Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CHAPTER 16 16.1 3. 64 k1 0.15 1 0. 03 R 3. 64 k 1 0.15 1 0. 03 | 4. 06 k R 4. 31 k 16.2 V V I V I V BE1 I C1 I S1 exp BE1 | I C2 I S 2 exp BE 2 | C2 S 2 exp BE 2 | V BE V BE 2 V BE 1 I S1 VT V T V T IC1 IS I S1 I S 2 | I S IS 1 I S 2 2 I IC1 a I C 2 IC1 : V BE V T ln C2 I | I S1 I S 1 S | 2I S IS I S1 0. 025 ln 1 IS 2 IS I I S 2 IS 1 S 2 IS 1 1 IS 2 IS 1. 05 0. 025 ln 2. 50 mV IS 0. 95 2 IS 1.10 b V BE 0. 025 ln 5. 02 mV 0. 90 b I S 1 IS 2 1 1 IS IS V V BE1 I 0. 001 exp BE 2 1. 04 S 0. 02 or 2% exp 0. 025 VT IS IS IS 16.3 250 1 0. 05 A 2 1 0. 025 2 | I max 250 1 0. 05 A 1 0. 025 2 = 138 A a I DS DS 2 2 2 V 2 250 1 0. 05 A 2 I min DS 2 1 0. 025 = 113 A 2 V 138 A + 113 A I DS 125 . 5A | I DS 138 A 11 3 A = 25 A | 2 I DS I DS 19 . 8% IDS 3 0. 025 = 1. 20 m A 2 V2 250 1 0. 05 A 3 0. 025 2 = 1. 05 m A 2 V2 1. 20 mA + 1. 05 mA 1. 125 mA | I DS 1. 20 mA 1. 05 mA = 0.150 mA | 2 b I max DS I min DS 250 1 0. 05 A V 2 I DS 13 . 3% I DS 1 16.4 V GS1 V TN V GS2 V TN 2I DS1 V TN W K 'n L 1 2I DS1 1 V TN W W / L K 'n 1 L 2W / L 2I DS1 W / L 1 W 4 W / L K 'n L 2IDS2 V TN W K 'n L 2 2I DS2 1 V TN W W / L K 'n 1 L 2W / L 2I DS2 W / L 1 W K 'n 4 W / L L I DS2 I DS1: V GS2 V GS1 W / L 2IDS2 W / L 2 W / L V GS V TN 2 W / L W K 'n L W / L 0.10 25 mV a V GS V GS V TN 0.5 2 2 W / L W / L V GS 0.003 2 2 1. 2 % b W / L 0.5 V GS V TN 16.5 V V 0.002 IS1 0.002 I S1 exp BE1 I S2 exp BE1 =1.08 | I S1 1.08I S2 | I exp V V 0.025 T T S2 I I S2 I S 0. 08 IS I S1 I S2 = 0.08I S2 | I S S1 =1. 04I S2 | = 7.7% 2 IS 1. 04 10V 10 V F1 100 1 0. 025 1 123 | F2 100 1 0.025 1 117 50 V 50V 100A 100A I B1 0.813 A | I B2 0. 855 A 123 117 16.6 I OX W 1 V DSX L X 1 V DSX I REF | R OX W 1 V DS1 I OX L 1 V DS1 V GS1 V TN I O2 I O3 I O4 2 2I D1 0.75 Kn 1.52V 4 25 x10 2 30x10 6 6 1 10 10 1 0.015 10 30A = 84.3A | R O2 0. 015 909k 4 1 0.015 1.52 84.3A 1 8 20 1 0.0158 0.015 30A = 164A | R O3 455k 4 1 0. 0151.52 164A 1 12 1 0. 01512 40 0. 015 30A = 346A | R 227k O4 4 1 0.015 1.52 346A 16.7 5 V SG1 15x10-6 2 5 V SG1 2 | V SG1 2.985 V V SG1 0.9 1 0.01V SG1 4 R 2 1 3x10 5 2.985 I REF 67. 2A 3x10 4 1 V SD2 15x10 -6 8 100 5 2 I O2 2. 985 0.9 1 0. 015 274A | R OUT2 383k 2 1 I O2 274A I SD1 I O3 15x10 -6 16 100 10 2 2. 985 0.9 1 0. 0110 574A | R OUT3 192k 1 2 574A 16.8 *Problem 16.8 - NMOS Current Source Array IREF 0 1 DC 30U VD2 2 0 DC 10 AC 1 VD3 3 0 DC 8 AC 1 VD4 4 0 DC 12 AC 1 M1 1 1 0 0 NFET W=4U L=1U M2 2 1 0 0 NFET W=10U L=1U M3 3 1 0 0 NFET W=20U L=1U M4 4 1 0 0 NFET W=40U L=1U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.015 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VD2) IM(VD3) IM(VD4) IP(VD2) IP(VD3) IP(VD4) .END The results are identical to the hand calculations. 16.9 *Problem 16.9 - PMOS Current Source Array RREF 0 1 30K VSS 4 0 DC 5 VD2 2 0 DC 0 AC 1 VD3 3 0 DC -5 AC 1 M1 1 1 4 4 PFET W=2U L=1U M2 2 1 4 4 PFET W=8U L=1U M3 3 1 4 4 PFET W=16U L=1U .MODEL PFET PMOS KP=15U VTO=-0.9 LAMBDA=0.01 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VD2) IM(VD3) IP(VD2) IP(VD3) .END The results are identical to the hand calculations. 16.10 K 'p W 2 15x10 -6 8 2 V SG2 V TP 1 V SD2 | 35x10 -6 V SG1 0.9 1 0.015 2 L 2 1 W 8 1 V SD2 1 0.015 I L 2 35A 1 2 1.645 V | SD2 | I REF 8. 47A I REF W I REF 2 1 V SD1 1 0.011. 645 L 1 1 1 I SD2 V SG1 3 I REF 5 V SG1 5 1. 645 | R= 396 k R 8. 47A 16.11 (a) V 14.3 V BE 12 0.7 226 A | I REF I C1 1 5 8.3I B | I REF I S exp BE 1 4 FO V A 5x10 V T V CE 2 5 1 1 V BE V CE 2 VA 60 I O2 5I S exp | IO2 5226A 944 A 1 5I REF 14.3 V BE 14.3 0.7 V A V T 1 1 FO VA 50 60 V A V CE 2 60 5 R OUT2 r o 2 68. 9 k IC 2 9.44x10 4 V 3 1 CE 3 1 VA 60 I O3 8.3IREF 8. 3226A 1.52 mA 14.3 V BE 14.3 0.7 1 1 FO VA 50 60 V V CE 3 60 3 R OUT3 r o 3 A 41.5 k IC 3 1.52x10 3 b I REF 12 0.7 4 0.7 212 A | I REF I C1 1 5 8.3 I B 5x10 FO 1 a I REF V 14. 3 2V BE I REF IS exp BE 1 V A V T FO FO 1 V CE 2 VA 2V BE 14.3 FO FO 1 VA 1 I O2 V V 5I S exp BE 1 CE 2 5I REF V A V T 1 I O2 5 V V CE 2 60 V 5V 60 5212A 1.12mA | R OUT 2 r o2 A 58.0 k 14. 3 1.4 IC 2 1.12mA 1 50 51 60 1 V CE 3 3 1 VA 60 8.3212A 1.80 mA 14.3 2V BE 14.3 1.4 1 1 FO FO 1 VA 5051 60 1 I O3 8.3IREF R OUT3 r o 3 16.12 4 V A V CE 3 60V 3V 35.0 k IC 3 1.80mA *Problem 16.12(a) - NPN Current Source Array RREF 2 1 50K VCC 2 0 DC 12 VC2 3 0 DC 5 AC 1 VC3 4 0 DC 3 AC 1 Q1 1 1 0 NBJT 1 Q2 3 1 0 NBJT 5 Q3 4 1 0 NBJT 8.3 .MODEL NBJT NPN BF=50 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VC2) IM(VC3) IP(VC2) IP(VC3) .END *Problem 16.12(b) - Buffered NPN Current Source Array RREF 2 5 50K VCC 2 0 DC 12 VC2 3 0 DC 5 AC 1 VC3 4 0 DC 3 AC 1 Q1 5 1 0 NBJT 1 Q2 3 1 0 NBJT 5 Q3 4 1 0 NBJT 8.3 Q4 2 5 1 NBJT 1 .MODEL NBJT NPN BF=50 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC IM(VC2) IM(VC3) IP(VC2) IP(VC3) .END The results are almost identical to the hand calculations. 16.13 I REF IC1 1 5 8.3 V IB 14.3IB 14.3 2V BE I C1 I S exp BE 1 FO 1 FO 1 V A V T FO FO 1 V V BE 14.3 1. 4 I REF IS exp BE 1 1.029I S exp V T 50 51 60 V T V 1 CE 2 V BE V CE 3 VA 166A 1. 029 I O3 8.3IS exp 1 8. 3I REF | I REF 19.6A 3 V A 1.029 V T 8.3 1 60 12 0.7 0.7 12 1.4 I REF | R= 541 k 5x104 19.6A V 5 1 CE 2 1 VA 60 I O2 5I REF 519. 6A 103 A 1.029 1.029 16.14 I REF IB = 15 0.7 V 238A | I REF 2I C1 2 1 6 9IB = 2 FO 1 EC 1 I B 18I B 6x10 4 V A 238A = 2.00A 0.7 18 + 250 1 60 V 60 15 15 I O2 FO 1 EC 2 I B 50 1 2. 00A 125A | R OUT2 r o2 600 k V A 60 1.25x10 4 V 9 60 9 I O3 6 FO 1 EC 3 I B 300 1 2.00A 690A | R OUT2 r o2 4 100 k V 60 6.90x10 A V 60 27 27 I O2 9 FO 1 EC 4 I B 450 1 2.00A 1.31mA | R OUT 2 r o2 66.4 k V 60 1. 31x10 3 A 5 16.15 R REF 15V 0.7V 0.7V 2 1 6 9IB 544k | I REF I C1 25A FO 1 V 18I B 25A I REF 2 FO 1 EC 1 I B | IB 0.2435A 1.4 18 V 1 A FO 2 50 1 60 51 V 15 I O2 FO 1 EC 2 I B 50 1 I 15.2 A V 60 B A V 9 I O3 6 FO 1 EC 3 I B 300 1 I B 84.0 A V A 60 V 50 27 I O4 9 FO 1 EC 4 IB 450 1 IB 159 A | I C5 F I E 5 18I B 4.30 A V A 60 51 16.16 V BE 2 IE 2 R 2 V BE 3 IE 3 R 3 I E3 R2 V V BE3 I E2 BE 2 R3 R3 In order to have equal base- emitter voltages, the two transistors must operate at the equal collector current densities: I E 2 I E3 5IE 2 n 10 2 A nA nA 16.17 Note: The two 5-V supplies should be 10 V. With the large voltage drop across the emitter resistances, the output resistance of the current sources will be very high and the VCE mismatch terms will be negligible. I REF I I 76 I REF I REF REF | I E1 C1 7 1.093 75 1.093 1.079 F 1 75 I REF 12 V - 0.7 V 12 I REF 10k 0.7V 586A | I E1 543A 10k | I REF 1.079 10k1. 927 75 I E 2 2I E1 | I O2 F 2I E1 2 543A 1. 07mA 76 75 1 1 I E 3 4I E1 | IO3 F 4I E1 4 46.6 543A 2.14mA | 76 g m1 40 536A I REF IC1 7I B | I C1 6 1 R th R R 1 10k 46.6 10k 5.01k | R th2 R th r 3 o3 12. 5k g m1 r 2 750.025 V 75 0.025V 60 10 5. 35 1.75k | r 3 0.876k | r o 2 60.4k 1. 07mA 2.14mA 1. 07mA R th2 5.01k 0.876k 762.5k 4.88k oR E 75 5k R OUT2 r o 2 1 60. 4k1 2.01 M 4.88k 1.75k 5k R th2 r 2 R E r o3 60 10 5.35 V 30.2k | R R r 1 5k o th2 th 2 2.14mA R th3 5.01k 1.75k 76 5k 4.95k o R E 75 2.5k R OUT3 r o 3 1 30.2k1 4.95k 0.876 k 2.5k 710 k R r R th 3 E 16.18 For V BE 2 = V BE 3, IO3 R 3 IO2 R 2 | R 3 IO2 I I 2 R 2 35k 15 k | O2 O 3 | n = IO3 2A nA 3 16.19 I REF I I 10 V 0.7V 0.7V 860A I C1 | I O2 R 2 V T ln C1 S2 10k I O2 IS1 860A 2 10 4 IO2 0. 025 ln I O2 12.4 A | V E 2 12.4 A 10k 0.124V IO2 1 60 5 0.124 r o2 5.23 M | R th is small and the voltage across R E is also small. 12.4A R OUT2 r o 2 1 g m2 R E 2 5.23M1 4012.4 A 10k 31.2 M 860A 12 5x10 3 IO3 0.025 ln I O3 29.3 A | V E 3 29. 3 A 5k 0.147 V 1 IO2 60 5 0.147 r o3 2.21 M | R OUT2 r o 3 1 g m3 R E 3 2.21M1 40 0.147 15. 2 M 29. 3A 16.20 R 10 0.7 0.7V 115k | R V T lnI REF I S2 0.025 V ln75A 2 17.0 k 2 75A I o2 IO2 I S1 5A 5A 1 I 75A n I I o3 R 3 V T ln REF S3 | 10A2k 0.025V ln n = 0. 297 I I O3 S1 10A 1 16.21 *Problem 16.21 - Buffered NPN Widlar Current Source Array RREF 1 3 10K VCC 1 0 DC 10 VC2 2 0 DC 5 AC 1 Q1 3 4 0 NBJT 1 Q2 2 4 5 NBJT 2 RE2 5 0 10K 7 Q3 2 4 6 NBJT 12 RE3 6 0 5K Q4 1 3 4 NBJT 1 .MODEL NBJT NPN BF=100 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC IC(Q2) IC(Q3) .END Results: IC1 = 858 A, IC2 = 12.7 A, IC3 = 30.2 A, ROUT2 = 28.8 M ROUT3 = 13.9 M 16.22 I REF Note: Use VA = 70 V 5V 0. 7V 0.7V 5V 40k 215A IC1 | I O2 V T I C1 IS 2 ln R2 IO2 I S1 0.025 V 215A 10 ln IO2 22.7 A | V E 2 22.7A 5k 0.114 V 5k 1 IO2 70 5 0.114 3.30M | R th is small and the voltage across RE is also small. 22.7A I O2 r o2 R OUT2 r o 2 1 g m2 R E 2 r o2 1 40IC 2 R E 2 3.30M1 40 0.114 18.3 M 0.025 V 215A 20 ln I O3 45.5 A | V E 3 45. 4A 2.5k 0.114V 2.5k 1 IO3 70 5 0.114 1.65M | R OUT3 r o3 1 g m 3R E3 1.65M1 400.114 9.17 M 45.5A I O3 r o3 16.23 R 5 0.7 0.7 5 V 172 k R2 50A V T IREF I S2 0.025 V 50A 10 ln ln 9. 78 k I o2 10A 10A 1 I O2 I S1 I I 50A n I o3 R 3 V T ln REF S3 | 10A2k 0.025V ln n = 0. 445 I I O3 S1 10A 1 16.24 Note: Use -VEE = -5 V 8 For the current mirror at the bottom: I C2 F I B 2 | I E 3 = IC1 + IB1 + I B 2 = n F IB 2 nIB 2 I B 2 IC 2 IO F F 1 n F 1 I IE 3 | I O F I E 3 I C2 | I C 2 IREF I B 3 IREF O 1 n F 1 F 1 F F 1 n 1 n F 1 F F 1 I O n I REF IO I REF n 1 n I REF nI REF for F n F 1 F 1 1 F F F 1 F r 125 40 0.7 5 V 50A 49.6 A | R OUT o o 55.8 M 1 2 2 49.6 A 1 125 3 or o 125 44. 3 V b I O 3 50A 146 A | R OUT 2 2 146 A 19.0 M 1 125 c V CS I O R OUT 146A19.0M 2770V d V CB 3 = V EE 0.7V 0.7 V 0 V EE 1. 40V 16.25 r V V 12540 50 R OUT o o o A o A | For Prob. 16.24, R OUT M 2 2IO 2nI REF 2n50A n 1 a I O 16.26 i x 0 g m1 g 3 g g m1 3 g 3 ve | I C1 I C2 I C 3 so small - signal parameters are the same g 3 g o2 v b 1 = 2g m1 g 3 g m1 g o2 g 3 g o 2 g m1 g 3 2 o 2g m1g 3 f f ve i x g 3 g o2 ix = 2g m1 v b v e i x f o 1 o ix g g 3 | v b i x m1 1 2g f m1 g m1 g o2 i x 2g 3 vx v e i x oi 1 r o 3 for 1 i x i r 3 | i 1 g 3 v b v e x 1 2 2 f ix i 1 r r i x r o3 or o 3 x | R OUT r o3 o o3 o o 3 2g m1 2 2g m1 2 2 16.27 V CB 3 V C 3 V BE 3 V BE 2 V EE 0 V C 3 V EE V BE 3 V BE 2 IC 3 I I I I 1 V T ln C1 | I C1 C1 C1 C 3 F IC 3 | From Prob. IS 3 IS1 F n F F F n 5 1 F 1 I REF 15A 72.1A | I C1 I C3 72.0A n 5 1 1 F 1 1 1 F 125 F n F V BE 3 V BE1 V T ln 16.24: IC 3 72. 0A 72.1A V BE 3 V BE 2 0.025 V ln ln 1.16V | V C 3 V EE 1.16 V 3fA 15fA 16.28 (a) 9 Assuming balanced drain voltages, I DS3 I DS1 I REF V GS1 V TN 2I DS1 0.75 K n1 5 0.75 I REF 2I REF 4 5K 'n 2I REF 4 ' 5K n W L 1 IREF = W 4 L 2 | V GS3 0.75 0.75 2I REF ' 4 20K n 30k 2I REF 4 20K 'n | I REF 5 V GS1 V GS3 30k | 30kI REF 3.5 1.5 IREF 10K 'n Using K 'n = 25x10 -6 and rearranging: 9x10 8 I 2REF 2.19x10 5 I REF 12.25 0 I I REF 87.2 A and I O REF 21.8 A. Drain voltage balance on M1 and M2 4 requires VGS4 V GS3 | V TN (b) 2IREF V TN W ' K n L 4 2IREF 4 20K 'n W 80 | L 4 1 This part requires an iterative solution or the use of a computer solver . Assuming V DS balance between M1 and M 2 , 0 will not affect the current mirror ratio, but it will change VGS and hence IREF slightly. One iterative approach: 5K 'n V GS1 V TN 2 1 V GS1 2 2IDS1 V TN ' 20K n 1 5 V GS1 Guess V GS1 | Then ID1 Since IDS3 IDS1 , V GS3 5 V GS1 V GS3 I and I DS1 REF . 30k 4 If the second value of IDS1 does not agree with the first, then try a new VGS1 . A spreadsheet yields: V GS1 1.336 V, V GS3 1. 381V, I REF 87.5A , I O 21.7A. I REF Note: There is essentially no change from the first answer! (c) 16.29 10 *Problem 16.28 - NMOS Wilson Source RREF 1 0 30K VSS 4 0 DC -5 M1 3 3 4 4 NFET W=5U L=1U M2 2 3 4 4 NFET W=20U L=1U M3 0 1 3 3 NFET W=20U L=1U M4 1 1 2 2 NFET W=80U L=1U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.015 .OP .END I O I REF R OUT W L 1 1 1 | R OUT f 2 r o 3 f 2 W 3 I O 2 L 2 1 2 W 2 K 'n L 2 1 I REF 3 I REF 16.30 Since = 0, I DS3 I DS1 I REF W L 2 1 W 23 L 1 2K n 1 I DS2 3 I O 3 W 2 ' L 2 2K n W I REF L 1 W L 1 150A = = 37.5A W 4 L 2 V DS3 V GS3 V TN3 | V D3 10 V GS1 V GS3 V TN3 | V D3 10 V GS1 V GS3 V TN3 V D3 10 V TN1 2I DS1 V TN3 K n1 V D3 10 V 0.75V 2I DS3 V TN3 K n3 237.5A V 2 5 25A 237.5AV 2 8.09 V 20 25A 16.31 1 1 W W R OUT f 2 r o 3 | = IO = IREF = 50A | r o3 1.60M L 2 L 1 I DS3 0. 012550A f2 R OUT 250M 1 156 | Using Eq . 13.71, f 2 r o3 1.60M 2K n IDS2 2 I 2 5x10 5 3. 80 W f 2 DS2 0.0125 156 2 2.5x10 5 1 L 2 2K 'n 16.32 The circuit is the same as Fig. 16.20 with the addition of RREF in parallel with ro2. We require RREF >> ro2 in order not to reduce the gain of the feedback loop. A current source with a source resistor which achieves ROUT = ro(1+gmRs) should be sufficient. A cascode or Wilson source will also work. 16.33 11 (a ) R O F 4 r o2 | All K n are the same: I O I REF 17.5A V GS1 0.75 r o2 2 17.5x10 6 75x10 6 1. 43V | V 3 V GS3 V TN3 1. 43V 0.75V 0. 680 1 1 1. 43 5 1.43 0.0125 0. 0125 4.65M | r o4 4.78M 17. 5A 17.5A g m4 = 2 75 x10 6 17.5x10 6 1 0.0125 5 1.43 5.24x10 5 S F4 5.24x10 5 S 4.78M 250 | R O 1.16 G ( b) V CS I O R O 20. 3 kV ! 16.34 (c) V min DD V GS1 V 4 1.43 0.680 2.11V *Problem 16.34 - NMOS Cascode Source IREF 0 1 DC 17.5U VDD 2 0 DC 5 M1 3 3 0 0 NFET W=3U L=1U M2 4 3 0 0 NFET W=3U L=1U M3 1 1 3 3 NFET W=3U L=1U M4 2 1 4 4 NFET W=3U L=1U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.0125 .OP .TF I(VDD) VDD .END Results: IO = 17.5 A ROUT = 1.17 GThe same as the hand analysis. 16.35 2I C1 I 2I I C 2 IC1 C1 C1 F F 1 F F 1 F I REF F IC1 F 1 1 + 2 1 F F 1 a I REF = I C 3 + IB 3 + I B4 = I E 3 I B4 I C1 I C1 I REF | I O I C 4 F I C2 2 1 1+ F F 1 110 17.5A or o 110 50 IO 2 1 16. 9 A | R OUT 2 216.9A 163 M 111 1+ 110 111 b V CS I O R OUT 16. 9A 163M 2750 c V CC 2V BE 1. 40 V 16.36 12 *Problem 16.36 - NPN Cascode Current Source IREF 0 1 17.5U VCC 2 0 DC 5 Q1 3 3 0 NBJT 1 Q2 4 3 0 NBJT 1 Q3 1 1 3 NBJT 1 Q4 2 1 4 NBJT 1 .MODEL NBJT NPN BF=110 VA=50 .OP .TF I(VCC) VCC .END Results: IO = 16.9 A ROUT = 1.86 MThe same as the hand analysis. 16.37 1 1 W W R OUT f 4 r o2 | = I O = I REF = 50A | r o 2 1.60M L 2 L 1 I DS2 0. 0125 50A f4 R OUT 250M 1 156 | Using Eq . 13.71, f 4 r o2 1.60M 2K n4 IDS4 2 I 2 5x10 5 3.80 W f 4 DS4' 0.0125 156 5 L 4 2K n 1 2 2.5x10 16.38 *Problem 16.38 - NPN Widlar Current Source IREF 2 1 50U VCC 2 0 DC 10 Q1 1 1 0 NBJT 1 Q2 2 1 3 NBJT 20 R2 3 0 4K .MODEL NBJT NPN BF=110 .OP .DC IREF 50U 5M 50U .PROBE IC(Q2) .END 16.39 V V V I I O F I E 2 F BE1 I B1 BE1 T ln C1 R2 R2 I S1 R 2 V V BE 2 V BE1 V V BE 2 V BE1 I C1 EE I B 2 EE R1 R1 a I C 2 0. 025V 15 1.4 V BE1 0.7V ln 4 318 A | Note: 318 A 15 2.2k R 2.2k 10 10 2 b I C 2 0.025V 3.3 1. 4 V BE1 0. 7V ln 4 295 A | Note: 318 A 15 2.2k R2 2. 2k 10 10 c I C 2 VT V V EB 1 V EB 2 0.025 V 5 1. 4 0.7V ln CC ln 4 66.5 A | 70 A R2 I S1R1 10k 10k 10 10 15 16.40 13 vx v1 v e i x o i1 r o 4 i x 2i r o 2 | i1 i | v x i x oi r o4 i x 2i r o2 i ix 2i r o2 r 4 R th i = ix where Rth g m3 1 g m2 r 4 | i ix 2ir o2 r 4 | i = ix f 2 i r x for 2 f 2 o | v x i x r o2 r o4 o o4 r o2 o4 2f 2 2 2 r R OUT r o 4 o 1 o o4 2 2 14 1 for R th r 4 and 2f 2 o r o2 r 4 2r o 2 16.41 An iterative solution is required: K 2 V 1. Choose VGS2 . Then I DS2 = n2 V GS2 V TN2 and I DS1 GS2 2 R2 2. V GS1 V TN1 3. I DS2 2I DS1 K n1 V DD V GS1 V GS2 R1 Compare to IDS2 in step 1 and choose new VGS2 2.5x10-4 V GS2 0.75 2 | I DS1 VGS2 | V GS1 0.75 2I DS1 -4 2 15k 2.5x10 10 V GS1 V GS2 | Iteration yields VGS2 2. 8V, I O I DS2 187 A 10k I DS2 = I DS2 16.42 An iterative solution is required: K p1 2 V 1. Choose VSG1. Then I SD1 = V SG1 V TP1 and I SD2 SG1 2 R2 2. V SG2 V TP2 3. I SD1 2ISD2 K p2 V DD V SG1 V SG2 Compare to I SD1 in step 1 and choose new VSG1 R1 10-4 V 2I SD2 2 V SG1 0.75 | I SD2 GS2 | V SG2 0.75 2 18k 10 -4 V V SG1 V SG2 DD | Iteration yields VGS2 2.24 V, I O I DS2 111 A 10k I SD1 = I SD1 16.43 I C1 I C 3 3I C4 | I C 4 = I C2 = IC2 16.44 I V I I V BE1 V BE 2 V T I C1 = ln C2 T ln C1 S2 ln R R I S1 I S2 R IC 2 I S1 0. 025V 3I C2 20 A ln 46.5 A | IC1 3I C2 140 A 2.2k IC 2 A *Problem 16.44 - BJT reference current cell VCC 1 0 DC 1.5 AC 1 VEE 5 0 DC -1.5 Q4 2 2 1 PBJT 1 Q3 3 2 1 PBJT 3 Q1 3 3 5 NBJT 1 Q2 2 3 4 NBJT 20 R 4 5 2.2K .MODEL NBJT NPN BF=100 VA=50 .MODEL PBJT PNP BF=100 VA=50 .OP .AC LIN 1 1000 1000 .PRINT AC IC(Q1) IC(Q2) .END 15 Results: IC1 = 140 A I S VC1CC 2. 92x10 IC2 = 47.8 A 2 I 3 SVC2CC 9.92x10 S 16.45 The M3 - M 4 current mirror forces I SD1 I SD2 . V GS1 V GS2 I DS2 R | I DS2R V TN I DS2 0.293 R 1 0.293 ' 5100 5K n 2IDS2 2IDS2 1 ' | I DS2 R ' 1 20K n 10K n 2 2I DS1 V TN 10K 'n 1 5 25 x10 6 IDS2 26. 4 A 16.46 a The M3 - M4 current mirror forces I SD1 ISD2 . V GS1 V GS2 I DS2 R | I DS2R V TN1 I DS2 0.293 R 1 0.293 ' 5K n 10 4 b V TN1 V TO | V TN2 V TO I DS2 R V TO I DS2 16.47 2I DS1 V TN2 10K 'n 1 5 25 x10 6 2 2I DS1 V TO 0.5 10K 'n F 2I DS2 2I DS2 | IDS2 R 20K 'n 10K 'n IDS2 6.86 A V SB 2 F V TO 0.5 0. 6 I 1 1 2 DS2 R 0. 6 0.6 I DS2 R 0.6 2IDS2 20K 'n 0.293 2IDS2 0.5 0.6 10 4 IDS2 0.6 I DS2 3. 96 A 4 ' 10 10K n 10 4 *Problem 16.47(a) - MOS reference current cell VDD 1 0 DC 5 AC 1 VSS 5 0 DC -5 M1 3 3 5 5 NFET W=10U L=1U M2 2 3 4 5 NFET W=20U L=1U M3 3 2 1 1 PFET W=10U L=1U M4 2 2 1 1 PFET W=10U L=1U R 4 5 10K .MODEL NFET NMOS KP=25U VTO=0.75 PHI=0.6 GAMMA=0 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 PHI=0.6 GAMMA=0 LAMBDA=0.017 *.MODEL NFET NMOS KP=25U VTO=0.75 PHI=0.6 GAMMA=0 LAMBDA=0 *.MODEL PFET PMOS KP=10U VTO=-0.75 PHI=0.6 GAMMA=0 LAMBDA=0 *Problem 16.47(b) - MOS reference current cell *.MODEL NFET NMOS KP=25U VTO=0.75 PHI=0.6 GAMMA=0.5 LAMBDA=0.017 *.MODEL PFET PMOS KP=10U VTO=-0.75 PHI=0.6 GAMMA=0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC ID(M1) ID(M2) .END I 2 I 2 7.64 x10 SVDSDD2 6.23x10 Results: (a) ID2 = 13.9 A ID2 = 12.3 A S VDS1 DD The currents differ considerably from the hand calculations. I 2 I 2 7.75x10 SVDS2 6.31x10 Results: (b) ID1 = 8.19 A ID2 = 7.24 A S VDS1 DD DD The currents differ considrably from the hand calculations. 16 The currents are quite sensitive to the value of . The hand calculations used = 0. simulations are run with = 0, then the results are identical to the hand calculations. 17 If the 16.48 I 5A V 0.025 V 2I C2 5A I C 2 T ln C1 ln | I C1 = IC 3 2I C 4 2I C 2 | I C2 5. 23 A R 11k A I C2 A I C 2 I C7 5IC 4 55.23A 26.2 A | I C 8 I C5 2.5I C1 5I C2 26. 2 A | I C 6 V T I C4 3A 0.025 V 15.7A ln ln I C 8 6.00 A R 8 A IC 8 4k I C 8 V T I C1 A 0. 025V 10.4A ln ln I C 8 5. 42 A R 6 A I C6 3k I C6 16.49 V T I C1 I S2 0.025 V 2I C 2 7I S1 ln ln 15.3 A | I C1 2I C2 30.6 A R IC 2 I S1 4.3k I C 2 I S1 IC1 30.6 A | I C3 I C7 I C2 15.3 A I C1 2IC 2 | I C2 = I C 4 I C5 I C6 16.50 *Problem 16.50 - NPN Cascode Current Source VCC 1 0 DC 5 AC 1 Q4 2 2 1 PBJT 2 Q3 3 2 1 PBJT 1 Q5 4 3 2 PBJT 1 Q1 6 6 0 NBJT 1 Q2 5 6 7 NBJT 7 Q6 4 4 6 NBJT 1 Q7 3 4 5 NBJT 1 R 7 0 4.3K .MODEL NBJT NPN BF=100 VA=50 .MODEL PBJT PNP BF=50 VA=50 .OP .AC LIN 1 1000 1000 .PRINT AC IC(Q7) IC(Q5) .END Results: IC2 = 15.2 A IC1 = 28.5 A Similar to hand calculations. I S VC2CC 1.81x10 3 I S VC2CC 7.07x10 4 16.51 Note: VDD = 10 V is not large enough to saturate all the transistors. Use V DD = 15 V to ensure saturation. The M3 - M 4 current mirror forces I DS1 1.5I DS2 . V GS1 V GS2 I DS2 R | I DS2R V TN I DS2 1 3I DS2 R 10K 'n 18 2I DS2 1 3I DS2 ' 30K n 3300 10 25x10 6 2IDS2 30K 'n 2I DS2 30 25x10 6 57.9 I DS2 308 A I DS1 462 A 3300 I SD5 I DS6 I DS1 462 A | I SD3 I DS7 I DS2 308 A I DS2 I SD4 2I DS1 V TN 10K 'n 16.52 Note: VDD = 10 V is not large enough to saturate all the transistors. *Problem 16.52 - MOS reference current cell VDD 1 0 DC 15 AC 1 M3 3 2 1 1 PFET W=10U L=1U M4 2 2 1 1 PFET W=15U L=1U M5 4 3 2 2 PFET W=10U L=1U M6 4 4 6 6 NFET W=10U L=1U M7 3 4 5 5 NFET W=10U L=1U M1 6 6 0 0 NFET W=10U L=1U M2 5 6 7 7 NFET W=30U L=1U R 7 0 3.3K *.MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0 *.MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0 .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC ID(M1) ID(M2) .END Results: IDS2 = 265 A IDS1 = 377 A These differ from the hand calculations due to the non-zero value of . Simulation with = 0 (and VDD = 15 V) gives results very close to the hand calculations. I 4 I 4 S VDSDD2 9.82 x 10 S VC2CC 6. 99 x 10 16.53 Current mirror model: 1 Assuming V DS << since it is unknown: r 50 4 4 50 A dd g m1 r o2 r o 4 g m1 o 4 2 5x10 10 -4 -4 0.316mS 250k 79.1 2 10 10 A cd is determined by the mirror ratio error: i cc g g m4 g o3 1 i cc + g m4 v 3 i cc - g m 4 i cc m3 = i cc for g m3 g m 4 g m 3 g o3 g m3 g o3 f3 1 This error current goes through ro4 to produce the output voltage since the common - mode output resistance at the drain of M2 is very large: v od = i cc i cc vic g m1 1 1 r o 4 vic | A cd 1 2g m1R SS 2R SS f 3 1 2R SS CMRR = 79.1 1.26 x 106 122 dB 6.28x10-5 16.54 r o4 f 3 1 500k 1 5 2 79.1 1 50M 6.28 x 10 *Problem 16.54 - MOS Amplifier with Active Load VDD 1 0 DC 10 VSS 5 0 DC -10 V1 6 8 DC 0 AC 0.5 V2 7 8 DC 0 AC -0.5 VIC 8 0 DC 0 M3 2 2 1 1 PFET W=50U L=1U M4 3 2 1 1 PFET W=50U L=1U M1 2 6 4 4 NFET W=20U L=1U 19 M2 3 7 4 4 NFET W=20U L=1U ISS 4 5 DC 199.7U RSS 4 5 25MEG .MODEL NFET NMOS KP=25U VTO=1 LAMBDA=0.02 .MODEL PFET PMOS KP=10U VTO=-1 LAMBDA=0.02 .OP .AC LIN 1 1000 1000 .PRINT AC VM(3) VP(3) .TF V(3) VIC .END Results: Adm = 95.8 Acd = 6.16 x10-5. The results are similar to hand calculations. The discrepancies result from not including VDS in the hand calculations for gm and ro. 16.55 Assuming V CE << V A since it is unknown: A dd g m2 r o 2 r o4 g m 2 ro 4 60 60 40 10 4 -4 4.00mS 300k 1200 2 10 10 -4 A cd : This circuit is often the input stage of a feedback amplfier and the feedback applies an offset voltage Vos that forces VC1 V C 2 . In this case, the induced collector current imbalance exactly matches the curren t mirror imbalance and Acd = 0. Note that the case f or VC1 V C 2 is a tough problem! The mirror ratio causes a mismatch in the colle ctor currents and therefore g m g m a mismatch in g m : g m1 g m g m2 g m | The common- mode voltage that is 2 2 is multiplied by g cm developed across r1 and r 2 v m1 cm and g m2 . The common gm v term is canceled out by the current mirror, but the mismatch terms add at the output of t he current mirror. The output voltage is given approximately by vo g m2 v cm r o 4 r o2 g m2 v cm cm v v ic A cd r 2 r 2 o 1 2R 1 r o 2 r o2 g m2 cm f 2 v 2 g m2 2 v ic v ic v 1 ic for 2R1 > r o2 g m2 r o 2 f 2 g m2 2R1 r o2 vo 1 g m 2 v ic 2 g m2 The collector current imbalance can be found as follows : Assume that VEC 4 V EC 3 V 0.7 V 1 V VA V 60 V and equal Early voltages: I C 4 I C2 I C1 1 | V A 0.48V 2 0.7 = I C1 F 125 V A 1 F V A 20 V V V V V IC I C1 I C 2 IC 0 1 C1 I C 0 1 C1 | I C 0 I S exp BE I C I C 0 V A VA VA VT V V I C V 1 g m2 IC 1 1 IC I C 0 IC | | | A cd VA VA IC VA F g m2 IC F 2 F A cd 1 1200 4x10 -3 | CMRR = 3x10 5 110 dB 2 125 4x10 -3 Note that Vos V 60 0.48 | V 0. 48V | V os 0. 400mV A dd 125 1200 These results can be easily checked with SPICE - See Problem 16.56. 16.56 *Problem 16.56 - BJT Differential Amplifier with Active Load VCC 1 0 DC 5 VEE 5 0 DC -5 Q4 3 2 1 PBJT 1 Q3 2 2 1 PBJT 1 Q1 2 6 4 NBJT 1 Q2 3 7 4 NBJT 1 *Apply offset voltage to balance collector voltages V1 6 8 DC 0.4107M AC 0.5 *V1 6 8 DC 0 AC 0.5 V2 7 8 DC 0 AC -0.5 VIC 8 0 DC 0 I1 4 5 199.8U R1 4 5 25MEG .MODEL NBJT NPN BF=125 VA=60 .MODEL PBJT PNP BF=125 VA=60 .OP .AC LIN 1 1000 1000 .PRINT AC VM(3) VP(3) VM(4) VP(4) .TF V(3) VIC .END Results: Adm = 1200 Acd = 5.11x10-6. CMRR = 167 dB. The results are similar to hand calculations. Note that a very high CMRR is achieved when the circuit is brought back to balance, as is the case in operational amplifier input stages with feedback applied. For the case with no offset voltage applied, Acd = 3.73x10-3, and V = 0.49 V. These agree well with the analysis in Prob. 16.55. The value of the required offset voltage is also very similar to the hand calculations. 16.57 21 a I SD5 I SD4 I SD3 IDS2 I DS1 2I DS1 V GS2 V GS1 V TN K n1 I SS 100 A 2 0.75 V SG5 V SG4 V SG3 V TP 2 10 4 2I SD4 0.75 K p4 1.20V 2 10 1. 25V | V 80 10 40 2.5x10 5 4 5 SD3 V SG4 V SG5 2.50V V DS1 V DS2 10 V SG4 V SG5 V GS1 8.70 V | V SD5 V SD4 V SG4 1.25 V Q Pts: 100A, 8.70V 100A ,8.70V 100A,2.50 V 100A,1. 25V 100A ,1.25 V b A dd g m2 r o 2 2 f 3r o5 g m2 r o2 3 1 0. 017 8.7 A dd 240 2. 5x10 10 1 0.017 8.7 0. 479mS 675k 323 10 4 (Note that the loop- gain of the Wilson source is reduced by the presence of R OUT1 2r o1 .) 5 4 c A dd g m1 r o1 r o3 | r o3 1 1.25 0.017 4 601k 10 A dd 0.479mS 675k 601k 152 - The Wilson source yields a 2X improvement 16.58 22 I DS2 I DS1 I1 I 125 A | I SD3 I SD4 I DS5 IDS6 I DS7 I2 1 125 A 2 2 For the NMOS transistors VGS V TN For the PMOS transistors VSG V TP 2IDS 0.75 Kn 2I SD 0. 75 Kp 1.25V 40 2.5x10 2 1.25 x10 1.54 V 40 10 4 2 1.25x10 5 4 5 V DS1 V DS2 V SG3 1.54V | V DS7 V DS6 V GS6 1.25V | V DS5 V GS6 V GS7 2.50 V V SD4 V SD3 V GS1 V SG3 5 V DS5 1.25 1.54 5 2.50 2.79 V Q Pts: 125A,1.54V 125A,1.54 V 125A, 2.79 V 125A, 2.79V 125A ,2.50V 125A,1.25 V 125A,1.25V b A dd g m2 f 4 r o2 f 5 r o 7 f 2 f 4 2 g m2 240 2.5x10 g m4 240 10 A dd 5 5 1.25x10 1 0.017 1.54 0.507mS | 4 1.25x10 1 0.017 2.79 0.324 mS | 4 r o4 r o3 1 0.017 1.54 483k 4 1. 25x10 1 2.79 0. 017 493k 4 1.25x10 f 2 f 4 0.507mS 483k0. 324mS 493k 19600 2 2 23 16.59 V SG V GS V TN 16.60 2 2.5x10 4 2I DS 10 2.16 2.16 V 0.75 2.16 V | R 22.7k 6 Kn A 2.5x10 4 10 25x10 *Problem 16.60 - CMOS Folded Cascode Amplifier with Active Load VDD 1 0 DC 5 VSS 10 0 DC -5 *an offset voltage must be applied to bring output to -2.5V V1 4 11 DC -5.085M AC 0.5 V2 5 11 DC 0 AC -0.5 VIC 11 0 DC 0 M1 2 4 6 6 NFET W=40U L=1U M2 3 5 6 6 NFET W=40U L=1U M3 8 6 2 2 PFET W=40U L=1U M4 7 6 3 3 PFET W=40U L=1U M5 8 9 10 10 NFET W=40U L=1U M6 9 9 10 10 NFET W=40U L=1U M7 7 8 9 9 NFET W=40U L=1U I2A 1 2 DC 250U I2B 1 3 DC 250U I1 6 10 DC 250U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC VM(7) VP(7) VM(6) VP(6) VM(8) VP(8) .TF V(7) VIC .END Results: Add = 23700, Acd = 1.81x10-4. ROUT = 47.7 M, CMRR = 1.31 x 108. The values of Add and ROUT are similar to hand calculations. Acd and the CMRR are limited by the small residual mismatches in device parameters. 24 16.61 For F , I B 0. V BE 3 V EB 4 V BE 2 V BE 2 R V BE 2 R 2 V BE 2 1 2 R1 R 1 200A I1 V 0. 025 ln | I1 BE2 | V BE 2 0.025 ln 10fA R1 V BE 2 R1 10fA 200A V BE 2 0.589 20k V V BE 2 0. 025 ln 171A BE 2 0.589V | I C 2 00A 10fA 20k 1 20k Since IS4 I S3 , V BE 3 V BE 4 0.589 1 0.589 V and IC 4 I C 3 171 A 20k 2 200A 16.62 F : V BE3 V EB 4 V BE1 V EB 2 V T ln V BE 2 R2 R1 IO IO I2 I2 A E 3 + V T ln A E4 - V T ln A E1 - V T ln A I SON I SOP I SON I SOP E2 A EO A EO A EO A EO 0 I2O A 2EO I SONI SOP A E1 A E 2 I 2O A E1 A E2 A E 3A E 4 V T ln 1 | IO I2 0 2 2 2 I I A A I A I A A A E1 A E2 SON SOP E 3 E 4 2 EO 2 E3 E4 16.63 Using the results from Prob. 16.62, I O 300A 16.64 A E 3A E 4 100 A 3A E3 3A E 4 Note: The W/L of M7 should be 15/1. I DS9 I DS10 I DS12 I DS11 IREF 250A | I SD6 = I DS7 I DS8 3I DS12 750A I I DS1 I DS2 I SD13 I SD5 I SD3 ISD4 DS9 125A 2 V DS10 V DS12 V DS11 V GS12 V TN V GS1 0.75 2125A 40 25x10 6 2I DS12 0.75 K n12 2250A 5 25x10 6 2.75V 1.25V | V DS9 V GS1 10 V GS12 6V 2750A V DS7 V O 10 V GS12 V GS11 V GS7 0 10 2. 75 2.75 0.75 15 25x10 6 7. 25V V DS8 10 V DS7 2.75 V V SD6 10 V O 10V 0 10V | V SD5 V SD13 V SD3 V SD4 0.75 IDS (A) 2125A 80 10x106 1.31V 1 2 3 4 5 6 7 8 9 10 11 12 13 125 125 -125 -125 -125 -750 750 750 250 250 250 250 -125 25 VDS (V) b 8.63 8.63 -1.31 -1.31 -1.31 -10 8.71 1.29 6.00 2.75 2.75 2.75 -1.31 5 ' K n W 2 10 W 2 V V TP V V SD5 0.75 750A 2 L 6 SG6 2 L 6 SD4 10 5 W 2 W 2.62 0.75 750A 42.9 2 L 6 L 6 A dd A V1 A V 2 g m2 r o 2 g m6 r o6 f 2 f 6 | f 2 f6 1 p 16.65 2K p6 ISD6 1 0. 017 242.9 10x10 6 750x10 6 1 n 62. 9 | 2K n2 1 I DS2 0.017 240 25x10 6 125x10 6 235 A dd 235 62.9 14800 *Problem 16.65 - CMOS Amplifier with Active Load VDD 8 0 DC 10 VSS 14 0 DC -10 *Connect feedback to deterimine Vos *V1 1 13 DC 0 *The offset voltage must be used to set Vo to approximately zero voltages. V1 1 15 DC 0.4423M AC 0.5 V2 2 15 DC 0 AC -0.5 VIC 15 0 DC 0 M1 3 1 5 5 NFET W=40U L=1U M2 4 2 5 5 NFET W=40U L=1U M3 6 7 8 8 PFET W=80U L=1U M4 7 7 8 8 PFET W=80U L=1U M5 4 3 7 7 PFET W=80U L=1U M6 13 4 8 8 PFET W=42.9U L=1U *The offset can be adjusted to zero by correcting the value of W/L *M6 13 4 8 8 PFET W=37.25U L=1U M7 13 9 12 12 NFET W=15U L=1U M8 12 10 14 14 NFET W=15U L=1U M9 5 9 11 11 NFET W=5U L=1U M10 11 10 14 14 NFET W=5U L=1U M11 9 9 10 10 NFET W=5U L=1U M12 10 10 14 14 NFET W=5U L=1U M13 3 3 6 6 PFET W=80U L=1U IREF 0 9 DC 250U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC VM(13) VP(13) VM(4) VP(4) .TF V(13) VIC .END Results: Vos = 0.4423 mV, Adm = 22500, Acm = 0.2305, CMRR = 99.9 dB, ROUT = 90.3 M. The values of Add and ROUT are similar to hand calculations. Acd and the CMRR are limited by the offset induced mismatches in the devices. With the W/L of M 6 corected, Vos ≈ 0, Adm = 20800, Acm = 9.28 x 10-3. ROUT = 90.3 M, CMRR = 127 dB. 26 16.66 A dm A V1 A V2 A V 3 g m 2 r o 2 r o4 g m5 r o5 r o12 1 I DS10 = I REF =100A | I DS12 = I DS11 = 2IDS10 = 200A | I DS1 I DS2 I SD3 ISD4 I SD5 IDS12 200A | V SD4 V SG3 V GS2 V TN V DS2 10 V SD4 V GS2 10.0 V | g m 2 2I DS2 0.75 K n2 I DS11 100A 2 2100A 20 25x10 6 1. 38V 220 25x10 6 100A 1 0. 01710 0.342mS 1 1 58.8 10 V 58.8 1.38 V 58.8V | r o 2 688k | r o 4 602k | A V1 110 4 0.017 A A 10 10 4 V SD12 V SD5 10 g m5 V GSGG | V GSGG 0.75 2 2200A 5 25x10 6 2.54 V | V SD12 V SD5 8.73V 2100 10 5 2x10 4 1 0.017 8.73 0.678mS | r o12 r o 5 A V 2 115 | A dm A V1 A V2 A V 3 110 115 1 12600 58. 8 8.73 V 338k 2x10 4 A A dm 10900 if 1 + V DS is neglected in gm . 16.67 *Problem 16.67 - CMOS Amplifier with Active Load VDD 8 0 DC 10 VSS 14 0 DC -10 *An offset voltage is used to set Vo to approximately zero volts. V2 1 15 DC 0.3506M AC 0.5 V1 2 15 DC 0 AC -0.5 VIC 15 0 DC 0 M1 3 1 5 14 NFET W=20U L=1U M2 4 2 5 14 NFET W=20U L=1U M3 3 3 8 8 PFET W=50U L=1U M4 4 3 8 8 PFET W=50U L=1U M5 6 4 8 8 PFET W=100U L=1U *The offset can be adjusted to zero by correcting the value of W/L *M5 6 4 8 8 PFET W=89.5U L=1U M6 8 6 13 14 NFET W=10U L=1U M7 14 7 13 8 PFET W=25U L=1U MGG 6 6 7 14 NFET W=5U L=1U M10 9 9 14 14 NFET W=10U L=1U M11 5 9 14 14 NFET W=20U L=1U M12 7 9 14 14 NFET W=20U L=1U IREF 0 9 DC 100U .MODEL NFET NMOS KP=25U VTO=0.75 LAMBDA=0.017 .MODEL PFET PMOS KP=10U VTO=-0.75 LAMBDA=0.017 *.MODEL NFET NMOS KP=25U VTO=0.75 GAMMA=0.6 LAMBDA=0.017 *.MODEL PFET PMOS KP=10U VTO=-0.75 GAMMA=0.75 LAMBDA=0.017 .OP .AC LIN 1 1000 1000 .PRINT AC VM(13) VP(13) VM(4) VP(4) .TF V(13) VIC .END Results: Adm = 11200, Acm = 0.604, ROUT = 3.10 k. 27 (a) 1 2 3 4 5 6 7 GG 10 11 12 IDS (A) 112 112 -112 -112 -223 44.2 -44.2 223 100 223 223 VDS (V) (b) 9.96 9.99 -1.41 -1.37 -8.70 10.0 -10.0 2.60 1.63 8.63 8.70 IDS (A) 110 110 -110 -110 -219 0 0 219 100 219 219 VDS (V) 11.2 11.2 -1.40 -1.37 -8.85 10.0 -9.97 3.79 1.63 7.41 7.35 Note that the body effect has increased the threshold voltages of M6 and M7 to the point that they are no longer conducting. VTN6 = 2.24 V VTP7 = -2.61V. The W/L ratio of MGG needs to be redesigned to solve this problem. 16.68 I DS10 = I REF = 250A | I DS11 = 2I DS10 = 500A | I DS12 = 4I DS10 =1000A I DS1 I DS2 I SD3 I SD4 I DS11 2250A 250A | V DS10 V GS10 0.75 2.16 V 2 10 25x10 6 I SD5 IDSGG IDS12 1000A | V GSGG 0.75 V GSGG 2. 375V | I SD7 I DS6 2 V GS6 V SG7 V SD4 V SD3 V SG3 V GS2 V TN 21000A 4.75 V 1025x10 2.375 0.75 5 25x10 6 6 2 2 2I DS2 0.75 K n2 2250A 20 25x10 6 V DS1 V DS2 7.5 V SD4 V GS2 7.50V | V SD12 V SD5 7.5 V DS6 V SD7 7. 5V | V DS11 7.5 V GS2 7.5 1. 75 5.75 V 330A 1.75 V V GSGG = 5.13V 2 1 2 3 4 5 6 7 GG 10 11 12 IDS (A) 250 250 -250 -250 -1000 330 -330 1000 250 500 1000 VDS (V) SPICE 7.50 7.50 -1.75 -1.75 -5.13 7.50 -7.50 4.75 2.16 5.75 5.13 IDS (A) 264 266 -264 -266 219 359 -359 1050 250 530 1050 VDS (V) 7.46 7.09 -1.76 -2.14 -5.20 7.54 -7.46 4.69 2.14 5.78 5.11 A dm A V1 A V2 A V 3 g m 2 r o 2 r o4 g m2 g m5 r o5 r o12 1 220 25x10 6 250A1 0.017 7.50 0. 531mS 1 1 58.8 7.50 V 58.8 1.75 V 58.8V | r o2 265k | r o4 242k | A V1 67.2 4 4 0.017 A A 2.5x10 2. 5x10 58.8 5.13 V g m5 2100 10 5 10 3 1 0.017 5.13 1. 48mS | r o12 r o5 63. 9k 3 A 10 A V 2 47.3 | A dm A V1 A V 2 A V 3 67. 2 47.3 1 3180 SPICE Results: 28 Adm = 2950, Acm = 0.03, ROUT = 1.10 k. 16.69 a For saturation of M11 : V DS11 = 0 V GS2 V SS V SS V GS2 2I DS2 0.75 K n2 V GS2 V TN 2100A 2200A 2I DS11 K n11 20 25x10 6 20 25x10 6 0.894 1. 38V | V SS 1.38 0.894 V SS 2.27 V For saturation of M12 : V DS11 = 0 V GSGG 2 V GSGG 0.75 V SS V SS 2200A 5 25 x10 6 V GSGG 2 2I DS12 K n12 2.54V | V SS 2 200A 20 25x10 6 0.894 2.54 0.894 V SS 2.16V 2 For saturation of M1 and M 2 : V DS1 = V DD V SG3 V GS1 V DD V SG3 + V GS1 2IDS1 K n1 2100A 20 25x10 6 0. 633 V SG3 = V GS1: V DD 0.633V For saturation of M5 : V SD5 = V DD 2.54 2 2ISD5 K p5 2200A 100 10x10 6 0.633 V V DD 1.90 V M 6 and M7 are always saturated: e.g. V DS6 V GS6 The minimum supply voltages are: V DD 1. 90V V SS 2.27 V For the symmetrical supply case, V DD V SS 2. 27V b The values of VDD and V SS in part (a) do not permit any significant common - mode input voltage range. For saturation of M11 with V IC 5V, V DS11 = V IC V GS2 V SS V SS 1.38 5 0.894 V SS 7. 27V For saturation of M1 and M 2 : V DS1 = V DD V SG3 V IC V GS1 V DD 5 1. 38 +1. 38 0.633 V DD 5.63V For an output range of 5V, saturation of M12 requires V 2.54 V DS12 = 5 GSGG V SS V SS 5 0.894 V SS 7.25V 2 2 For Saturation of M5 : 2.54 V SD5 = V DD 5 0.633V V DD 6. 90V 2 The minimum supply voltages are: V DD 6.90V V SS 7.25 V For the symmetrical supply case, V DD V SS 7.25 V 29 16.70 I DS8 = IREF = 250A | I DS10 = IDS9 = 2I DS8 = 500A I DS1 I DS2 I SD3 I SD4 I DS9 2250A 250A | V DS8 V GS8 0.75 2.16 V 2 10 25x10 6 I SD5 IDS11 I DS10 500A | V GS11 0.75 V GS6 V SG7 V GS11 1.789V | I SD7 I DS6 2 V SD4 V SD3 V SG3 V GS2 V TN 2500A 3.58V 10 25x10 1.789 0. 75 5 25x10 6 6 2 2 2250A 2I DS2 0.75 K n2 20 25x10 6 V DS1 V DS2 5 V SD4 V GS2 5.00V | V SD10 V SD5 5 V DS6 V SD7 5. 00V | V DS9 5 V GS2 5 1.75 3.25V IDS (A) VDS (V) SPICE IDS (A) VDS (V) 135A 1.75 V V GS11 = 3.21V 2 1 2 3 4 5 6 7 8 9 10 11 250 250 -250 -250 -500 135 -135 250 500 500 500 5.00 5.00 -1.75 -1.75 -3.21 5.00 -5.00 2.16 3.25 3.21 3.58 255 4.97 255 4.99 -255 -1.74 -255 -1.73 -509 -3.24 139 5.01 -139 -5.00 250 2.14 509 3.28 509 3.23 509 3.52 A dm A V1 A V2 A V 3 g m 2 r o 2 r o4 g m2 g m5 r o5 r o12 1 220 25x10 6 2.50x10 4 1 0.017 5. 00 0.521mS 1 1 58.8 5.00 V 58. 8 1.75 V 58.8V | r o2 255k | r o4 242k | A V1 64.7 4 4 0.017 A A 2.5x10 2.5x10 58.8 3.21 V g m5 2100 10 5 5.00 x10 4 1 0. 017 3.21 1.03mS | r o12 r o5 124k 4 A 5.00x10 A V 2 63.9 | A dm A V1 A V2 A V 3 64.7 63.9 1 4130 SPICE Results: 16.71 A dm Adm = 4000, Acm = 0.509, ROUT = 1.81 k. f 2 f 5 | For the MOSFET, f 2 2 But, I DS2 I REF and I SD5 IREF Adm a A dm 16000 16.72 30 100A 6400 250A 1 I DS Adm 1 I DS2 1 I REF b A dm 16000 100A 80000 20A 1 I SD5 A dm I C2 f5 | For our BJT models, f and o are independent of current IC5 o5 2 We have I C2 I REF and I C5 I REF A dmis constant a A dm 7500 16.73 b A dm 7500 The W/L ratios have been scaled to keep the Q-points and gain the same. Note that the output stage should remain a source follower pair and is not mirrored. 16.74 Note that the output stage should remain complementary emitter followers. I The gain of the first stage is approximately AV1 g m1 r 5 C1 o 5 , the mirror I C5 image amplifier with an npn transistor for Q5 will have the highest gain. The voltage gain of the rest of the amplifier is the same. 16.75 V EB 7 V EB 8 V EB 6 V EB 4 2V T ln 250A IC 4 I 2V T ln C 44 0.05 ln 1.142 V I S4 2IS 4 215fA V EB 7 V EB 8 V T ln IC 7 I I 60 IC 8 I C8 V T ln C 8 I C 7 F I B 8 F C 8 IS7 IS 8 F 61 60 61 V EB 7 V EB 8 V T ln IC 8 I C8 I 2C8 V T ln 0.025 ln 1.142 6115fA 415fA 6115fA 4 15fA I C 8 1. 946 mA | I C16 I C 8 | A E16 I C16 1946 A A E12 1 7.78 I C12 250A 2 0.5583 V 75A V BE 6 V EB 10 0. 025 ln 0.558 V | R BB 574 15fA 1.946 mA o 1r 8 A dm A V1 A V2 A V 3 g m2 r o 2 r 7 o 1r 8 r 1r g m 8 r o8 r o16 1 7 o 8 A dm A V1 A V2 A V 3 g m 2 r o 2 r 7 o 1r 8 A dm g m2 r o2 2r 7 R ID 2r 1 2 16.76 4f 8 r o 1r 8 7 o 1r 8 f 8 1 2 I C2 125A 4060 4. 3 5 o7 f 8 60 3.03 x 10 I C7 2 31,8A 2 1500.025 V 60 k 125A *Problem 16.76 - Bipolar Op-Amp VCC 1 0 DC 5 VEE 14 0 DC -5 V1 6 15 DC -74.17U AC 0.5 V2 7 15 DC 0 AC -0.5 VIC 15 0 DC 0 Q1 4 6 8 NBJT 1 Q2 5 7 8 NBJT 1 Q3 4 4 2 PBJT 1 Q4 5 4 3 PBJT 1 31 Q5 2 3 1 PBJT 1 Q6 3 3 1 PBJT 1 Q7 14 5 10 PBJT 1 Q8 11 10 1 PBJT 4 Q9 1 11 12 NBJT 1 Q10 14 13 12 PBJT 1 Q12 9 9 14 NBJT 1 Q14 8 9 14 NBJT 1 Q16 13 9 14 NBJT 7.78 IB 0 9 250U RBB 11 13 574 .MODEL NBJT NPN BF=150 VA=60 IS=15F .MODEL PBJT PNP BF=60 VA=60 IS=15F .OP .AC LIN 1 1000 1000 .PRINT AC VM(12) VP(12) .TF V(12) VIC .END SPICE Results: Vos = -74.17V, Adm = 2.83 x 105, Acm = 0.507, CMRR = 115 dB, RID = 81.6 k, ROUT = 523 . 16.77 a We require forward- active region operation of all transistors. For Q14 : V CB14 0 V BE1 V EE V BE14 0 V EE 1. 4V For Q1 : V CB1 V CC V EB 6 V EB 4 0 V CC 1.4 V For Q16 : V CB16 0 V EB 10 V EE V BE14 0 V EE 1.4 V For Q8 : V BC 8 V CC V EB 8 V BE6 0 V CC 1.4V So V CC 1. 4V and V EE 1.4V b We require forward- active region operation of all transistors with VIC present. For Q14 : V CB14 V IC V BE1 V EE V BE14 1 0. 7 V EE 0.7 0 V EE 2. 4V For Q1 : V CB1 V CC V EB 6 V EB 4 V IC V CC 0.7 0.7 1 0 V CC 2.4V For an output range of 1V, For Q16 : V CB16 V O V EB10 V EE V BE14 1 0 V EE 1.4V For Q8 : V BC 8 V CC V EB 8 V O V BE 6 V CC 0.7 1 0.7 0 V CC 2. 4V So V CC 2. 4V and V EE 2.4V 16.78 32 a I C 22 I C20 V CC V EB 22 V BE 20 V EE 3V 0.7 0.7 3V 46.0A R1 100k I C 23 3I C 22 138 A | I C 24 I C 22 46. 0 A | V I 0. 025V 46. 0A 46.0A I1 T ln C 20 ln 6.25A ln I1 9.72A R I1 4k I1 I1 22V 0.7 0.7 22V 426A 100k I C 23 3I C 22 128 mA | I C 24 I C22 426 A | V I 426A I1 T ln C 20 6. 25A ln I1 19.3A R I1 I1 b I C 22 I C20 c The input bias current and input resistance of the amplifier are directly dependent upon I1 whereas the gain of the interior amplifier stages is approximatley independent of bias current. 33 16.79 250A 83. 3 A | I 3 I REF 83. 3 A 3 V V EB 22 V BE 20 V EE 12 0.7V 0.7 12 V I REF CC | R1 271 k R1 83.3 A V I 0. 025V 83. 3A R 2 T ln REF ln 255 I1 I1 50A 50A I 2 3I REF IREF 16.80 I REF I3 300 A | I 2 3I REF 900 A V CC V EB 22 V BE 20 V EE 15 0.7 V 0.7 15 V | R1 95. 3 k R1 300 A V I 0. 025V 300A R 2 T ln REF ln 462 I1 I1 75A 75A I REF 16.81 For forward - active region operation of Q3 , V BC 3 0 V EE V IC V BE1 V BE 3 V BE7 V BE 5 V R 1 For forward - active region operation of Q1, V CB1 0 V CC V EB 9 V IC For the output stage, V CC V BE15 V I3 = 0. 7 + 0.7 =1. 4 V V EB 16 V EB 12 V BE11 V R 5 V EE V EE 3V BE V R 1 2.1V a V IC 0, V EE 4V BE V R 1 2.8V | V CC V EB 9 0 V CC 0.7V Combining these results yields: V CC 1. 4V and V EE 2.8V b V IC 1, V EE 1 4V BE V R1 3.8V | V CC V EB 9 1 V CC 1.7V If also account for the output stage, V CC V O V BE15 V I3 = 1+ 0.7 + 0.7 = 2. 4 V Combining these results yields: V CC 2. 4V and V EE 3.8V 16.82 The input stage current is proportional to 1I: I C2 = 50A 7.32A = 20.3A 18A Using Eq . 16.12: i o 2020.3Av id 0.406 mS v id | I C 4 = 50A 7.25A = 20.1A 18A 20.3A1k 60 V R OUT6 r o 6 1 283 M 1.81r o6 | 1.81r o6 2r o4 0. 952r o4 0. 95 0.,025 V 20.1A i o 4.06 x 10-4 vid | R = 283 M 16.83 r 50 60 15.7 2. 84M | The cascode source uses up an extra VEB a R 2 o 2 o2 2 2 0.666mA b y 22 R OUT11 R 2 407k 2.84M 356k | Other y- paramters are unchanged. c A dm 256 6.70mS 356k 6.11 x 10 5 1 34 16.84 16.85 g m10 40 19. 8A 0.792mS | r 10 150 0.025 V 60V 189k | r o10 3.03M 19.8A 19.8A g m11 400.666mA 26. 6mS | r 11 1500.025 V 60V 5.63k | r o11 90.1k 0.666mA 0. 666mA *Problem 16.85 - Small Signal Parameters. V1 1 0 DC 0 V2 4 0 AC 1 RPI10 1 2 189K RO10 2 0 3.03MEG GM10 0 2 1 2 0.792M RE10 2 0 50K RPI11 2 3 5.63K RO11 4 3 90.1K GM11 4 3 2 3 26.6M RE11 3 0 100 R2 4 0 115K .TF I(V2) V1 .AC LIN 1 1000 1000 .PRINT AC IM(V2) IP(V2) IM(V1) IP(V1) .END 10 Results: y-1 S 0 | y 21 6. 66 mS | y-1 11 2.38 M | y 12 3.27 x 10 22 81. 9 k 16.86 I C11 50A | I C 3 I C6 I C 4 50A 2 I 2 C8 F a Assume large F : I C11 I REF 100A | I C 4 I C5 I C1 I C 3 IC 7 50A | I C2 I C 6 IC 8 50A | I C9 V CE1 V CE 2 15 0.7 15. 7V | V EC 4 V EC 5 0.7V V CE7 V CE 8 0.7 0. 7 1. 4V | V CE 9 15 15 0.7 29.3V | V CE10 0.7V V EC 3 V EC 2 0 0.7 15 1. 4 12.9 | V CE11 0 0.7 0.7 15 13.6 V 1 2 3 4 5 6 7 8 9 10 11 IC (A) 100 100 -50 -50 -50 -50 50 50 --- 100 100 VCE (V) 15.7 15.7 -12.9 -0.7 -0.7 -12.9 1.4 1.4 29.3 0.7 13.6 (b) Transistor Q11 replicates the reference current. This current divides in two and controls two matched current mirrors formed of Q4-Q3 and Q5-Q6. The currents of Q1 and Q7, and Q2 and Q8 are equal to the output current of Q3 and Q4. (c) v1 is the inverting input; v2 is the non-inverting input. 35 g m5 g m6 | g m2 2g m6 | r o 8 = r o6 | i o g m6 v e 6 gm 2 1 1 vid | i o g m6 vid 1 2 2 1 1 g m2 g m 5 g m6 1 1 1 g m 6 g m 2 40 100A 1.00 mS 2 4 4 ve 6 v id Gm 1 R OUT r o 8 R 6OUT r o8 r o 6 1 g m6 g m5 g m2 R OUT r o 8 1. 33r 06 61. 4V 72. 9V 1.33 752 k 50A 50A 16.87 I a Assume large F : I C 8 I REF 100A | I C10 I C 9 IB 8 = C8 F I C 3 IC 4 I I I F C10 C 8 50AI C1 I C3 I C5 50A | I C 2 I C4 I C 6 50A | I C7 2 C5 2 2 F V CE1 V CE 2 15 0.7 15. 7V | V CE5 V CE 6 0.7 0.7 1.4 V V EC 3 V EC 4 0 0.7 15 1.4 12.9V | V CE 7 15 15 0.7 29.3V V EC 8 = 0.7 + 0.7 =1. 4V | V CE 9 0.7V | V CE10 0 0.7 0. 7 15 13.6V 1 2 3 4 5 6 7 8 9 10 IC (A) 50 50 -50 -50 50 50 --- -100 --- --- VCE (V) 15.7 15.7 -12.9 -12.9 1.4 1.4 29.3 1.4 0.7 13.6 (b) Transistors Q9 and Q10 form a current mirror that replicates the base current of transistor Q8. The output current divides in two and forms the base currents of Q3 and Q4. Since Q3 and Q4 match Q8, the collector currents of Q1-Q6 will all be equal to IREF/2. (c) v1 is the inverting input; v2 is the non-inverting input. io g m 4 v e4 | i o 2g m 4 ve 4 2 v g m2 1 v id v | i o g m4 id 2 1 4 id 2 1 g m 2 g m4 1 1 1 g m 4 g m2 40 50A 1.00 mS 2 2 2 g m2 g m 4 | r o6 = r o 4 | ve 4 Gm 1 R OUT r o 6 R 4OUT r o6 r o 4 1 g m4 g m2 R OUT r o 6 2r o 4 16.88 36 61.4 V 72.9V 2 864 k 50A 50A 16.89 R R R R a v O 0 V REF 1 V REF 1 V REF 0 V REF 1.125 V b v O 2R 4R 8R 16R R 0 R V 0 R V 1 R V 1. 688V 1 2R V REF 4R REF 8R REF 16R REF 0000 0 0100 -0.750 V 1000 -1.500 V 1100 -2.250 V 0001 -0.188 V 0101 -0.938 V 1001 -1.688 V 1101 -2.438 V 0010 -0.375 V 0110 -1.125 V 1010 -1.875 V 1110 -2.625 V 0011 -0.563 V 0111 -1.313 V 1011 -2.063 V 1111 2.813 V 37 16.90 1. 05R For an input code of 0000, v O V OS 1 | R EQ 16R 8R 4R 2R 0.9375R R EQ 1. 05R v O 0.005 V 1 10.6 mV | The DAC offset voltage is +10. 6 mV 0.9375 R 1. 05R 1R 1 LSB is now equal to VREF 0.06563 V REF instead of V REF 0.0625 V REF 16R 16R The DAC has a gain error of 5%. 16.91 Code Output Voltage Step Size (LSB) DLE (LSB) ILE (LSB) 000 0.0000 001 0.1000 0.8000 -0.2000 -0.2000 010 0.3000 1.6000 0.6000 0.4000 011 0.3500 0.4000 -0.6000 -0.2000 100 0.4750 1.0000 0.0000 -0.2000 101 0.6300 1.2400 0.2400 0.0400 110 0.7250 0.7600 -0.2400 -0.2000 111 0.8750 1.2000 0.2000 0.0000 LSB Size: 0.125 0.0000 16.92 Nominal Case 38 Code Output Voltage Step Size (LSB) DLE (LSB) ILE (LSB) 000 0.0000 001 0.1220 0.9719 -0.0281 -0.0281 010 0.2564 1.0716 0.0716 0.0434 011 0.3784 0.9719 -0.0281 0.0153 100 0.5000 0.9694 -0.0306 -0.0153 101 0.6220 0.9719 -0.0281 -0.0434 110 0.7564 1.0716 0.0716 0.0281 111 0.8784 0.9719 -0.0281 0.0000 LSB Size: 0.12548021 0.0000 Test Case -1 1 4R & 8R 5% Low, 2R 5% High Code Output Voltage 000 0.0000 001 Step Size (LSB) DLE ILE 0.1161 0.9169 -0.0831 -0.0831 010 0.2442 1.0110 0.0110 -0.0721 011 0.3603 0.9169 -0.0831 -0.1552 100 0.5263 1.3103 0.3103 0.1552 101 0.6425 0.9169 -0.0831 0.0721 110 0.7705 1.0110 0.0110 0.0831 111 0.8867 0.9169 -0.0831 0.0000 LSB Size: 0.12666572 Test Case - 2 1 Code Output Voltage 000 0.0000 001 0.1284 1.0276 0.0276 0.0276 010 0.2699 1.1330 0.1330 0.1606 011 0.3983 1.0276 0.0276 0.1881 100 0.4762 0.6237 -0.3763 -0.1881 101 0.6046 1.0276 0.0276 -0.1606 110 0.7461 1.1330 0.1330 -0.0276 111 0.8745 1.0276 0.0276 0.0000 LSB Size: 0.12492367 4R & 8R 5% High, 2R 5% Low Step Size (LSB) DLE (LSB) ILE(LSB) 0.0000 16.93 The five resistors are each assigned a random value, and the 16 output voltages are calculated using these values. Then the step sizes, differential linearity error and integral linearity error are found. This is repeated for 200 test cases using a spreadsheet. R 1 0.1 * (RAND() 0.5) R2 2 * 1 0.1* (RAND 0.5) R 4 4 * 1 0.1* (RAND 0.5) R8 8 * 1 0.1* (RAND 0.5) R16 16 * 1 0.1 * (RAND 0.5) Results: The worst case results observed in a number of trials - DLE = 0.66 LSB, ILE = 0.33 LSB 39 16.94 Note that the two switches should be driven with complementary signals. 1 R on | The worst - case condition for the switches occurs W K 'n V GS V TN V DS L for the one with VDS 0 and V SB 0. If V V D 3V and V S 3V REF 3V and R ON 0.0110k 100 10k 2.97 V | V DS = 0. 03V 10k 100 2.97 + 0. 6 V TN =1 + 0.5 .6 =1.56 V W 1 = 5 L 5x10 100 5 2.97 1.56 0.03 455 1 W 1 50 When the grounded transistor is on,V DS 0 | = 5 L 5x10 100 5 1 0 1 16.95 Consider each bit acting by itself: R 1 0 V 1 0 1 1 0 1 V REF V REF REF V REF 2 2 2 2 2R 1 1 R 1 0 V REF 0 2 V REF V REF 4R 1 4 4 2 R 1 0 V 0 3 V REF REF V REF 8 8 8R 1 3 Adding these together yields V REF 0 1 V 2 REF 0 2 V 4 REF 0 3 0.05V 8 REF 7 1 2 3 0.05 8 0 2 4 8 Giving each term the same weight: 7 0 1.25% and 0 1.43% | 1 1.25% and 1 2.5% 2 5% 3 10% 8 2 16.96 An n-bit DAC requires (n+1) resistors. Ten bits requires 11 resistors. 210 R 210 or 1024:1 R 1 A wide range of resistor values is required but it could be done. For R = 1 k, 1024R = 1.024 M. 40 16.97 Taking successive Thévenin equivalent circuits at each ladder node yields: 16.98 VTH RTH vO 0001 VREF/16 R -0.3125 V 0010 VREF/8 R -0.6250V 0100 VREF/4 R -1.250 V 1000 VREF/2 R -2.500 V Note: The feedback resistor should be 1.2188kto give the ideal step size. Code Output Voltage Step Size (LSB) DLE (LSB) ILE (LSB) 000 0.000 001 -0.739 1.182 0.182 0.182 010 -1.434 1.112 0.112 0.294 011 -2.089 1.048 0.048 0.342 100 -2.708 0.990 -0.010 0.333 101 -3.294 0.938 -0.062 0.270 110 -3.849 0.888 -0.112 0.158 111 -4.375 0.842 -0.158 0.000 LSB Size: -0.625 0.000 16.99 RREF = 0 R1= 2.2kR2 = 4.2k R3 =8.2k R 1.0742 k Code Output Voltage 000 0.0000 001 -0.6550 1.0480 0.0480 0.0480 010 -1.2788 0.9981 -0.0019 0.0460 011 -1.9337 1.0480 0.0480 0.0940 100 -2.4413 0.8121 -0.1879 -0.0940 101 -3.0962 1.0480 0.0480 -0.0460 110 -3.7200 0.9981 -0.0019 -0.0480 111 -4.3750 1.0480 0.0480 0.0000 LSB Size: -0.6250 1.0000 Step Size (LSB) DLE (LSB) ILE (LSB) 0.0000 41 RREF = 250 R 1.2929 k Code Output Voltage 000 0.0000 001 -0.7650 1.2241 0.2241 0.2241 010 -1.4527 1.1003 0.1003 0.3243 011 -2.1353 1.0922 0.0922 0.4165 100 -2.6386 0.8052 -0.1948 0.2217 101 -3.2573 0.9900 -0.0100 0.2117 110 -3.8167 0.8950 -0.1050 0.1067 111 -4.3750 0.8933 -0.1067 0.0000 LSB Size: -0.6250 1.0000 Step Size (LSB) DLE (LSB) ILE (LSB) 0.0000 16.100 Note: The areas of the left four transistors should be 128A, 64A, 32A, 16A. I Let R1 be the scaling resistor to be found. The total current through R1 is R . 8 1 IR V REF V BE R I F 8 1 V REF V BE 1 IR 1 I R R1 For the R transistor: I E16 = 16 F 16 R R F 8 R However, for the I R transistor: I E1 V REF V BE I R R F 1 IR I 1 IR R1 15 R R1 R F 16 F F 8 R 2 16.101 For this design, two three- bit sections are connected through a scaling resistor R1 . I Let R1 be the scaling resistor. The total current through R1 is R . 4 I If I R is the current in the MSB, then the first transistor in the second section hasCI R 8 1 IR V REF V BE R IR 1 IR F 4 1 V REF V BE 1 IR R1 For the transistor: I E 8 = 8 F 8 R R F 4 R V REF V BE IR 1 IR IR 1 IR R1 7 However, for the I R transistor: I E1 | R1 R R F F 8 F F 4 R 2 V V BE 3 0.7 7 R = REF 6 1.438 k | R = 5.031 k | 2R 2.875 k | 4R = 5.750 k IMSB 2 2 25A 16.102 42 n a The n- th bit requires 2 n C, and the feedback capcitor= C: C TOTAL 2i C 2 n1 1C i 0 b Each bit requires (C + 2C), and a single terminator is required: C TOTAL 3n 1C 16.103 *Problem 16.103 - C-2C Ladder VREF 9 0 DC 5 VB3 8 0 PWL (0 0 5N 0 10N 10 50N 10 55N 0 100N 0) VB3B 7 0 PWL (0 10 5N 10 10N 0 50N 0 55N 10 100N 10) M1 6 7 0 0 NFET W=10U L=1U M2 9 8 6 6 NFET W=10U L=1U C1 1 0 0.5PF C2 1 0 0.5PF R1 1 0 1T C3 1 2 1PF C4 2 6 0.5PF R2 2 0 1T C5 2 3 1PF C6 3 0 0.5PF R3 3 0 1T C7 3 4 1PF C8 4 0 0.5PF R4 4 0 1T CF 4 5 1PF RF 5 4 1T E1 5 0 0 4 1E6 .MODEL NFET NMOS KP=25U VTO=0.75 PHI=0.6 GAMMA=0 LAMBDA=0.017 .OP .TRAN 0.5N 60N .PROBE .END 16.104 V a I DAC I O I REF | I O I DAC I REF I DAC REF 1000 | V O 5000I O 5000I DAC 5 5mV 2mA 5A | 1 LSB = 125A | I OS is negligible. b I OS 4 1k 2 43 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 -5.000 -4.375 -3.750 -3.125 -2.500 -1.875 -1.250 -0.625 0.000 0.625 1.250 1.875 2.500 3.125 3.750 4.375 000 001 010 011 100 101 110 111 -2.500 -1.875 -1.250 -0.625 -0.000 0.625 1.250 1.875 16.105 16.106 Note that the resistor width should be 5 m. The DAC will require 1024 resistors of equal value. Suppose R = 500 . This requires 10 squares per resistor or 10240 squares. For a 5 m width, the total length would be 0.0512 m or 5.12 cm. 5.12 cm/2.54 cm/in = 2.02 in! Note that contacts have been neglected in this estimate. 44 16.107 ADC code is equivalent to 2-1 23 2 5 2 7 2 9 2 10 2 13 x V FS 0.66711426 x V FS The ADC input may be anywhere in the range : 1 0.66711426 LSB x V FS 3.4154625 V 0.15625 mV | 3.415469 V V X 3.415781V 2 16.108 a 1 LSB = 2V 1. 90735 V 220 bits 1. 63V 20 2 854589.4 bits 85458910 11010000101000111101 2 2V 0. 997003 V 20 2 522716. 7 bits 522717 10 01111111100111011101 2 c 2V b 16.109 The quantization error is always positive and can be as large as 1 LSB. Both these characteristics are undesirable. Note, however, that the properly offset ADC does have a large quantization error for inputs approaching the full scale range of the converter. 16.110 Use fc = 1MHz. 3.760 V 12 1541 a 2 1540. 01 bits 154110 0110000001011 2 | T T 1.541 ms 10V fC 7. 333V 12 3004 2 3003.6 bits 300410 101110111100 2 | T T 3. 004 ms b 10V fC 16.111 1 LSB = 5.12 V 5.000 mV n |t= 10 6 n | The conversion is complete when 210 bits bit fC -6 the counter ramp first exceeds the input voltage : 0.005n 5cos 5000 10 n Using MATLAB, n = 94.0065 n = 9510 0001011111 2 | T T = 95 s 16.112 a 0.1 LSB 0.1 16.113 2V 12 2 bits 48.8 V b 0.1 LSB 0.1 2V 2 20 bits 0.191 V 1 20.0 s. 5x10 4 Twelve decisions must be made during this timeignoring the final logic decision. The total conversion time is TT = The time for each decision is 20.0s 1.67s | f C 600kHz | 12 bit 0.1 bit 1. 67s 167 ns bit 16.114 Note: Part (b) should refer to a single-ramp converter 45 a V 'REF 3.00 0.01 2.99 V T T b 1 3dt 5.12V | 3 1 5.12 RC 19.53 mS | C = 19.53mS 0.391 F RC 0 RC 30 50k 16.115 Ao s 1 R sCR 5 | s | V S s 1 sRC 1 A o s sCR 1 s R sC sCR A 1 o sCR 1 Ao 1 Ao 1 As sCR sCR A 1 1 RC 1 A 1 sRC o o s 1 A o sCR 1 RC A o 1 As V O s A 1 Ao 5 RC 1 A o s s 1 1 RC A o 1 A s s B 1 RC A o 1 5 Ao 5 Ao RC A o 1 5A o 2.5x10 5 | B RC A o 1 5A o 2.5x10 5 RC 1 A o RC 1 A o 1 1 t 5 | v O t 2. 5x105 1 exp V O s 2.5x10 for t 0 4 1 5x10 RC s s RCA o 1 The output of an ideal integrator at t= 200ms would be v O 200ms Desire: 5 0.2s 1 RC RC 1 0.2 5 2.5x10 1 exp 0. 001 RC 0. 0447 using MATLAB 4 RC 5x10 RC Note however, for the minimum RC = 0.0447, v O 0.2s 22.4 V. 16.116 The time corresponding to1 LSB is T LSB 16.117 V O 1 RC TT v tdt 0 For = 0, V O 16.118 16.119 46 1 RC TT V M cost dt 0 0. 2s 20 2 bits V M t VM cos x dx sinT T sin RC RC V M sin T T V T sin T T M T RC RC T T NR 2 n and 190.7 ns | 0.1T LSB 19.1 ns NC 2n 1 y11 1 r o 1R E r o R E r 1 g m R E | y 21 y 22 r ' r 1 g m R E o o gm gm | g 'm r o 1R E r 1 g m R E 1 g m R E 1 g mR E 1 g R r o 1 m R E E 1 r r o 1 g m R E for R E r or I CR E o V T 2.5V r 'o r o 1 g m R E | Note: 'o g 'm r ' o and 'f g 'm r 'o f are both conserved. 16.120 For R th 0, R OUT R OUT oR E g mR E g R r o 1 = r o 1 m E r o 1 R th R E R E R th r R E 1 1 r r g mR E = r o 1 IC R E 1 V o T r o 1 g m R E for IC R E o V T | For common values, o V T 100 0.025V 2.5V, and the approximation holds for I CR E 2.5V 47