Download 物理(十五)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
12 量子物理
Sections
1.
2.
3.
4.
5.
6.
Photon and Matter Waves
Compton Effect
Light as a Probability Wave
Electrons and Matter Waves
Schrodinger’s Equation
Waves on Strings and Matter
Waves
7. Trapping an Electron
8. Three Electron Traps
9. The Hydrogen Atom
12-1.1 Photon and Matter
Waves (光子和物質波)
•
Light Waves and Photons
c  f
E  hf (photon energy )
h  6.63 10
34
J s
The Photoelectric Effect
光電效應
The experiment
• First Experiment (adjusting
V)–
the stopping potential Vstop
K max  eVstop
光電子的最大動能
與光強度無關
• Second Experiment (adjusting
f)–
低於截止頻率時即使光再
強也不會有光電效應
the cutoff
frequency f0
The plot of Vstop against
f
The Photoelectric Equation
hf  K max  
h

Vstop  ( ) f 
e
e
34
h  6.6 10 J  s
Work
function
12-1.2 Compton Effect
hf h
p

c 
(photon momentum)
康
普
吞
效
應
實
驗
圖
表
康普吞效應圖示
Energy and momentum
conservation
hf  hf   K
K  mc (  1)
2
2

hf  hf  mc (  1)
h
h

 mc(  1)
 
p X  h /  pe  mv
Frequency shift
h
h

cos   mv cos 
 
h
0  sin   mv sin 

h
 
(1  cos  )
mc
Compton
wavelength
12-1.3 Light as a Probability
Wave
The
standard
version
The Single-Photon Version
First by Taylor in 1909
The single-photon, double-slit
experiment is a phenomenon
which is impossible,
absolutely impossible to
explain in any classical way,
and which has in it the heart of
quantum mechanics - Richard
Feynman
The Single-Photon,
Wide-Angle Version
(1992)
The postulate
Light is generated in the source
as photons
 Light is absorbed in the detector
as photons
 Light travels between source and
detector as a probability wave

12-1.4 Electrons and
Matter Waves
h

• The de Broglie wave length
p
• Experimental verification in 1927
• Iodine molecule beam in 1994
1989 double-slit experiment
7,100,3000, 20,000 and 70,000 electrons
Experimental Verifications
Xray
Electro
n beam
苯
環
的
中
子
繞
射
12-1.5 Schrodinger’s
Equation
• Matter waves and the wave
function
( x, y, z, t )   ( x, y, z )e
 i t
• The2probability (per unit time) is 

ie.  *
Complex
conjugate
The Schrodinger Equation
from A Simple Wave
Function
 i t
 ( x, y , z , t )   ( x, y , z ) e
  A sin( kx)  B cos( kx)
p  h /   k
E  p / 2m   k / 2m
2
2
2
1D Time-independent SE
  A sin( kx)  B cos( kx)
1d
d  / dx  k  k  
2
 dx
2
2
2
2
1  d
E
2
 2m dx
2
2
 d

 E
2
2m dx
2
2
2
3D Time-dependent SE
 2 d 2

 E
2
2m dx
2
2
2
2
 d d d

( 2  2  2 )  E
2m dx
dy
dz


2

   i 
2m
t
2


2

   V  i 
2m
t
2
12-1.6 Waves on Strings
and Matter Waves
駐波與量子化
Quantization
駐波:
2L
v
v
=
f  n
n = 0,1,2,   
n

2L
Confinement of a Wave leads to
Quantization – discrete states
and discrete energies
12-1.7 Trapping an
Electron
For a string:
n
L
2
n  1,2,3,
n
yn  A sin(
) x, n  1,2,3, 
L
n : quantum number
Finding the Quantized Energies
of an infinitely deep potential
energy well
  h / p  h / 2mE , L  n / 2
En  n h / 8mL ,
2
2
2
n  1,2,3, 
The Energy Levels 能階
 The
ground state
and excited states
 The Zero-Point
Energy
n can’t be 0
The Wave Function and
Probability Density
For a string
n
n  1,2,3,
) x,
yn  A sin(
L
n
n  1,2,3,
 n  A sin( ) x,
L
2 n
2
2
 n  A sin ( ) x, n  1,2,3,
L
The Probability Density
Correspondence principle
(對應原理)
At large enough quantum numbers,
the predictions of quantum
mechanics merge smoothly with
those of classical physics
• Normalization (歸一化)



 ( x)dx  1
2
n
A Finite Well 有限位能井
d  8 m
 2 [ E  E pot ( x)]  0
2
dx
h
2
2
The probability densities
and energy levels
Barrier Tunneling
穿隧效應
STM 掃描式穿隧顯微鏡
Piezoelectricity
of quartz
12-1.8 Three Electron
• Nanocrystallites 硒化鎘奈米晶
Traps
粒
那種顏色的顆粒比較小
2
2
nh
En 
8mL2
c ch
t  
f t Et
A Quantum Dot
An Artificial Atom
The number of electrons can be controlled
Quantum Corral
量子圍欄
12-1.9 The Hydrogen Atom
• The Energies
2
1
q1q2
1 e
U

40 r
40 r
4
me 1
13.6ev
En   2 2 2  
,
2
8 0 h n
n
n  1,2,3, 
氫
原
子
能
階
與
光
譜
線
Bohr’s Theory of the
Hydrogen Atom
The Ground State Wave
Function
1
r / a
e
 (r ) 
3/ 2
a
2
h 0
 5.29pm
a
2
me
(Bohr radius)
Quantum Numbers for the
Hydrogen Atom
The Ground State Dot
Plot
氫原子的量子數
N=2, l=0, ml=0
N=2, l=1
Related documents