Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Basic Resistive Load Circuits Dr. Paul Hasler Basic Resistive Load Circuits Vdd Vdd= 5.0V Output Voltage Bias = 3.0V R1 R1 Vout Vin Vout Vin GND What is the bias current? GND Iref = (2V) / R1 Basic Resistive Load Circuits Vdd Vdd= 5.0V Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vin Vout Vin GND GND BJT / Subthreshold VT (2V) / R1 = Ico e Vin/UT Vin = UT ln ( (2V) / R1 Ico ) Above Threshold (Vd > Vg - VT ) (2V) / R1 = (K/2) (Vin - VT )2 Vin = VT + sqrt( (4V) / (K R1) ) Small-Signal Model: Common Drain Vdd Vdd= 5.0V Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vin Vout Vin GND GND Have bias Vin Small-Signal Modeling V3 V3 I V1 I V1 rp V1 V2 V2 rp V3 + V gmV ro - V2 gm V2 ro Av BJT (UT b) / I I / UT VA / I VA / UT Above VT MOSFET 2I /(V1-V2 -VT) VA / I 2VA/(V1-V2 -VT) Sub VT MOSFET kI / UT VA / I kVA / UT Small-Signal Model: Common Drain Vdd Vdd= 5.0V Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vin Vout Vin Have bias Vin GND GND Compute Transconductance (gm) BJT / Subthreshold VT gm = I / UT = (2V) / (R1 UT) Above Threshold (Vd > Vg - VT ) gm = 2I /(Vin -VT) = (4V) / (R1 (Vin -VT) ) Small-Signal Model: Common Drain Vdd Vdd= 5.0V Iref = (2V) / R1 R1 R1 Vout Vout Vin rp + V - or GND Vout R1 gmV Have bias Vin gm = (2V) / (R1 UT) Vin GND Vin Output Voltage Bias = 3.0V gm = (4V) / (R1 (Vin -VT) ) Gain = - gmR1 = - [ (2V) /(R1UT) ] R1 = - (2V) /UT or GND Gain = -(4V) / (Vin -VT) Small-Signal Model: Common Drain Vdd Vdd= 5.0V Iref = (2V) / R1 R1 R1 Vout Vout Vin rp + V - or GND Vout gmV R1 Have bias Vin gm = (2V) / (R1 UT) Vin GND Vin Output Voltage Bias = 3.0V ro gm = (4V) / (R1 (Vin -VT) ) Gain = - [(2V) / UT ][1 + (2V)/ VA ] or Gain = -[(4V)/(Vin -VT)][1 + (2V)/ VA ] GND Small-Signal Model: Common Drain Vdd Vdd= 5.0V Iref = (2V) / R1 R1 R1 Vout Vout Vin rp + V - Have bias Vin gm = (2V) / (R1 UT) Vin or GND GND Vin Output Voltage Bias = 3.0V Vout gm = (4V) / (R1 (Vin -VT) ) Gain = - (2V) /UT or Gain = -(4V) / (Vin -VT) R1 gmV Output Resistance = R1 GND Common E / S: Resistive Load Follower Circuits Vdd Vdd Output Voltage Bias = 3.0V Vin Vin Vout Vout R1 R1 GND What is the bias current? GND Iref = (3V) / R1 Basic Resistive Load Circuits Vdd Vdd Output Voltage Bias = 3.0V Vin Vin Vout Vout R1 R1 GND GND BJT / Subthreshold VT (3V) / R1 = Ico e Iref = (3V) / R1 (Vin - Vout)/UT Vin = Vout + UT ln ( (3V) / R1 Ico ) Above Threshold (Vd > Vg - VT ) (3V) / R1 = (K/2) (Vin - Vout - VT )2 Vin = Vout + VT + sqrt((6V)/(KR1)) Small-Signal Model: Common Drain Vdd Vdd Output Voltage Bias = 3.0V Vin Vin Vout Vout R1 R1 Iref = (3V) / R1 Have bias Vin GND GND Compute Transconductance (gm) BJT / Subthreshold VT gm = I / UT = (3V) / (R1 UT) Above Threshold (Vdd > Vin - VT ) gm = 2I /(Vin –3V - VT) = (6V) / (R1 (Vin - 3V- VT) ) Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Vdd Vdd Iref = (3V) / R1 Vin Vin Vout Vout R1 R1 Have bias Vin gm = (3V) / (R1 UT) or GND GND gm = (6V) / (R1 (Vin-3V-VT) ) + V Vin Vout rp R1 gmV GND GND (Vin - Vout ) / rp + (Vin - Vout ) gm = Vout / R1 (Vin-Vout )(1 + rp gm) = Vout (rp / R1) Vout/Vin = 1/(1 + [(rp / R1)/(1 + rp gm)]) Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Vdd Vdd Iref = (3V) / R1 Vin Vin Vout Vout R1 R1 GND + V Vout rp R1 gmV GND gm = (3V) / (R1 UT) or GND Vin Have bias Vin GND gm = (6V) / (R1 (Vin-3V-VT) ) Vout / Vin = 1 / (1 + [ (rp / R1) / (1 + rp gm)]) rp gm = b (large) Vout / Vin = 1 / ( 1 + [ 1 / (R1 gm)] ) Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Vdd Vdd Iref = (3V) / R1 Vin Vin Vout Vout R1 R1 GND + V Vout rp R1 gmV GND gm = (3V) / (R1 UT) or GND Vin Have bias Vin GND gm = (6V) / (R1 (Vin-3V-VT) ) Vout / Vin = 1 / (1 + [ 1 / (R1 gm)]) Vout / Vin = 1 / (1 + [UT/(3V)]) or Vout / Vin = 1 / (1 + [Vin-3V-VT /(3V)]) Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Vdd Vdd Iref = (3V) / R1 Vin Vin Vout Vout R1 R1 gm = (3V) / (R1 UT) or GND GND + V Vin Have bias Vin Vout rp gm = (6V) / (R1 (Vin-3V-VT) ) Vout/Vin = 1/(1 + [UT/(3V)]) or Vout/Vin = 1/(1+[Vin-3V-VT /(3V)]) R1 gmV GND GND Output Resistance: Short the input to GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Vdd Vdd Iref = (3V) / R1 Vin Vin Vout Vout R1 R1 Vout 1/gm GND rp R1 GND GND gm = (3V) / (R1 UT) or GND GND Have bias Vin gm = (6V) / (R1 (Vin-3V-VT) ) Vout/Vin = 1/(1 + [UT/(3V)]) or Vout/Vin = 1/(1+[Vin-3V-VT /(3V)]) Rout = (1/gm) / (1 + gm R1) ~ 1/gm Common Gate: Resistive Load Vdd Vdd R1 R1 Vout Vb Vout Vb Vin What is the bias current? Vin Iref = (1V) / R1 Output Voltage Bias = 4.0V Common G: Resistive Load Common Gate: Resistive Load Vdd Vdd R1 R1 Vout Vb Output Voltage Bias = 4.0V Iref = (1V) / R1 Vout Vb Vin Vin BJT / Subthreshold VT (1V) / R1 = Ico e Vb-Vin/UT Vin = Vb - UT ln ( (1V) / R1 Ico ) Above Threshold (Vd > Vg - VT ) (1V) / R1 = (K/2) (Vb - Vin - VT )2 Vin = Vb - VT - sqrt((2V)/(K R1)) Common Gate: Small-Signal Vdd Vdd R1 R1 Vout Vb Output Voltage Bias = 4.0V Vout Iref = (1V) / R1 Have Input Bias Vb Vin BJT / Subthreshold VT gm = I / UT = (1V) / (R1 UT) Vin Above Threshold (Vd > Vg - VT ) gm = 2I /(Vb - Vin -VT) = (2V) / (R1 (Vb - Vin -VT) ) Common Gate: Small-Signal Vdd Vdd R1 R1 Vout Vout Vb Vin rp + V - Vout R1 gmV Vin GND Iref = (1V) / R1 Have Input Bias gm = (1V) / (R1 UT) Vb Vin GND Output Voltage Bias = 4.0V or gm = (2V) / (R1(Vb- Vin-VT) ) Gain = gm R1 Gain = (1V) / UT or Gain = (2V) / (Vb- Vin-VT) Common Gate: Small-Signal Vdd Vdd R1 R1 Vout Vout Vb Vin GND rp Vout R1 gmV Vin GND Iref = (1V) / R1 Have Input Bias gm = (1V) / (R1 UT) Vb Vin + V - Output Voltage Bias = 4.0V or gm = (2V) / (R1(Vb- Vin-VT) ) Gain = (1V) / UT or Gain = (2V) / (Vb- Vin-VT) Output Resistance = R1 Source Degeneration Vdrain Vdrain Vin Vin Va R1 GND Va Modify gm R1 GND Small-Signal Model: Common Drain Vdd Vdd + V - Vin Vin Vout Vout R1 R1 Vin Vout rp R1 gmV GND GND GND GND Vout / Vin = 1 / ( 1 + [ 1 / (R1 gm)] ) = R1 gm / (1 + R1 gm) R1 << 1/gm Vout / Vin = (R1 gm) (Resistor has a small effect) R1 >> 1/gm Vout / Vin ~ 1 (Resistor sets gm) Source Degeneration Vdrain Vdrain Vdrain Vin Vin Va R1 Gm: Vin Va Modify gm GND R1 gmV Vdrain GND = Va rp R1 gmV = gm(Vin - Va ) = gm(1 (ignore ro here) ro + V - R1 gm 1 + R1gm gm 1 + R1gm Vin ) Vin R1gm << 1 R1gm >> 1 gmVin Vin /R GND Source Degeneration Vdrain Vdrain Vdrain Vin Vin Va Va GND R1 GND Gm = 1 /R Rout: ro + V - Modify gm R1 GND Va rp R1 gmV Vdrain GND Source Degeneration Vdrain Vdrain Vdrain Vin gmVa ro Vin Va R1 GND Gm = 1 /R Rout: Vdrain Va Modify gm Va rp // R1 R1 GND GND small Solve for Va: Va / (rp // R1) + gmVa = (Vdrain - Va)/ ro small Va [ro (gm+ (1/(rp // R1)) )] = Vdrain Va = Vdrain /[rogm] Source Degeneration Vdrain Vdrain Vdrain Vin gmVa ro Vin Va R1 GND Gm = 1 /R Vdrain Va Modify gm Va rp // R1 R1 GND GND Va = Vdrain /[rogm] Solve for Current: I = Va / (rp // R1) Rout: I = Vdrain /[rogm(rp // R1)] Rout = rogm(rp // R1) Source Degeneration Vdrain Rin: (conductance is zero for a MOSFET) Vdrain Vin Vin Va R1 Va Vdrain Modify gm GND “Reflect R1 through the base” R1 GND Rin bR1 Vin Gm = 1 /R Rout = rogm(rp // R1) GND small Rin = bR1 + rp = b R1(1 + (1/(gmR1) ) ) Rin = b R1 Source Degeneration Vdrain Vdrain Vin Vin Vin Va R1 Va Modify gm R1 Rin + V - Vdrain GmV Rout GND GND Gm = 1 /R Rout = rogm(rp // R1) Rin = b R1 GND Voltage Gain: Gm Rout = rogm(1 // (R1/rp ) )