Download Language, proof, and logic

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Contents
Acknowledgements
v
Introduction
The special role of logic in rational inquiry
Why learn an artificiallanguage? . . . . . .
Consequence and proof. . . . . . . . . . . .
Instructions about homework exercises (essential!)
To the instructor
Web address
1
1
I
1
2
3
2
4
5
11
16
Propositional Logic
Atomic Sentences
1.1 Individ ual constants
1.2 Predicate symbols .
1.3 Atomic sentences . .
1.4 General first-order languages
1.5 Function symbols (optional)
1.6 The first-order language of set theory (optional)
1. 7 The first-order language of arithmetic (optional)
1.8 Alternative notation (optional) . . . . . . . . . .
19
The
2.1
2.2
2.3
2.4
2.5
2.6
Logic of Atomic Sentences
Valid and sound argument s
Methods of proof . . . . . . .
Formal proofs . . . . . . . . .
Constructing proofs in Fitch
Demonstrating nonconsequence .
Alternative notation (optional)
41
The
3.1
3.2
3.3
3.4
Boolean Connectives
Negation symbol: --; ..
Conjunction symbol: II
Disjunction symbol: V .
Remarks about the game
67
68
71
74
77
lV
19
20
23
28
31
37
38
40
41
46
54
58
63
66
x /
CONTENTS
4
Ambiguity and parentheses . . .
Equivalent ways of saying things
Translation...........
Alternative notation (optional) .
The
4.1
4.2
4.3
4.4
4.5
4.6
Logic of Boolean Connectives
Tautologies and logical truth . . .
Logical and tautological equivalence
Logical and tautological consequence .
Tautological consequence in Fitch ..
Pushing negation around (optional) .
Conjunctive and disjunctive normal forms (optional)
79
82
84
90
93
94
106
110
114
118
122
5
Methods of Proof for Boolean Logic
5.1 Valid inference steps . . . . . . . . .
5.2 Proof by cases . . . . . . . . . . . .
5.3 Indirect proof: proof by contradiction
5.4 Arguments with inconsistent premises (optional)
128
129
132
137
141
6
Formal Proofs and Boolean Logic
6.1 Conjunction rule s
6.2 Disjunction rule s . . . . . . .
6.3 Negation rules . . . . . . . .
6.4 The proper use of subproofs .
6.5 Strategy and tactics . . . . .
6.6 Proofs without premises (optional)
143
144
149
156
165
168
175
7
Conditionals
7.1 Material conditional symbol: ----t
7.2 Biconditional symbol: B
7.3 Conversational implicature . . .
7.4 Truth-functional completeness (optional)
7.5 Alternative notation (optional) . . . . . .
178
The
8.1
8.2
8.3
8.4
199
199
207
215
223
8
CONTENTS
3.5
3.6
3.7
3.8
Logic of Conditionals
Informal methods of proof .
Formal rules of proof for ----t and B . . .
Soundness and completeness (optional)
Valid arguments: some review exercises
180
183
189
192
198
CONTENTS /
II
Quantifiers
9 Introduction to Quantification
9.1 Variables and atomic wffs . .
9.2 The quantifier symbols: V,::3 .
9.3 Wffs and sentences . . . . . .
9.4 Semantics for the quantifiers
9.5 The four Aristotelian forms .
9.6 Translating complex noun phrases
9.7 Quantifiers and function symbols (optional)
9.8 Alternative notation (optional) . . . . . . . .
229
230
232
233
237
241
245
253
257
10 The
10.1
10.2
10.3
10.4
10.5
10.6
259
259
267
277
282
286
291
Logic of Quantifiers
Tautologies and quantification
First-order validity and consequence . . . . .
First-order equivalence and DeMorgan's laws
Other quantifier equivalences (optional)
The axiomatic met hod (optional) .
Lemmas . . . . . .
11 Multiple Quantifiers
11.1 Multiple uses of a single quantifier
11.2 Mixed quantifiers . . . . . . . . . .
11.3 The step-by-step met hod of translation
11.4 Paraphrasing Englishparaphrasing English
11.5 Ambiguity and context sensitivity . . . . .
11.6 Translations using function symbols (optional)
11. 7 Prenex form (optional) . . . . .
11.8 Some extra translation problems
298
298
302
307
309
313
317
320
324
12 Methods of Proof for Quantifiers
12.1 Valid quantifier steps . . . . . . . . . . .
12.2 The method of existential instantiation .
12.3 The method of general conditional proof .
12.4 Proofs involving mixed quantifiers
12.5 Axiomatizing shape (optional)
328
328
331
332
338
347
13 Formal Proofs and Quantifiers
13.1 Universal quantifier rules .
13.2 Existential quantifier rules
13.3 Strategy and tactics . . . .
351
351
356
361
xi
xii /
CONTENTS
13.4 Soundness and completeness (optional)
13.5 Some review exercises (optional) . .
14 More about Quantification (optional)
14.1 Numerical quantification
14.2 Proving numerical claims . . . .
14.3 The, both, and neither . . . . . .
14.4 Adding other determiners to FOL
14.5 The logic of generalized quantification
14.6 Other expressive limitations of first-order logic
III
CONTENTS
370
370
373
375
383
388
392
398
406
Applications and Metatheory
15 First-order Set Theory
15.1 Naive set theory ..
15.2 The empty set, singletons and pairs
15.3 Subsets . . . . . . . . .
15.4 Intersection and union . . . . . .
15.5 Ordered Pairs . . . . . . . . . .
15.6 Modeling relations in set theory
15.7 Functions . . . . . . . . . . . . .
15.8 The powerset of a set (optional)
15.9 Russell's Paradox (optional)
15.10 Zermelo Frankel set theory (ZFC) (optional)
413
414
419
422
424
16 Mathematical Induction
16.1 Inductive definitions and inductive proofs
16.2 Inductive definitions in set theory . . . .
16.3 Induction on the natural numbers . . . .
16.4 Axiomatizing the natural numbers (optional)
16.5 Induction in Fitch . . . . . . . . . . . . .
16.6 Ordering the Natural Numbers (optional)
16.7 Strong Induction (optional) . . . . . . .
454
455
463
465
468
473
475
478
17 Advanced Topics in Propositional Logic
17.1 Truth assignments and truth tables
17.2 Completeness for propositional logic
17.3 Hom sentences (optional)
17.4 Resolution (optional) . . . . . . . .
484
484
486
429
431
436
439
442
444
495
504
CONTENTS /
18 Advanced Topics in FOL
18.1 First-order structures .
18.2 Truth and satisfaction, revisited
18.3 Soundness for FOL . . . . . . . .
18.4 The completeness of the shape axioms (optional)
18.5 Skolemization (optional) . . . .
18.6 Unification of terms (optional)
18.7 Resolution, revisited (optional)
511
511
516
525
528
19 Completeness and Incompleteness
19.1 The Completeness Theorem for FOL
19.2 Adding witnessing constants
19.3 The Henkin theory . . . . .
19.4 The Elimination Theorem ..
19.5 The Henkin Construction ..
19.6 The Lowenheim-Skolem Theorem .
19.7 The Compactness Theorem . . . .
19.8 The Godel lncompleteness Theorem
542
Summary of Formal Proof Rules
Propositional rules
First-order rules . . . . . . . . . .
lnduction rule s . . . . . . . . . . .
lnference Procedures (Con Rules)
573
573
575
577
577
Glossary
579
File Index
590
Exercise Index
593
General Index
595
530
532
535
543
545
547
550
556
562
564
568
T
xiii
Related documents