Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Contents Acknowledgements v Introduction The special role of logic in rational inquiry Why learn an artificiallanguage? . . . . . . Consequence and proof. . . . . . . . . . . . Instructions about homework exercises (essential!) To the instructor Web address 1 1 I 1 2 3 2 4 5 11 16 Propositional Logic Atomic Sentences 1.1 Individ ual constants 1.2 Predicate symbols . 1.3 Atomic sentences . . 1.4 General first-order languages 1.5 Function symbols (optional) 1.6 The first-order language of set theory (optional) 1. 7 The first-order language of arithmetic (optional) 1.8 Alternative notation (optional) . . . . . . . . . . 19 The 2.1 2.2 2.3 2.4 2.5 2.6 Logic of Atomic Sentences Valid and sound argument s Methods of proof . . . . . . . Formal proofs . . . . . . . . . Constructing proofs in Fitch Demonstrating nonconsequence . Alternative notation (optional) 41 The 3.1 3.2 3.3 3.4 Boolean Connectives Negation symbol: --; .. Conjunction symbol: II Disjunction symbol: V . Remarks about the game 67 68 71 74 77 lV 19 20 23 28 31 37 38 40 41 46 54 58 63 66 x / CONTENTS 4 Ambiguity and parentheses . . . Equivalent ways of saying things Translation........... Alternative notation (optional) . The 4.1 4.2 4.3 4.4 4.5 4.6 Logic of Boolean Connectives Tautologies and logical truth . . . Logical and tautological equivalence Logical and tautological consequence . Tautological consequence in Fitch .. Pushing negation around (optional) . Conjunctive and disjunctive normal forms (optional) 79 82 84 90 93 94 106 110 114 118 122 5 Methods of Proof for Boolean Logic 5.1 Valid inference steps . . . . . . . . . 5.2 Proof by cases . . . . . . . . . . . . 5.3 Indirect proof: proof by contradiction 5.4 Arguments with inconsistent premises (optional) 128 129 132 137 141 6 Formal Proofs and Boolean Logic 6.1 Conjunction rule s 6.2 Disjunction rule s . . . . . . . 6.3 Negation rules . . . . . . . . 6.4 The proper use of subproofs . 6.5 Strategy and tactics . . . . . 6.6 Proofs without premises (optional) 143 144 149 156 165 168 175 7 Conditionals 7.1 Material conditional symbol: ----t 7.2 Biconditional symbol: B 7.3 Conversational implicature . . . 7.4 Truth-functional completeness (optional) 7.5 Alternative notation (optional) . . . . . . 178 The 8.1 8.2 8.3 8.4 199 199 207 215 223 8 CONTENTS 3.5 3.6 3.7 3.8 Logic of Conditionals Informal methods of proof . Formal rules of proof for ----t and B . . . Soundness and completeness (optional) Valid arguments: some review exercises 180 183 189 192 198 CONTENTS / II Quantifiers 9 Introduction to Quantification 9.1 Variables and atomic wffs . . 9.2 The quantifier symbols: V,::3 . 9.3 Wffs and sentences . . . . . . 9.4 Semantics for the quantifiers 9.5 The four Aristotelian forms . 9.6 Translating complex noun phrases 9.7 Quantifiers and function symbols (optional) 9.8 Alternative notation (optional) . . . . . . . . 229 230 232 233 237 241 245 253 257 10 The 10.1 10.2 10.3 10.4 10.5 10.6 259 259 267 277 282 286 291 Logic of Quantifiers Tautologies and quantification First-order validity and consequence . . . . . First-order equivalence and DeMorgan's laws Other quantifier equivalences (optional) The axiomatic met hod (optional) . Lemmas . . . . . . 11 Multiple Quantifiers 11.1 Multiple uses of a single quantifier 11.2 Mixed quantifiers . . . . . . . . . . 11.3 The step-by-step met hod of translation 11.4 Paraphrasing Englishparaphrasing English 11.5 Ambiguity and context sensitivity . . . . . 11.6 Translations using function symbols (optional) 11. 7 Prenex form (optional) . . . . . 11.8 Some extra translation problems 298 298 302 307 309 313 317 320 324 12 Methods of Proof for Quantifiers 12.1 Valid quantifier steps . . . . . . . . . . . 12.2 The method of existential instantiation . 12.3 The method of general conditional proof . 12.4 Proofs involving mixed quantifiers 12.5 Axiomatizing shape (optional) 328 328 331 332 338 347 13 Formal Proofs and Quantifiers 13.1 Universal quantifier rules . 13.2 Existential quantifier rules 13.3 Strategy and tactics . . . . 351 351 356 361 xi xii / CONTENTS 13.4 Soundness and completeness (optional) 13.5 Some review exercises (optional) . . 14 More about Quantification (optional) 14.1 Numerical quantification 14.2 Proving numerical claims . . . . 14.3 The, both, and neither . . . . . . 14.4 Adding other determiners to FOL 14.5 The logic of generalized quantification 14.6 Other expressive limitations of first-order logic III CONTENTS 370 370 373 375 383 388 392 398 406 Applications and Metatheory 15 First-order Set Theory 15.1 Naive set theory .. 15.2 The empty set, singletons and pairs 15.3 Subsets . . . . . . . . . 15.4 Intersection and union . . . . . . 15.5 Ordered Pairs . . . . . . . . . . 15.6 Modeling relations in set theory 15.7 Functions . . . . . . . . . . . . . 15.8 The powerset of a set (optional) 15.9 Russell's Paradox (optional) 15.10 Zermelo Frankel set theory (ZFC) (optional) 413 414 419 422 424 16 Mathematical Induction 16.1 Inductive definitions and inductive proofs 16.2 Inductive definitions in set theory . . . . 16.3 Induction on the natural numbers . . . . 16.4 Axiomatizing the natural numbers (optional) 16.5 Induction in Fitch . . . . . . . . . . . . . 16.6 Ordering the Natural Numbers (optional) 16.7 Strong Induction (optional) . . . . . . . 454 455 463 465 468 473 475 478 17 Advanced Topics in Propositional Logic 17.1 Truth assignments and truth tables 17.2 Completeness for propositional logic 17.3 Hom sentences (optional) 17.4 Resolution (optional) . . . . . . . . 484 484 486 429 431 436 439 442 444 495 504 CONTENTS / 18 Advanced Topics in FOL 18.1 First-order structures . 18.2 Truth and satisfaction, revisited 18.3 Soundness for FOL . . . . . . . . 18.4 The completeness of the shape axioms (optional) 18.5 Skolemization (optional) . . . . 18.6 Unification of terms (optional) 18.7 Resolution, revisited (optional) 511 511 516 525 528 19 Completeness and Incompleteness 19.1 The Completeness Theorem for FOL 19.2 Adding witnessing constants 19.3 The Henkin theory . . . . . 19.4 The Elimination Theorem .. 19.5 The Henkin Construction .. 19.6 The Lowenheim-Skolem Theorem . 19.7 The Compactness Theorem . . . . 19.8 The Godel lncompleteness Theorem 542 Summary of Formal Proof Rules Propositional rules First-order rules . . . . . . . . . . lnduction rule s . . . . . . . . . . . lnference Procedures (Con Rules) 573 573 575 577 577 Glossary 579 File Index 590 Exercise Index 593 General Index 595 530 532 535 543 545 547 550 556 562 564 568 T xiii