* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Direct Instruction Model
Financial economics wikipedia , lookup
Mathematical descriptions of the electromagnetic field wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Computational fluid dynamics wikipedia , lookup
Routhian mechanics wikipedia , lookup
Computational electromagnetics wikipedia , lookup
Direct Instruction Model
Teacher: Theresa Cojohn
Lesson:1-4 Solving Absolute Value Equations
Subject: Algebra
II
Date: 9/17/2007
Block: A & B
Students will engage in:
independent activities
cooperative learning
visuals
peer tutoring
simulations
pairing
hands-on
whole group instruction
centers
a project
technology integration
lecture
other:
Standards/Objectives Met: Each student will learn how to evaluate expressions involving absolute values.
Each student will be able to solve absolute value equations.
Time
Procedure Followed
Materials/Text
References
10
Class Starter: Solve the following equations for x.
minutes
1. 4r=3tx
2. 2x-9h=A
3.
5 minutes
15
mintues
10
minutes
30
minutes
10
mintues
11
7t
3x
Review of Previously Learned Material/Homework: In lesson 1-3
student wrote expression and solved equations. In this lesson, they
apply those skills to equations involving absolute value. Begin the
lesson by reviewing what absolute value is and then move to combining
this knowledge with that of solving equations.
Statement of Objectives: Each student will learn how to evaluate
expressions involving absolute values. Each student will be able to
solve absolute value equations.
Presentation of New Material: Begin with the idea of absolute value.
This is the distance a number is away from zero. So, x a positive
Overhead notes
number, then x can be +/- the number. Then to solve an equation using
absolute value, you must solve twice. In Case 1, set eh equation equal
like normal. In case two set the equation equal to the negative.
Remember – you must check you work! If the solution does not work
then we use the empty set or {} or 0. Show student that you must
distribute the negative over the whole equation. Also if there is a
number in front of the bracket, distribute.
Guided Practice: pg 30 #5-12 Check your work!
Glenco
Independent Practice: pg 30-31 #17-43 odd
Glenco
Wrap Up/Lesson Review: Put the work on the board and remind
students of the two situations that need to be solved when you see an
absolute value.
Present Closure
Homework Given:1-4 Skills Practice odds
Test/Quiz Date: Friday 9/21/2007
Teacher Notes:
Objective: Students will be able to solve equations involving absolute value and
inequalities involving absolute value.
The absolute value x of a number is its distance away from zero.
This means that the absolute value of any number is always _________________.
When solving absolute value equations, you must solve for both a b and a b .
You must always isolate the absolute value before solving!
Example: Solve for all value of x. Express your answer using set notation.
1. x 18 5
4. x 6 3x 2
2. -32x - 5 = -45
5. 4 3x - 5 +12 = 8
3. 6x 7 10 39
6.
x 2 + 4x - 5 = 7
How do we solve an absolute value inequality?
Write the problem without the absolute value sign, and solve the inequality.
Write the problem without the absolute value sign, reverse the inequality,
negate the value NOT under the absolute value, and solve the inequality.
x <a
x a
x > -a
If the symbol is < (or <) : (and)
Also written: - a < x < a.
x>a
x a
If the symbol is >(or ≥) : (or)
Also written: x <- a or x>a.
6. x 5
7.
2x 4
8.
2x 3 6
9.
10.
x < -a
2x 5 5
3 x 1 9