Download Optical interferometers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Basic electromagnetics
and interference
Optics, Eugene Hecht, Chpt 3
Maxwell’s equations
• Based on observation -- not derived
Induction

 
B 
CE  dl  A t  dS
Loop
voltage
Charges give
electric field
No magnetic
monopoles
Flux change
  1
 E  dS 
0
A
Electric
field flux
 dV
V
Charge
 
 B  dS  0
A
No net magnetic flux
through closed surface





Currents give
E  


magnetic field CB  dl     J   t   dS

A 
B
a
I
Current
Changing
electric field
Capacitor Q = CV
Q =  A E = V ( A /d)
C =  A /d
I = dQ/dt =  A dE/dt
Electromagnetic field in vacuum
• No sources of electric field, no currents

 
B 
CE  dl  A t  dS
 
 
AE  dS  0 AB  dS  0

 
E
CB  dl  0 0 A t  dS
Light speed: c = 1/() = w/k
B=E/c
Maxwell’s eqns -- differential form
 
  E   / 0

 
1 B
 E  
c t
 
 B  0

 

E
  B  J  
t

2

 E
2 E   0 0 2
t

2

 B
2 B   0 0 2
t
Propagating waves
E = E0 cos(kx - wt)
B = B0 cos(kx - wt)
Energy and momentum
•
•
•
•
Electric field UE = 0 E2/2
Magnetic field UB = B2/ (2 0)
Since c = 1/() -- UB = UE


 
Poynting vector: S  c 2 E  B cos 2 (k  r  wt )
0 0
0
• Average energy flow = c 0 E02 /2
• Momentum dp/dt = F = dU/dx -- p = (k/w) U = U/c
Photons
• Energy is quantized: U =  w
• Momentum also quantized: p =  k
Light is wave
• Electric field oscillates with position
– travelling wave
– wavelength l = c / n ~ 1/2 micron in visible
– electric fields can add or subtract (interference)
• Combine two laser beams
– Incoherent -- equal input intensity -- equal output intensities
– Coherent -- light can go one way, but not other -- intensity = sum of inputs
Light wave
E
field
position
Interference
Partial
mirror
180° phase shift
on reflection
Constructive
interference
• light
Destructive
interference
• no light
Interferometer
•
•
•
•
Split laser beams -- then recombine
Output light direction depends on path length difference
Path change ~ l/2 << 1 micron
Very sensitive
– accurate position measurement
– noisy
Interferometer
Mirror
Beamsplitter
Beamsplitter
Mirror
Interferometers
Mach-Zender -- Modulators for fiber communications
Mirror
Beamsplitter
Beamsplitter
Outputs
Inputs
Michaelson -- FTIR spectrometers
Input
Beamsplitter
Mirror
Mirror
Outputs
Mirror
Sanac -- Laser gyros for aircraft navigation
Input
Mirror
Mirror
Beamsplitter
Outputs
Mirror
Fabry-Perot -- Lasers and wavelength (ring version shown)
Input
Beamsplitter
Mirror
Beamsplitter
Output
Output
Mirror
Mach-Zender
• Simplest -- all inputs and outputs separate
– can cascade
– ex: quantum computing
• Used for high speed light modulation
– fiber communications
Mach-Zender Interferometer
Mirror
Beamsplitter
Beamsplitter
Outputs
Inputs
Mirror
Michaelson
• Like folded Mach-Zender
– beamsplitter serves an input and output
– first used to attempt detection of ether
– popular in optics courses
• Advantages:
Mirror
Input
Beamsplitter
Outputs
Mirror
=
– easy to change path length difference
– coherence length measurement
– FFT spectrometer
• Dis-advantages
Translation
stage option
– some output light goes back to source
– optical feedback
– problem for laser diodes
Mirror
Beamsplitter
Optical
feedback
Input
Outputs
Mirror
Sanac
• Replace 2nd beamsplitter with mirror
– used in rotation sensors -- laser gyro (ex: airplanes)
• Path lengths always equal
– counter-propagating, low noise
• Only non-reciprocal phase shifts important
– magnetic field Zeeman
– general relativity -- rotation
– Fizeau drag
Sanac
Mirror
Input
Mirror
Beamsplitter
Outputs
Mirror
Etalon and ring cavity
• Multi-pass devices
• Ring
–
–
–
–
Mach-Zender with beamsplitters rotated 90°
Interference after round trip
need long coherence length
used in laser cavities
• Etalon
–
–
–
–
–
Etalon
Beamsplitter
interference after round trip
optical standing wave
used in laser cavities, filters
Advantage -- simple
Disadvantage -- optical feedback
Beamsplitter
Input
Output
Output
Ring
Mirror
Input
Beamsplitter
Beamsplitter
Output
Output
Mirror
Real interferometers
General case
• Alignment not exact -- fringes
• Curvatures not exact -- rings
Straight fringes
constructive
destructive
constructive
Rings -- “bulls eye”
constructive
destructive
Coherence length
• Light beam composed of more than one wavelength
• Example: two wavelengths
• Path length difference = 1/2 beat wavelength
– one wavelength deflects downward
– other wavelength deflects upward
– net result -- no interference fringes visible
Dual wavelength laser beam
Interference of two-wavelength beams
Beat length
Wavelength #1
Wavelength #2
General case
•
•
•
•
Many wavelengths
Interference only over limited path difference
Define as “coherence length”
Fringe strength vs. path difference
– related to spectral content of light
– Fourier transform spectrometer
Multi wavelength light wave
E
field
position
Linear polarization
• E-field magnitude oscillates
• Direction fixed
• Arbitrary polarization angle
– superposition of x and y polarized waves
– real numbers
Example
45 ° linear polarization
Time
evolution
Circular polarization
• E-field magnitude constant
• Direction rotates
• Complex superposition of x and y polarizations
– x and y in quadrature
Time
evolution
Example:
right circular polarization
Waveplates
• Polarization converters
• One linear polarization direction propagates faster
• Half wave plate -- phase delay 180°
Rotate linear pol. by angle 2q
– rotate linear polarization up to 90°
– fast axis at 45° to input polarization direction
• Quarter wave plate -- phase delay 90°
– convert linear to circular polarization
– R or L for fast axis +45 or -45 to input pol.
Create circular polarization
Retardation of
one polarization
Isolators -- 1
• Polarizer and quarter waveplate
• Double pass through quarter wave plate
– same as half wave plate
– rotate polarization by up to 90°
• Polarizer blocks reflected light
Polarizer
Quarter wave
Reflecting element
Related documents