Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Physics and Information • Information is stored in a physical medium and manipulated by physical processes. • The laws of physics dictate the capabilities of any information processing device Why not exploit quantum mechanics? Are computers already quantum? Circuit components approach quantum size • Moore’s Law* sets limits to classical computation * ”The number of transistors incorporated in a chip will approximately double every 24 months”, Gordon Moore, Intel Co-founder (1965) Quantum Computation • Information is stored in 2-level physical systems – Classical bits: 0 or 1 – Quantum bits: |0 or |1 • QUBITS can also be in a superposition state a|0 + b |1 with |a|2 the probability of being in state |0 Quantum Weirdness: Interference • A simple optic experiment: beam splitter 50% Detector 50% Single photon source Beam splitter Detector Classical Probability • Random coin flip: 50/50 probability 50% 50% Quantum Interference • A simple optic experiment: interferometer Mirror ?? % Single photon source Beam splitter Mirror Classical Probability • Random coin flip: 50/50 probability 50% 50% Quantum Interference • A simple optic experiment: interferometer Mirror ?? % Single photon source Beam splitter Mirror Quantum Interference • A simple optic experiment: interferometer Quantum Interference • A simple optic experiment: interferometer Quantum Interference • A simple optic experiment: interferometer Quantum Interference • A simple optic experiment: interferometer Quantum Interference • A simple optic experiment: interferometer 100 % Mirror 0% Single photon source Beam splitter Mirror Quantum Weirdness: Interference In quantum mechanics we can make sure that the hiker (the photon) always reaches the cabin! Quantum Weirdness: Superposition # of Qubits Quantum States 1 |0, |1 # classical bits 2 = 21 Quantum Superposition # of Qubits Quantum States 1 |0, |1 2 = 21 2 |00, |01, |10, |11 4 = 22 2 qubits can be in 4 states at the SAME time a|00+ b|01+ g|10+ d|11 # classical bits Need 4 parameters to describe the states Quantum Superposition # of Qubits Quantum States # classical bits 1 |0, |1 2 = 21 2 |00, |01, |10, |11 4 = 22 3 |000, |001, |010, … ,|111 8 = 23 Quantum Superposition # of Qubits Quantum States 1 |0, |1 2 = 21 2 |00, |01, |10, |11 4 = 22 3 |000, |001, |010, … ,|111 8 = 23 … … … 10 … # classical bits |00…, |00…1, … ,|11…1 1k = 210 Quantum Superposition # of Qubits Quantum States 1 |0, |1 2 = 21 2 |00, |01, |10, |11 4 = 22 3 |000, |001, |010, … ,|111 8 = 23 … … … # classical bits 10 … |00…, |00…1, … ,|11…1 1k = 210 20 … |00…, |00…1, … ,|11…1 1M = 220 Quantum Superposition # of Qubits Quantum States 1 |0, |1 2 = 21 2 |00, |01, |10, |11 4 = 22 3 |000, |001, |010, … ,|111 8 = 23 … … … # classical bits 10 … |00…, |00…1, … ,|11…1 1k = 210 20 … |00…, |00…1, … ,|11…1 1M = 220 30 … |00…, |00…1, … ,|11…1 1G = 230 Quantum Superposition # of Qubits Quantum States 1 |0, |1 2 = 21 2 |00, |01, |10, |11 4 = 22 3 |000, |001, |010, … ,|111 8 = 23 … … … # classical bits 10 … |00…, |00…1, … ,|11…1 1k = 210 20 … |00…, |00…1, … ,|11…1 1M = 220 30 … |00…, |00…1, … ,|11…1 1G = 230 40 … |00…, |00…1, … ,|11…1 1T = 240 The Power of Quantum Computers • Quantum superposition ➙ parallel computation • Example: quantum “oracle” n qubits a1 a2 a3 f(a1)f(a2)f(a3) N=2n states wave-function collapse f(a) “oracle” tests all possible answers at once but answers cannot be read out The power of Quantum Computers • Qt. superposition ➙ parallel computation • Qt. interference ➙ oracle is always right interference n qubits wave-function collapse f(a1)f(a2)f(a3) N=2n states Paths leading to incorrect answers interfere destructively Only the right answer is left upon measurement Quantum speed-up • Exponentially faster computations – BUT: only for some algorithms • Applications: – Database search – Factorization ( = code breaking) … – Simulations of (quantum) systems – Precision measurement, secure communication, … Implementations • Need a physical qubit: – Two level quantum system ! Trapped ions Implementations • Need a physical qubit: – Two level quantum system ! Trapped atoms Implementations • Need a physical qubit: – Two level quantum system ! Superconducting circuit Implementations • Need a physical qubit: – Two level quantum system ! Semiconductor Quantum dots Implementations • Need a physical qubit: – Two level quantum system ! Nuclear & Electronic spins Diamond Quantum Computer • Electronic spin of the NV defect in diamond – Optical initialization and readout – Microwave control Logical gates and circuits Classical Gates Classical computers • NOT : 0 ➞ 1 or 1 ➞ 0 • AND: 0,0 0,1 1,0 1,1 ➞ ➞ ➞ ➞ 0 0 0 1 2 inputs ⇓ 1 output Quantum Gates Quantum computers • NOT : ⎟0〉 ➞⎟1〉 or ⎟1〉➞⎟0〉 • CNOT: ⎟0〉 ⎟0〉 ⎟0〉 ⎟1〉 ⎟1〉 ⎟0〉 ➞ ➞ ➞ ⎟0〉 ⎟0〉 ⎟0〉 ⎟1〉 ⎟1〉 ⎟1〉 2 inputs ⇓ 2 outputs Quantum Gates • Implementation by precise control of a quantum system: – New theoretical and technical tools required Bz Quantum Gates • Implementation by precise control of a quantum system: – New theoretical and technical tools required Bz Challenges • Quantum systems are fragile – No quantum weirdness in everyday life • Interaction with environment destroys the quantum superposition – Loss of quantum speedup • Challenges worsen with system size Conclusions • Great promise but greater challenges – When will we have the first quantum computer? • In the meantime: – Better knowledge of quantum mechanics – Applications to • Precision measurements • Simulations • Communications Nuclear Science & Engineering