Download 3. Random Variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
3. Random Variables
(Fig.3.1)
1
Random Variables
If A  X 1 ( B) belongs to the associated field F, then the
probability of A is well defined .
in that case we can say :
Probabilit y of the event " X ( )  B "  P( X 1 ( B)). (3-1)
Random Variable (r.v): A finite single valued
function X (  ) that maps the set of all experimental outcomes 
into the set of real numbers R is said to be a r.v, if the set   | X ( )  x 
is an event ( F )for every x in R.
2
Random Variables
X :r.v, X 1 ( B)  F
B represents semi-infinite intervals of the form {  x  a}
 The Borel collection B of such subsets of R is the
smallest -field of subsets of R that includes all semiinfinite intervals of the above form.
 if X is a r.v, then
(3-2)
 | X ( )  x    X  x 

is an event for every x.
3
Distribution Function
P | X ( )  x   FX ( x)  0.
(3-3)
The role of the subscript X in (3-3) is only to identify the
actual r.v.
FX (x)
is said to the Probability Distribution
Function associated with the r.v X.
4
Properties of a PDF
if g(x) is a distribution function, then
(i) g ( )  1, g ( )  0,
(ii) if x1  x2 , then g ( x1 )  g ( x2 ),

(iii) g ( x )  g ( x ),for all x.
(3-4)
5
Properties of a PDF
Suppose FX (x) defined in (3-3)
(i) FX ()  P | X ( )     P()  1
(3-5)
(3-6)
and FX ()  P | X ( )     P( )  0.
(ii) I f x1  x2 , then the subset (, x1 )  (, x2 ).
Consequently the event  | X ( )  x1   | X ( )  x2 ,
since X ( )  x1 implies X ( )  x2 . As a result
FX ( x1 )  P X ( )  x1   P X ( )  x2   FX ( x2 ),
(3-7)
=>the probability distribution function is nonneg ative
and monotone nondecreasing.
6
Properties of a PDF
(iii) Let x  xn  xn1    x2  x1, and consider the event
since
Ak   | x  X ( )  xk .
(3-8)
 x  X ( )  xk   X ( )  x   X ( )  xk ,
(3-9)
using mutually exclusive property of events we get
P( Ak )  Px  X ( )  xk   FX ( xk )  FX ( x).
(3-10)
But  Ak 1  Ak  Ak 1 , and hence

lim Ak   Ak   and hence lim P( Ak )  0.
k 
k 1
k 
(3-11)
7
Properties of a PDF
Thus
lim P( Ak )  lim FX ( xk )  FX ( x)  0.
k 
k 

lim
x

x
, the right limit of x, and hence
But k  k
FX ( x  )  FX ( x),
(3-12)
i.e., FX (x) is right-continuous, justifying all properties of
a distribution function.
8
Additional Properties of a PDF
(iv) If FX ( x0 )  0 for some x0 , then FX ( x )  0, x  x0 .
(3-13)
This follows, since FX ( x0 )  P X ( )  x0   0 implies X ( )  x0 
is the null set, and for any x  x0 ,  X ( )  x  will be a
subset of the null set.
(v) P X ( )  x   1  FX ( x).
(3-14)
We have  X ( )  x   X ( )  x   
(vi) P x1  X ( )  x2   FX ( x2 )  FX ( x1 ), x2  x1.
(3-15)
The events X ( )  x1  and {x1  X ( )  x2} are mutually
exclusive and their union represents the event  X ( )  x2 .
9
Additional Properties of a PDF
(vii)
Let
P X ( )  x   FX ( x)  FX ( x  ).
x1  x   ,   0,
and x2  x. From (3-15)
lim P x    X ( )  x   FX ( x )  lim FX ( x   ),
 0
 0
(3-16)
(3-17)
or P X ( )  x   FX ( x)  FX ( x  ).
(3-18)
Thus the only discontinuities of a distribution function FX (x)
occur at points x0 where
P X ( )  x0   FX ( x0 )  FX ( x0 )  0.
(3-19)
is satisfied.
10
continuous-type & discrete-type r.v

X is said to be a continuous-type r.v if FX ( x )  FX ( x)
And from P X ( )  x0   FX ( x0 )  FX ( x0 )  0.

=>
 If F
PX  x  0.
(x) is constant except for a finite number of jump
discontinuities (piece-wise constant; step-type), then
X is said to be a discrete-type r.v. Ifxi is such a
discontinuity point, then
X
pi  PX  xi   FX ( xi )  FX ( xi ).
(3-20)
11
Example

Example 3.1: X is a r.v such that X ( )  c,   .Find FX (x).
Solution: For x  c,  X ( )  x    , so that FX ( x)  0,
and for x  c, X ( )  x  , so that FX ( x)  1. (Fig.3.2)
FX (x)
1
c
x
Fig. 3.2
at a point of discontinuity we get
P X  c   FX (c)  FX (c  )  1  0  1.
12
Example
Example 3.2: Toss a coin.   H ,T .Suppose the r.v X is
such that X (T )  0, X ( H )  1. Find FX (x).
Solution: For x  0,  X ( )  x    , so that FX ( x)  0.
0  x  1,  X ( )  x    T , so that FX ( x)  P T   1  p,
x  1,  X ( )  x    H , T   , so that FX ( x)  1. (Fig. 3.3)
FX (x)
1
q
1
x
Fig.3.3
at a point of discontinuity we get
P X  0   FX (0)  FX (0 )  q  0  q.
13
Example
Example:3.3 A fair coin is tossed twice, and let the r.v X
represent the number of heads. Find FX (x).
Solution: In this case
X ( HH )  2, X ( HT )  1, X (TH )  1, X (TT )  0.
x  0,
X ( )  x    FX ( x)  0,
1
0  x  1, X ( )  x   TT   FX ( x)  P TT   P(T ) P(T )  ,
4
3
1  x  2, X ( )  x   TT , HT , TH   FX ( x)  P TT , HT , TH   ,
4
x  2, X ( )  x    FX ( x)  1. (Fig. 3.4)
14
Example
FX (x)
1
3/ 4
1/ 4
1
x
2
Fig. 3.4
From Fig.3.4,
PX  1  FX (1)  FX (1 )  3 / 4  1 / 4  1 / 2.
15
Probability density function (p.d.f)
dFX ( x )
f X ( x) 
.
dx
(3-21)
Since
dFX ( x )
FX ( x  x )  FX ( x )
 lim
 0,
x 0
dx
x
from the monotone-nondecreasing nature of FX (x),
=>
f X ( x)  0
for all x
16
Probability density function (p.d.f)

f X (x) will be a continuous function, if X is a

continuous type r.v
if X is a discrete type r.v as in (3-20), then its p.d.f
f (x)
has the general form (Fig. 3.5)
X
f X ( x)   pi ( x  xi ),

xi
i
pi
xi
x
Fig. 3.5
represent the jump-discontinuity points in FX (x).
As Fig. 3.5 shows f X (x) represents a collection of
positive discrete masses, and it is known as the
probability mass function (p.m.f ) in the discrete
case.
17
Probability density function (p.d.f)
x
From (3-23),
FX ( x)   f X (u)du.

Since FX ()  1,
=> 


f X ( x)dx  1,
P x1  X ( )  x2   FX ( x2 )  FX ( x1 )   f X ( x )dx. (3-22)
x2
x1
the area under f X (x) in the interval ( x1, x2 ) represents
the probability in (3-22).
FX (x)
f X (x)
1
x1 x2
(a)
x
x1 x2
(b)
x
18
Continuous-type random variables
1. Normal (Gaussian):
f X ( x) 
1
2
FX ( x )  
x

2
e
( x   ) 2 / 2 2
1
2 2
e
(3-23)
.
( y   ) 2 / 2 2
x
dy  G
,
  
1 y /2
Where G ( x )  
e
dy

2
the notation X  N (  , 2 ) will be used to represent (3-23).
x
2
f X (x)

Fig. 3.7
x
19
Continuous-type random variables
2. Uniform:X U (a, b),
a  b,
(Fig. 3.8)
 1
, a  x  b,
f X ( x)   b  a
 0, otherwise.
1
ba
(3.24)
f X (x)
a
b
x
Fig. 3.8
20
Continuous-type random variables
2. Exponential: X   ( )
(Fig. 3.9)
1 x / 

 e
, x  0,
f X ( x)   

 0, otherwise.
f X (x)
(3.25)
note : X  
x
Fig. 3.9
21
Exponential distribution





Assume the occurences of nonoverlapping
intervals are independent, and assume:
q(t): the probability that in a time interval t no
event has occurred.
x: the waiting time to the first arrival
Then we have: P(x>t)=q(t)
t1 and t2 : two consecutive nonoverlapping
intervals,
22
Exponential distribution


Then we have: q(t1) q(t2) = q(t1+t2)
The only bounded solution is:
q(t )  e  t
Hence
FX (t )  P( X  t )  1  q(t )  1  e t
So the pdf is exponential.
If
the occurrences of events over nonoverlapping intervals are
independent, the corresponding pdf has to be exponential.
23
Memoryless property of exponential distribution
Let s, t  0
. Consider the events
{x  t  s} and {x  s}. Then

P{ X  t  s}
P{ X  t  s | X  s} 
P{ X  s}

e
( t  s )
s
e
(since {X  t  s}  {X  s})
 e t  P{ X  t}
24
Continuous-type random variables
x
4. Gamma: X  G( ,  ) if (  0,   0) (Fig. 3.10)
 x 1
x / 

e
, x  0,

f X ( x )   ( ) 

0, otherwise.

( ) 

 1  x
x
 e dx
(3-26)
f X (x)
0
If
  n an integer
(n )  (n  1)!.
Fig. 3.10
25
Continuous-type random variables


The exponential random variable is a special case of
gamma distribution with   1
The  2 (chi-square) random variable with n degrees
of freedom is a special case of gamma distribution
with
  n / 2 and   2
26
Continuous-type random variables
5. Beta: X   (a, b) if (a  0, b  0) (Fig. 3.11)
1

x a 1 (1  x )b1 , 0  x  1,

f X ( x )    ( a , b)

0,
otherwise.
(3-27)

where the Beta function  (a, b) is defined as
 ( a, b) 

1

0
f X (x )
0
x
1
Fig. 3.11
u a 1 (1  u ) b 1 du.
( a )(b)
 ( a  b)
(3-28)
Beta distribution with a=b=1 is the uniform distribution on
(0,1).
27
6. Chi-Square: X   2 (n), if (Fig. 3.12)
1

x n / 21e  x / 2 , x  0,
 n/2
f X ( x )   2 ( n / 2 )
(3-29)

0,
otherwise.

f X (x )
x
Fig. 3.12
Note that  2 (n) is the same as Gamma (n / 2, 2).
7. Rayleigh: X  R( 2 ), if (Fig. 3.13)
2
2
x

 2 e  x / 2 , x  0,
f X ( x )  

 0, otherwise.
f X (x )
(3-30)
x
Fig. 3.13
8. Nakagami – m distribution:
 2  m m 2 m 1  mx 2 / 
x e
, x0



f X ( x )   ( m )   

0
otherwise

(3-31)
28
f X (x )
9. Cauchy: X  C ( ,  ), if (Fig. 3.14)
f X ( x) 
 /
  (x  )
2
2
,    x  .
x

(3-32)
Fig. 3.14
10. Laplace: (Fig. 3.15)
f X ( x) 
1 |x|/ 
e
,    x  .
2
(3-33)
11. Student’s t-distribution with n degrees of freedom (Fig 3.16)
f T (t ) 
( n  1) / 2  
t 
1  
n
n ( n / 2) 
2
f X ( x)
 ( n 1) / 2
,    t  .
fT ( t )
x
Fig. 3.15
(3-34)
t
Fig. 3.16
29
12. Fisher’s F-distribution
{( m  n ) / 2} m m / 2 n n / 2
z m / 2 1
, z0

(mn) / 2
f z ( z)  
( m / 2) ( n / 2)
( n  mz )
(3-35)

0
otherwise

30
Discrete-type random variables
1. Bernoulli: X takes the values (0,1), and
P( X  0)  q,
P( X  1)  p.
2. Binomial: X  B(n, p), if (Fig. 3.17)
(3-36)
(3-37)
 n  k n k
P( X  k )  
, k  0,1,2,, n.
k 
p q
 
P( X  k )
12
n
k
The probability of k
successes in n experiments
with replacement (in ball
drawing)
Fig. 3.17
31
Discrete-type random variables
3. Poisson: X  P( ) , if (Fig. 3.18)
P( X  k )  e

k
k!
, k  0,1,2,, .
(3-38)
P( X  k )
k
Fig. 3.18
32
Discrete-type random variables

Poisson distribution represents the number of
occurrences of a rare event in a large number of trials.
Pk  P( X  k )
Pk 1 e  k 1 /( k  1)! k


 k
Pk

e  / k!

Pk Increasing with k from 0 to λ and decreasing after
that.
33
4. Hypergeometric:
P( X  k ) 
m
 
k 
 
 N m 


 n k 


,
N 
 
n 
 
max(0, m  n  N )  k  min( m, n )
(3-39)
The probability of k successes in n experiments without
replacement (ball drawing)
5. Geometric: X  g ( p ) if
P( X  k )  pqk , k  0,1,2,, ,
q  1  p.
(3-40)
34
6. Negative Binomial: X ~ NB (r, p), if
 k  1 r k  r
P( X  k )  
p q ,

 r 1
k  r, r  1,
.
(3-41)
7. Discrete-Uniform:
1
P( X  k ) 
, k  1,2,, N .
N
(3-42)
35
Related documents