Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 5 Trigonometric Identities Section 5.1 Fundamental Identities Section 5.2 Verifying Identities Section 5.3 Cos Sum and Difference Section 5.4 Sin & Tan Sum and Dif Section 5.5 Double-Angle Identities Section 5.6 Half-Angle Identities Section 5.1 Fundamental Identities • Review of basic Identities • Negative-Angle Identities • Fundamental Identities sin θ = y r x r tan θ = y x A θ adjacent side = x opposite side = y cos θ = csc θ = r y r x x y A θ adjacent side = x opposite side = y sec θ = cot θ = B C The Reciprocal Identities sin £ = 1 csc £ = csc £ 1 sin £ cos £ = 1 sec £= sec £ 1 cos £ tan £ = 1 cot £ =£ cot 1 tan £ The quotient Identities tan £ = sin £ = cos £ y x cot £ = cos £ sin £ x y = The Negative-Angle Identities sin(-£) = - sin £ cos(-£) = cos £ tan(-£) = - tan £ x2 + y2 = r2 r 2 r2 r 2 or r y θ x cos2θ + sin2θ = 1 This is our first Pythagorean identity Pythagorean identities cos2θ + sin2θ 1 cos2θ cos2θ= cos2θ or 1 + tan2θ = sec2θ r or tan2θ +1 = y sec2θ θ x Pythagorean identities cos2θ + sin2θ 1 = sin2θ 2 2 sin θ sin θ or cot2θ + 1 = csc2θ r or 1 + cot2θ = y csc2θ θ x Section 5.2 Verifying Identities • Verify Identities by Working with One Side • Verify Identities by Working with Two Sides Hints for Verifying Identities • Learn the fundamental identities and their equivalent forms. • Simplify using sin and cos. • Keep in mind the basic algebra applies to trig functions. • You can always go down to x, y, and r Section 5.3 Cos Sum & Difference • • • • Difference Identity for Cosine Sum Identity for Cosine Co-function Identities Applying the Sum and Difference Identities Cosine of the Sum or Difference cos(A + B) = cos A cos B – sin A sin B cos(A - B) = cos A cos B + sin A sin B Co-function Identities sin (90à - £à) = cos £à cos (90à - £à) = sin £à tan (90à - £à) = cot £à csc (90à - £à) = sec £à sec (90à - £à) = csc £à cot (90à - £à) = tan £à Section 5.4 Sine and Tangent Sum and Difference Identities • Sum Identity for Sine • Difference Identity for Sine • Applying the Sum and Difference Identities for Sine Sine of the Sum or Difference sin(A + B) = sin A cos B + cos A sin B sin(A - B) = sin A cos B - cos A sin B Tangent of the Sum or Difference tan (A + B) = tan (A - B) = tan A + tan B 1 – tan A tan B tan A - tan B 1 + tan A tan B Section 5.5 Double-Angle Identities • Double-Angle Identities • Verifying Identities with Double Angels • Applying Double-Angle Identities Double-Angle Identity Cosine cos(2A) = cos(A+A) = cos A cos A – sin A sin A = cos2 A – sin2 A or cos(2A) = cos2 A – sin2 A = (1 - sin2 A) – sin2 A = 1 - 2sin2 A or 2cos2 A - 1 Double-Angle Identity Sine sin(2A) = sin(A+A) = sin A cos A + cos A sin A = 2sin A cos A Double-Angle Identity Tangent tan A + tan A tan 2A = tan (A + A) = 1 – tan A tan A 2 tan A = 1 – tan2A Section 5.6 Half-Angle Identities • Half-Angel Identities • Using the Half-Angle Identities Half-Angle Identity Sine cos 2A = 1 - 2sin2 A -cos 2A -cos 2A 0 = 1 - 2sin2 A – cos 2A - 2sin2 A -2sin2 A -2sin2 A = 1 – cos 2A sin2 A = (cos 2A – 1) 2 Half-Angle Identity Sine (cont.) sin A = ‘ñ 1 – cos 2A 2 A sin 2 = ‘ñ 1 – cos A 2 Half-Angle Identity Cosine cos 2A = 2cos2 A - 1 +1 +1 cos 2A + 1 = 2cos2 A 2cos2 A = 1 + cos 2A cos2 A = (1 + cos 2A) 2 Half –Angle Identity Cosine (cont.) cos A = ‘ñ 1 + cos 2A 2 A cos 2 = ‘ñ 1 + cos A 2 Half-Angle Identity Tangent A sin 2 A tan 2 = cos A 2 A tan 2 = ‘ñ = ‘ñ ñ 1 – cos A 1 + cos A 1 – cos A 2 1 + cos A 2 Half-Angle Identity Tangent (cont) A sin 2 A tan 2 = cos A 2 A tan 2 = A A 2sin 2 cos 2 = () () A sin 2 2 1 + 2cos A 2 2cos2 A 2 sin A = 1 + cos A Half-Angle Identity Tangent (cont) Using the other formula we get: 1 - cos A A tan 2 = sin A