Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Estimation of Random Variables Two types of estimation: 1) Estimating parameters/statistics of a random variable (or several) from data. 2) Estimating the value of an inaccessible random variable X based on observations of another random variable ,Y . e.g. Estimate the future price of a stock based on its present (and past) price. Two conditional estimators : 1) Maximum A Posteriori Probability (MAP) Estimator: Given Y y X̂ x such that P X x | Y y is maximized PY y | X x P X x P Y y P X x | Y y So we need to know the probabilities on the right hand side to do this estimate, especially P(X=x) which may not be available ( Remember, X is hard to observe) If X and Y are jointly continuous : max f X X x | Y y x 2) Maximum Likelihood (ML) Estimator: Given Y y : X̂ x such that P Y y | X x is maximized i.e. Find the likeliest X value based on the observation. This is useful when P( Y = y | X ) is available , i.e. The likelihood of observing a Y value given the value of X is known. e.g. Probability of receiving a 0 on a communication channel given that a 0 or 1 was sent. If X and Y are jointly continuous : max fY Y y | X x x Example 6.26 : X, Y are jointly Gaussian MAP : fX x| y 1 exp 2 2 2 1 X x X y mY m X Y 22X 1 2 f X x | y is maximized when ....... 0 X̂ MAP X y mY mX Y 2 ML : Again, fY y | x 1 Y x mX mY exp y 2 2 X 2 1 Y 2Y2 1 2 fY y | x is maximized when ....... 0 i.e. y Y x mX mY 0 X X ˆ X ML Y y mY mX Note that in this case Xˆ MAP Xˆ ML This isn' t always the case. 2 Minimum Mean Square Estimator (MMSE) Estimate X given observations of Y X̂ g Y such that error e E X g Y Case 1: g Y a min E X a 2 2 is minimized constant : min E X 2 a 2 2a E X a a To minimize , solve : d E X 2 a 2 2a E X 0 da 2 a E X 0 a* E X X̂ * E X i.e. The best constant MMSE of X , is its mean. The estimation error in this case is E X E X 2 VAR X Case 2: Linear Estimator g(Y) = aY + b min e min E X a Y b a ,b a ,b 2 This is like estimating the random variable X - aY by constant b So, using case 1, b* E X aY which gives the new estimation problem min E X aY E X a Y a 2 taking derivative w.r.t a and setting to 0 d 2 E X E X a Y E Y 0 da d d 2 2 2 E X E X a E Y E Y da da d 2a E X E X Y E Y da 2a VARY 2 COV X , Y solving 2a * VARY 2 COV X , Y 0 a* COV X , Y XY X VARY Y Xˆ a * Y b* XY X Y E X XY X E Y Y Xˆ XY X Y E Y E X Y Y Error e* E X a * Y b * 2 E X E X a * Y E Y 2 2 2 E X E X a * Y E Y 2 a * X E X Y E Y 2 2 E X E X a * E Y E Y 2 2 2a X2 a * Y2 2a * COV X , Y 2 2 X 2 XY X2 2 X 2 XY X Y Y XY Y2 Y 2 2 X2 XY X2 2 XY X2 2 X2 1 XY * E X E X Y E Y If XY 1 X ,Y perfectly correlated error 0 If XY 1 error ~ 1 - ρ XY error ~ VAR X high variance X is harder to estimate If XY 0 g * Y E X error VAR X Best linear estimator is the constant estimator in this case. Heuristic explanation of linear MMSE Y E Y Xˆ XY X EX Y Y E Y Y ~ distrib Y 0,1 (standardized version of Y ) XY X XY X Y E Y Y Y E Y Y scales standardiz ed Y to have the variance of X scaled by ρ XY E X shifts rescaled distributi on to have the mean of X . Case 3: Nonlinear estimator g(Y) min E X g Y g 2 Using conditional expectation: E X g Y 2 E X g Y 2 | Y y fY y dy Since E X g Y | Y y 0 y 2 the integral can be minimized by minimizing this quantity for every valu e of y. However, given Y y , g Y g y constant min E X g Y , which is a case 1 problem with a g y 2 g * y E X |Y y g* E X |Y y is called the regression curve. The error achieved by the regression curve is e* E X g * Y 2 E X E X | y | Y y fY y dy 2 VAR X |Y y fY y dy E X | Y y For jointly Gaussian X, Y fX x| y 1 exp 2 2 2 1 XY X X x E X XY y E Y Y 22X 1 XY 2 2 Thus, the optimal nonlinear MMSE is E X | Y y E X XY X Y E Y Y which is same as the linear MMSE. for jointly Gaussian X , Y , linear MMSE is optimal and the same as MAP estimator.