Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ANALOG ELECTRONIC CIRCUITS 1 EKT 204 Basic BJT Amplifiers (Part 1) 1 Analog Signals & Linear Amplifiers Analog signals Analog circuits Natural analog signals: physical sense (hearing, touch, vision) Electrical analog signals: e.g. output from microphone, output signal from compact disc – form of time-varying currents & voltages Magnitude: any value which vary continuously with time Electronic circuits which produce analog signals E.g. linear amplifier Linear amplifier Magnifies input signal & produce output signal that is larger & directly proportional to input signal DC power Block diagram of a compact disc player system (a) Signal source a) Low signal power b) High signal power DC voltage source (b) Amplifier Load 2 The Bipolar Linear Amplifier (a) Bipolar transistor inverter circuit; (b) inverter transfer characteristics To use circuit as an amplifier, transistor needs to be biased with DC voltage at quiescent point (Q-point) transistor is biased in forward active region Time-varying output voltage is directly proportional to & larger than time-varying input voltage linear amplifier 3 The Bipolar Linear Amplifier Summary of notation Variable iB, vBE Meaning Total instantaneous values IB, VBE ib, vbe DC values Instantaneous ac values Ib, Vbe Phasor values 4 Graphical Analysis & AC Equivalent Circuit Fig. D VC C Fig. C iC vO RB vs iB RC vCE vBE VBB (C) Common-emitter circuit with time varying signal source in series with base dc source (D) Common-emitter transistor characteristics, dc load line, and sinusoidal 5 variation in base current, collector current, and collector-emitter voltage Graphical Analysis & AC Equivalent Circuit Base on Fig. C & D (time-varying signals linearly related & superimposed on dc values) iB I BQ ib (1) iC I CQ ic (2) vCE VCEQ vce (3) vBE VBEQ vbe (4) If signal source, vs = 0: VBB I BQ RB VBEQ (B - E loop) (5) VCC I CQ RC VCEQ (C - E loop) (6) 6 Graphical Analysis & AC Equivalent Circuit For B-E loop, considering time varying signals: VBB vs iB RB vBE ( I BQ ib ) RB (VBEQ vbe ) (7) Rearrange: VBB I BQ RB VBEQ ib RB vbe vs (8) Base on (5), left side of (7) is 0. So: vs ib RB vbe (9) For C-E loop, considering time varying signals: VCC iC RC vCE ( I CQ ic ) RC (VCEQ vce ) (10) VCC I CQ RC VCEQ ic Rc vce Base on (6), left side of (11) is 0. So: ic Rc vce 0 (11) (12) 7 Graphical Analysis & AC Equivalent Circuit Definition of small signal Small signal : ac input signal voltages and currents are in the order of ±10 percent of Q-point voltages and currents. e.g. If dc current is 10 mA, the ac current (peakto-peak) < 0.1 mA. 8 Graphical Analysis & AC Equivalent Circuit Rules for ac analysis Replacing all capacitors by short circuits Replacing all inductors by open circuits Replacing dc voltage sources by ground connections Replacing dc current sources by open circuits 9 Graphical Analysis & AC Equivalent Circuit RC Equations ic vs ib RB vbe vO RB vs ib + vbe - Input loop I BQ vbe ib VT + vce 0.026 V Output loop ic RC vce 0 AC equivalent circuit of C-E with npn transistor ic ib 10 Small-signal hybrid- equivalent circuit gm=ICQ/VT vbe = ibrπ rπ = diffusion resistance / base-emitter input resistance 1/rπ r=VT/ICQ = slope of iB – VBE curve vbe VT FVT r , ib I BQ I CQ Using transconductance (gm) parameter I CQ F I BQ 11 Small-signal hybrid- equivalent circuit ib ( I b ) Using common-emitter current gain (β) parameter 12 How to construct Small-signal hybrid- VCC RC vO RB We know that i across B ib vs i across C βib VBB i across E (β+1)ib rπ between B -E Place a terminal for the transistor Common Terminal as ground B C B C βib rπ E E 13 Small-signal hybrid- equivalent circuit Small-signal equivalent circuit RB Ic B C Vo + Vs Ib Vbe - r Vs Vbe r RB + r gmVbe E RC Vce - Vo Vce g mVbe RC Output signal voltage r Vo Small signal voltage gain, Av g m RC Vs r RB Input signal voltage 14 Small-signal hybrid- equivalent circuit Example VC C RC Given : = 100, VCC = 12V RB VBE = 0.7V, RC = 6k, RB = 50k, and VBB = 1.2V Calculate the small-signal voltage gain. vO vs VBB 15 Solutions 1. I BQ VBB VBE ( on) RB 1.2 0.7 10 A 50 2. I CQ I BQ 100(10A) 1 mA 3. VCEQ VCC I CQ RC 12 (1)(6) 6V 4. r 5. 6. VT I CQ (100)(0.026) 2.6 k 1 I CQ 1 gm 38.5 mA / V VT 0.026 r Vo 11.4 Av g m RC Vs r RB 16 Hybrid- Model and Early Effect transconductance parameter ro=VA/ICQ current gain parameter ro = small-signal transistor output resistance 17 VA = early voltage Hybrid- Model and Early Effect Early Voltage (pg 299) Early Voltage (VA) 18 Basic Common-Emitter Amplifier Circuit Example VCC Given : = 100, VCC = 12V R1 VBE(on) = 0.7V, RS = 0.5k, RS RC = 6k, R1 = 93.7k, R2 = 6.3k and VA = 100V. Calculate the small-signal voltage gain. vs CC RC vO R2 19 Solution Small-signal equivalent circuit Ri RS Vs R1 \\ R2 Ro B C r gmV rO Vo RC E Ri R1 R2 r R1 R2 r V V R1 R2 r RS s Ro ro RC Vo g mV ro RC R1 R2 r Vo Av g m R1 R2 r RS Vs r R o C 20 Self-Reading Textbook: Donald A. Neamen, ‘MICROELECTRONICS Circuit Analysis & Design’,3rd Edition’, McGraw Hill International Edition, 2007 Chapter 5:The Bipolar Junction Transistor Page: 334-339 Chapter 6: Basic BJT Amplifiers Page: 370-388. 21 Exercise The circuit parameters in Figure are changed to VCC = 5V, R1=35.2kΩ, R2=5.83kΩ, RC=10kΩ and RS =0, β =100, VBE(on) =0.7V and VA =100V. Determine the quiescent collector current and collector-emitter voltage and find the small-signal voltage gain. Ans: ICQ = 0.21mA, VCEQ =2.9V, Av =-79.1) 22