nuevas Tecnologies
Parque Tecnologico del Valles
08290 CERDANYOLA, (Barcelona) Spain
Telephone: (34)93 582 44 30
Fax: (34)93 582 44 31
E-mail: [email protected]
Quality, technology, and service are part of every product.
TPMO0005E03
FEB. 2006 IP
(6000)
Related documents