Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 22 Phenols Dr. Wolf's CHM 201 & 202 22 - 1 Nomenclature Dr. Wolf's CHM 201 & 202 22 - 2 Nomenclature OH CH3 5-Chloro-2-methylphenol Cl named on basis of phenol as parent substituents listed in alphabetical order lowest numerical sequence: first point of difference rule Dr. Wolf's CHM 201 & 202 22 - 3 Nomenclature OH OH OH OH OH OH 1,2-Benzenediol 1,3-Benzenediol 1,4-Benzenediol (common name: pyrocatechol) (common name: resorcinol) (common name: hydroquinone) Dr. Wolf's CHM 201 & 202 22 - 4 Nomenclature OH p-Hydroxybenzoic acid CO2H name on basis of benzoic acid as parent higher oxidation states of carbon outrank hydroxyl group Dr. Wolf's CHM 201 & 202 22 - 5 Structure and Bonding Dr. Wolf's CHM 201 & 202 22 - 6 Structure of Phenol phenol is planar C—O bond distance is 136 pm, which is slightly shorter than that of CH3OH (142 pm) Dr. Wolf's CHM 201 & 202 22 - 7 Physical Properties The OH group of phenols allows hydrogen bonding to other phenol molecules and to water. Dr. Wolf's CHM 201 & 202 22 - 8 Hydrogen Bonding in Phenols O H Dr. Wolf's CHM 201 & 202 O 22 - 9 Physical Properties (Table 24.1) Compared to compounds of similar size and molecular weight, hydrogen bonding in phenol raises its melting point, boiling point, and solubility in water. Dr. Wolf's CHM 201 & 202 22 - 10 Physical Properties (Table 24.1) C6H5CH3 C6H5OH C6H5F Molecular weight 92 94 96 Melting point (°C) –95 43 –41 Boiling point (°C,1 atm) 111 132 85 Solubility in H2O (g/100 mL,25°C) 0.05 8.2 0.2 Dr. Wolf's CHM 201 & 202 22 - 11 Acidity of Phenols most characteristic property of phenols is their acidity Dr. Wolf's CHM 201 & 202 22 - 12 Compare •• •• O •• – •• O •• H Ka = 10-10 •• CH3CH2O •• Dr. Wolf's CHM 201 & 202 + + H Ka = 10-16 H + + H •• – CH3CH2O •• •• 22 - 13 Delocalized negative charge in phenoxide ion – •• •• O •• H H H H H Dr. Wolf's CHM 201 & 202 22 - 14 Delocalized negative charge in phenoxide ion – •• •• O •• •• •• O H H H H H H H Dr. Wolf's CHM 201 & 202 – •• H H H 22 - 15 Delocalized negative charge in phenoxide ion •• •• O – H •• H H H H Dr. Wolf's CHM 201 & 202 22 - 16 Delocalized negative charge in phenoxide ion •• •• •• O H H •• – H Dr. Wolf's CHM 201 & 202 •• O H H H H – •• H H H 22 - 17 Delocalized negative charge in phenoxide ion •• •• O H H H •• – H H Dr. Wolf's CHM 201 & 202 22 - 18 Delocalized negative charge in phenoxide ion •• •• •• O H H •• – H Dr. Wolf's CHM 201 & 202 •• O H H H H – H •• H H 22 - 19 Phenols are converted to phenoxide ions in aqueous base •• •• O •• – •• O •• H – + HO stronger acid Dr. Wolf's CHM 201 & 202 + H2O weaker acid 22 - 20 Substituent Effects on the Acidity of Phenols Dr. Wolf's CHM 201 & 202 22 - 21 Electron-releasing groups have little or no effect OH Ka: 1 x 10-10 Dr. Wolf's CHM 201 & 202 OH OH CH3 OCH3 5 x 10-11 6 x 10-11 22 - 22 Electron-withdrawing groups increase acidity OH Ka: 1 x 10-10 Dr. Wolf's CHM 201 & 202 OH OH Cl NO2 4 x 10-9 7 x 10-8 22 - 23 Effect of electron-withdrawing groups is most pronounced at ortho and para positions OH OH OH NO2 NO2 NO2 Ka: 6 x 10-8 Dr. Wolf's CHM 201 & 202 4 x 10-9 7 x 10-8 22 - 24 Effect of strong electron-withdrawing groups is cumulative OH OH OH NO2 NO2 NO2 Ka: 7 x 10-8 1 x 10-4 Dr. Wolf's CHM 201 & 202 NO2 O2N NO2 4 x 10-1 22 - 25 Resonance Depiction – •• •• O •• •• •• O •• H H H H H H H H •O • •• N + Dr. Wolf's CHM 201 & 202 •• O •• •• – •• •O –• •• N + •• O •• •• – 22 - 26 Sources of Phenols Phenol is an important industrial chemical. Major use is in phenolic resins for adhesives and plastics. Annual U.S. production is about 4 billion pounds per year. Dr. Wolf's CHM 201 & 202 22 - 27 Industrial Preparations of Phenol SO3H 1. NaOH heat 2. H+ Dr. Wolf's CHM 201 & 202 Cl 1. NaOH 2. H+ heat OH CH(CH3)2 1. O2 2. H2O H2SO4 22 - 28 Laboratory Synthesis of Phenols from arylamines via diazonium ions O2N NH2 1. NaNO2, H2SO4, H2O O2N OH 2. H2O, heat (81-86%) Dr. Wolf's CHM 201 & 202 22 - 29 Naturally Occurring Phenols Many phenols occur naturally Dr. Wolf's CHM 201 & 202 22 - 30 Example: Thymol OH CH3 CH(CH3)2 Thymol (major constituent of oil of thyme) Dr. Wolf's CHM 201 & 202 22 - 31 Example: 2,5-Dichlorophenol OH Cl Cl 2,5-Dichlorophenol (from defensive secretion of a species of grasshopper) Dr. Wolf's CHM 201 & 202 22 - 32 Reactions of Phenols: Electrophilic Aromatic Substitution Hydroxyl group strongly activates the ring toward electrophilic aromatic substitution Dr. Wolf's CHM 201 & 202 22 - 33 Electrophilic Aromatic Substitution in Phenols Halogenation Nitration Nitrosation Sulfonation Friedel-Crafts Alkylation Friedel-Crafts Acylation Dr. Wolf's CHM 201 & 202 22 - 34 Halogenation OH OH + Br2 ClCH2CH2Cl 0°C Br (93%) monohalogenation in nonpolar solvent (1,2-dichloroethane) Dr. Wolf's CHM 201 & 202 22 - 35 Halogenation OH OH + 3Br2 F H2O Br Br 25°C F Br (95%) multiple halogenation in polar solvent (water) Dr. Wolf's CHM 201 & 202 22 - 36 Electrophilic Aromatic Substitution in Phenols Halogenation Nitration Nitrosation Sulfonation Friedel-Crafts Alkylation Friedel-Crafts Acylation Dr. Wolf's CHM 201 & 202 22 - 37 Nitration OH OH NO2 HNO3 acetic acid 5°C CH3 OH group controls regiochemistry Dr. Wolf's CHM 201 & 202 CH3 (73-77%) 22 - 38 Electrophilic Aromatic Substitution in Phenols Halogenation Nitration Nitrosation Sulfonation Friedel-Crafts Alkylation Friedel-Crafts Acylation Dr. Wolf's CHM 201 & 202 22 - 39 Nitrosation NO OH OH NaNO2 H2SO4, H2O 0°C (99%) only strongly activated rings undergo nitrosation when treated with nitrous acid Dr. Wolf's CHM 201 & 202 22 - 40 Electrophilic Aromatic Substitution in Phenols Halogenation Nitration Nitrosation Sulfonation Friedel-Crafts Alkylation Friedel-Crafts Acylation Dr. Wolf's CHM 201 & 202 22 - 41 Sulfonation OH H3C OH CH3 H2SO4 H3C CH3 100°C SO3H OH group controls regiochemistry Dr. Wolf's CHM 201 & 202 (69%) 22 - 42 Electrophilic Aromatic Substitution in Phenols Halogenation Nitration Nitrosation Sulfonation Friedel-Crafts Alkylation Friedel-Crafts Acylation Dr. Wolf's CHM 201 & 202 22 - 43 Friedel-Crafts Alkylation OH OH CH3 CH3 (CH3)3COH H3PO4 60°C H3C (CH3)3COH reacts with H3PO4 to give (CH3)3C+ Dr. Wolf's CHM 201 & 202 C CH3 CH3 (63%) 22 - 44 Electrophilic Aromatic Substitution in Phenols Halogenation Nitration Nitrosation Sulfonation Friedel-Crafts Alkylation Friedel-Crafts Acylation Dr. Wolf's CHM 201 & 202 22 - 45 Acylation of Phenols Acylation can take place either on the ring by electrophilic aromatic substitution or on oxygen by nucleophilic acyl substitution Dr. Wolf's CHM 201 & 202 22 - 46 Friedel-Crafts Acylation OH OH O CH3CCl + ortho isomer AlCl3 under Friedel-Crafts conditions, acylation of the ring occurs (C-acylation) Dr. Wolf's CHM 201 & 202 O C CH3 (74%) (16%) 22 - 47 O-Acylation O OH OC(CH2)6CH3 O + CH3(CH2)6CCl (95%) in the absence of AlCl3, acylation of the hydroxyl group occurs (O-acylation) Dr. Wolf's CHM 201 & 202 22 - 48 O- versus C-Acylation O OH OC(CH2)6CH3 AlCl3 formed faster O C (CH2)6CH3 more stable O-Acylation is kinetically controlled process; C-acylation is thermodynamically controlled AlCl3 catalyzes the conversion of the aryl ester to the aryl alkyl ketones; this is called the Fries rearrangement Dr. Wolf's CHM 201 & 202 22 - 49 Carboxylation of Phenols O Aspirin and the Kolbe-Schmitt Reaction OCCH3 COH O Dr. Wolf's CHM 201 & 202 22 - 50 Aspirin is prepared from salicylic acid O O OH COH CH3COCCH3 H2SO4 O O OCCH3 COH O how is salicylic acid prepared? Dr. Wolf's CHM 201 & 202 22 - 51 Preparation of Salicylic Acid ONa CO2 125°C, 100 atm OH CONa O called the Kolbe-Schmitt reaction acidification converts the sodium salt shown above to salicylic acid Dr. Wolf's CHM 201 & 202 22 - 52 What Drives the Reaction? acid-base considerations provide an explanation: stronger base on left; weaker base on right •• •– O• •• + •• O H C •• •– O• •• •• CO2 •• O • • stronger base: pKa of conjugate acid = 10 Dr. Wolf's CHM 201 & 202 weaker base: pKa of conjugate acid = 3 22 - 53 Preparation of Salicylic Acid ONa CO2 OH 125°C, 100 atm CONa O how does carbon-carbon bond form? recall electron delocalization in phenoxide ion negative charge shared by oxygen and by the ring carbons that are ortho and para to oxygen Dr. Wolf's CHM 201 & 202 22 - 54 – •• •• O •• •• •• O H H H H H H •• H •• •• •• O – •• H H Dr. Wolf's CHM 201 & 202 H H H H H H H •• O H – H •• – H H 22 - 55 Mechanism of ortho Carboxylation •• •• O •• –• O• •• H Dr. Wolf's CHM 201 & 202 C O •• •• •• • O• C H •• •– O• •• •• O • • 22 - 56 Mechanism of ortho Carboxylation •• •• O •• –• O• •• •• • O• C O •• •• C H •• O H C •• •– O• •• •• Dr. Wolf's CHM 201 & 202 H •• O • • •• •– O• •• •• O • • 22 - 57 Why ortho? Why not para? •• O H C •• •– O• •• •• •• O • • Dr. Wolf's CHM 201 & 202 •• •– O• •• •• O •• –• •• •O •• H C •• O • • 22 - 58 Why ortho? Why not para? •• O H C •• •– O• •• •• •• O • • •• •– O• •• •• O •• –• •• •O •• H C •• O • • stronger base: weaker base: pKa of conjugate acid = 3 pKa of conjugate acid = 4.5 Dr. Wolf's CHM 201 & 202 22 - 59 Intramolecular Hydrogen Bonding in Salicylate Ion O H C O– O Hydrogen bonding between carboxylate and hydroxyl group stabilizes salicylate ion. Salicylate is less basic than para isomer and predominates under conditions of thermodynamic control. Dr. Wolf's CHM 201 & 202 22 - 60 Preparation of Aryl Ethers Dr. Wolf's CHM 201 & 202 22 - 61 Typical Preparation is by Williamson Synthesis ONa + RX Dr. Wolf's CHM 201 & 202 SN2 OR + NaX 22 - 62 Typical Preparation is by Williamson Synthesis ONa + RX SN2 OR + NaX but the other combination X + RONa fails because aryl halides are normally unreactive toward nucleophilic substitution Dr. Wolf's CHM 201 & 202 22 - 63 Example acetone ONa + CH3I heat OCH3 (95%) Dr. Wolf's CHM 201 & 202 22 - 64 Example OH K2CO3 + H2C acetone, heat OCH2CH Dr. Wolf's CHM 201 & 202 CHCH2Br (86%) CH2 22 - 65 Aryl Ethers from Aryl Halides F OCH3 + KOCH3 NO2 CH3OH + KF 25°C NO2 (93%) nucleophilic aromatic substitution is effective with nitro-substituted (ortho and/or para) aryl halides Dr. Wolf's CHM 201 & 202 22 - 66 Cleavage of Aryl Ethers by Hydrogen Halides Dr. Wolf's CHM 201 & 202 22 - 67 Cleavage of Alkyl Aryl Ethers Ar •• • O• + H R Dr. Wolf's CHM 201 & 202 •• Br •• •• •• – •• Br • + • •• Ar •• +O H R 22 - 68 Cleavage of Alkyl Aryl Ethers Ar •• • O• + H •• – •• Br • + • •• •• Br •• •• R Ar •• +O H R An alkyl halide is formed; never an aryl halide! R Dr. Wolf's CHM 201 & 202 Ar •• Br •• •• + •• O •• H 22 - 69 Example OCH3 OH HBr heat OH + CH3Br OH (85-87%) Dr. Wolf's CHM 201 & 202 (57-72%) 22 - 70 Claisen Rearrangement of Allyl Aryl Ethers Dr. Wolf's CHM 201 & 202 22 - 71 Allyl Aryl Ethers Rearrange on Heating OCH2CH CH2 200°C allyl group migrates to ortho position OH CH2CH CH2 (73%) Dr. Wolf's CHM 201 & 202 22 - 72 Mechanism OCH2CH CH2 O rewrite as OH keto-to-enol isomerization O H Dr. Wolf's CHM 201 & 202 22 - 73 Sigmatropic Rearrangement Claisen rearrangement is an example of a sigmatropic rearrangement. A bond migrates from one end of a conjugated electron system to the other. this bond breaks O O “conjugated electron system” is the allyl group H this bond forms Dr. Wolf's CHM 201 & 202 22 - 74 Oxidation of Phenols: Quinones Dr. Wolf's CHM 201 & 202 22 - 75 Quinones The most common examples of phenol oxidations are the oxidations of 1,2- and 1,4-benzenediols to give quinones. OH O Na2Cr2O7, H2SO4 H2O OH O (76-81%) Dr. Wolf's CHM 201 & 202 22 - 76 Quinones The most common examples of phenol oxidations are the oxidations of 1,2- and 1,4-benzenediols to give quinones. OH O OH O Ag2O diethyl ether CH3 CH3 (68%) Dr. Wolf's CHM 201 & 202 22 - 77 Some quinones are dyes O OH OH O Alizarin (red pigment) Dr. Wolf's CHM 201 & 202 22 - 78 Some quinones are important biomolecules O CH3 CH3O CH3O n O Ubiquinone (Coenzyme Q) n = 6-10 involved in biological electron transport Dr. Wolf's CHM 201 & 202 22 - 79 Some quinones are important biomolecules O CH3 CH3 O CH3 CH3 CH3 CH3 Vitamin K (blood-clotting factor) Dr. Wolf's CHM 201 & 202 22 - 80 Spectroscopic Analysis of Phenols Dr. Wolf's CHM 201 & 202 22 - 81 Infrared Spectroscopy infrared spectra of phenols combine features of alcohols and aromatic compounds O—H stretch analogous to alcohols near 3600 cm-1 C—O stretch at 1200-1250 cm-1 Dr. Wolf's CHM 201 & 202 22 - 82 Figure 24.3: Infrared Spectrum of p-Cresol CH3 C—H OH C—O O—H 3500 3000 2500 2000 1500 1000 500 Wave number, cm-1 Dr. Wolf's CHM 201 & 202 22 - 83 1H NMR Hydroxyl proton of OH group lies between alcohols and carboxylic acids; range is ca. 4-12 ppm (depends on concentration). For p-cresol the OH proton appears at 5.1 ppm (Figure 24.4). H H CH3 HO H Dr. Wolf's CHM 201 & 202 H 22 - 84 H H HO CH3 H 10.0 9.0 8.0 7.0 6.0 H 5.0 4.0 3.0 2.0 1.0 0 Chemical shift (, ppm) Dr. Wolf's CHM 201 & 202 22 - 85 13C NMR OH 155.1 112..3 116.1 139.8 129.4 121.7 CH3 21.3 Oxygen of hydroxyl group deshields carbon to which it is directly attached. The most shielded carbons of the ring are those that are ortho and para to the oxygen. Dr. Wolf's CHM 201 & 202 22 - 86 UV-VIS Oxygen substitution on ring shifts max to longer wavelength; effect is greater in phenoxide ion. OH O max max max 204 nm 210 nm 235 nm 256 nm 270 nm 287 nm Dr. Wolf's CHM 201 & 202 – 22 - 87 Mass Spectrometry Prominent peak for molecular ion. Most intense peak in phenol is for molecular ion. •+ OH •• m/z 94 Dr. Wolf's CHM 201 & 202 22 - 88 End of Chapter 22 Dr. Wolf's CHM 201 & 202 22 - 89