Download R 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Basic Resistive Load Circuits
Dr. Paul Hasler
Basic Resistive Load Circuits
Vdd
Vdd= 5.0V
Output Voltage
Bias = 3.0V
R1
R1
Vout
Vin
Vout
Vin
GND
What is the bias current?
GND
Iref = (2V) / R1
Basic Resistive Load Circuits
Vdd
Vdd= 5.0V
Output Voltage
Bias = 3.0V
R1
R1
Iref = (2V) / R1
Vout
Vin
Vout
Vin
GND
GND
BJT / Subthreshold VT
(2V) / R1 = Ico e
Vin/UT
Vin = UT ln ( (2V) / R1 Ico )
Above Threshold (Vd > Vg - VT )
(2V) / R1 = (K/2) (Vin - VT )2
Vin = VT + sqrt( (4V) / (K R1) )
Small-Signal Model: Common Drain
Vdd
Vdd= 5.0V
Output Voltage
Bias = 3.0V
R1
R1
Iref = (2V) / R1
Vout
Vin
Vout
Vin
GND
GND
Have bias Vin
Small-Signal Modeling
V3
V3
I
V1
I
V1
rp
V1
V2
V2
rp
V3
+
V gmV
ro
-
V2
gm
V2
ro
Av
BJT
(UT b) / I
I / UT
VA / I
VA / UT
Above VT
MOSFET

2I /(V1-V2 -VT)
VA / I
2VA/(V1-V2 -VT)
Sub VT
MOSFET

kI / UT
VA / I
kVA / UT
Small-Signal Model: Common Drain
Vdd
Vdd= 5.0V
Output Voltage
Bias = 3.0V
R1
R1
Iref = (2V) / R1
Vout
Vin
Vout
Vin
Have bias Vin
GND
GND
Compute Transconductance (gm)
BJT / Subthreshold VT
gm = I / UT
= (2V) / (R1 UT)
Above Threshold (Vd > Vg - VT )
gm = 2I /(Vin -VT)
= (4V) / (R1 (Vin -VT) )
Small-Signal Model: Common Drain
Vdd
Vdd= 5.0V
Iref = (2V) / R1
R1
R1
Vout
Vout
Vin
rp
+
V
-
or
GND
Vout
R1
gmV
Have bias Vin
gm = (2V) / (R1 UT)
Vin
GND
Vin
Output Voltage
Bias = 3.0V
gm = (4V) / (R1 (Vin -VT) )
Gain = - gmR1
= - [ (2V) /(R1UT) ] R1
= - (2V) /UT
or
GND
Gain = -(4V) / (Vin -VT)
Small-Signal Model: Common Drain
Vdd
Vdd= 5.0V
Iref = (2V) / R1
R1
R1
Vout
Vout
Vin
rp
+
V
-
or
GND
Vout
gmV
R1
Have bias Vin
gm = (2V) / (R1 UT)
Vin
GND
Vin
Output Voltage
Bias = 3.0V
ro
gm = (4V) / (R1 (Vin -VT) )
Gain = - [(2V) / UT ][1 + (2V)/ VA ]
or
Gain = -[(4V)/(Vin -VT)][1 + (2V)/ VA ]
GND
Small-Signal Model: Common Drain
Vdd
Vdd= 5.0V
Iref = (2V) / R1
R1
R1
Vout
Vout
Vin
rp
+
V
-
Have bias Vin
gm = (2V) / (R1 UT)
Vin
or
GND
GND
Vin
Output Voltage
Bias = 3.0V
Vout
gm = (4V) / (R1 (Vin -VT) )
Gain = - (2V) /UT
or
Gain = -(4V) / (Vin -VT)
R1
gmV
Output Resistance = R1
GND
Common E / S: Resistive Load
Follower Circuits
Vdd
Vdd
Output Voltage
Bias = 3.0V
Vin
Vin
Vout
Vout
R1
R1
GND
What is the bias current?
GND
Iref = (3V) / R1
Basic Resistive Load Circuits
Vdd
Vdd
Output Voltage
Bias = 3.0V
Vin
Vin
Vout
Vout
R1
R1
GND
GND
BJT / Subthreshold VT
(3V) / R1 = Ico e
Iref = (3V) / R1
(Vin - Vout)/UT
Vin = Vout + UT ln ( (3V) / R1 Ico )
Above Threshold (Vd > Vg - VT )
(3V) / R1 = (K/2) (Vin - Vout - VT )2
Vin = Vout + VT + sqrt((6V)/(KR1))
Small-Signal Model: Common Drain
Vdd
Vdd
Output Voltage
Bias = 3.0V
Vin
Vin
Vout
Vout
R1
R1
Iref = (3V) / R1
Have bias Vin
GND
GND
Compute Transconductance (gm)
BJT / Subthreshold VT
gm = I / UT
= (3V) / (R1 UT)
Above Threshold (Vdd > Vin - VT )
gm = 2I /(Vin –3V - VT)
= (6V) / (R1 (Vin - 3V- VT) )
Small-Signal Model: Common Drain
Output Voltage
Bias = 3.0V
Vdd
Vdd
Iref = (3V) / R1
Vin
Vin
Vout
Vout
R1
R1
Have bias Vin
gm = (3V) / (R1 UT)
or
GND
GND
gm = (6V) / (R1 (Vin-3V-VT) )
+ V Vin
Vout
rp
R1
gmV
GND
GND
(Vin - Vout ) / rp + (Vin - Vout ) gm
= Vout / R1
(Vin-Vout )(1 + rp gm) = Vout (rp / R1)
Vout/Vin = 1/(1 + [(rp / R1)/(1 + rp gm)])
Small-Signal Model: Common Drain
Output Voltage
Bias = 3.0V
Vdd
Vdd
Iref = (3V) / R1
Vin
Vin
Vout
Vout
R1
R1
GND
+ V Vout
rp
R1
gmV
GND
gm = (3V) / (R1 UT)
or
GND
Vin
Have bias Vin
GND
gm = (6V) / (R1 (Vin-3V-VT) )
Vout / Vin =
1 / (1 + [ (rp / R1) / (1 + rp gm)])
rp gm = b (large)
Vout / Vin = 1 / ( 1 + [ 1 / (R1 gm)] )
Small-Signal Model: Common Drain
Output Voltage
Bias = 3.0V
Vdd
Vdd
Iref = (3V) / R1
Vin
Vin
Vout
Vout
R1
R1
GND
+ V Vout
rp
R1
gmV
GND
gm = (3V) / (R1 UT)
or
GND
Vin
Have bias Vin
GND
gm = (6V) / (R1 (Vin-3V-VT) )
Vout / Vin = 1 / (1 + [ 1 / (R1 gm)])
Vout / Vin = 1 / (1 + [UT/(3V)])
or
Vout / Vin = 1 / (1 + [Vin-3V-VT /(3V)])
Small-Signal Model: Common Drain
Output Voltage
Bias = 3.0V
Vdd
Vdd
Iref = (3V) / R1
Vin
Vin
Vout
Vout
R1
R1
gm = (3V) / (R1 UT)
or
GND
GND
+ V Vin
Have bias Vin
Vout
rp
gm = (6V) / (R1 (Vin-3V-VT) )
Vout/Vin = 1/(1 + [UT/(3V)])
or
Vout/Vin = 1/(1+[Vin-3V-VT /(3V)])
R1
gmV
GND
GND
Output Resistance:
Short the input to GND
Small-Signal Model: Common Drain
Output Voltage
Bias = 3.0V
Vdd
Vdd
Iref = (3V) / R1
Vin
Vin
Vout
Vout
R1
R1
Vout
1/gm
GND
rp
R1
GND GND
gm = (3V) / (R1 UT)
or
GND
GND
Have bias Vin
gm = (6V) / (R1 (Vin-3V-VT) )
Vout/Vin = 1/(1 + [UT/(3V)])
or
Vout/Vin = 1/(1+[Vin-3V-VT /(3V)])
Rout = (1/gm) / (1 + gm R1) ~ 1/gm
Common Gate: Resistive Load
Vdd
Vdd
R1
R1
Vout
Vb
Vout
Vb
Vin
What is the bias current?
Vin
Iref = (1V) / R1
Output Voltage
Bias = 4.0V
Common G: Resistive Load
Common Gate: Resistive Load
Vdd
Vdd
R1
R1
Vout
Vb
Output Voltage
Bias = 4.0V
Iref = (1V) / R1
Vout
Vb
Vin
Vin
BJT / Subthreshold VT
(1V) / R1 = Ico e
Vb-Vin/UT
Vin = Vb - UT ln ( (1V) / R1 Ico )
Above Threshold (Vd > Vg - VT )
(1V) / R1 = (K/2) (Vb - Vin - VT )2
Vin = Vb - VT - sqrt((2V)/(K R1))
Common Gate: Small-Signal
Vdd
Vdd
R1
R1
Vout
Vb
Output Voltage
Bias = 4.0V
Vout
Iref = (1V) / R1
Have Input Bias
Vb
Vin
BJT / Subthreshold VT
gm = I / UT
= (1V) / (R1 UT)
Vin
Above Threshold (Vd > Vg - VT )
gm = 2I /(Vb - Vin -VT)
= (2V) / (R1 (Vb - Vin -VT) )
Common Gate: Small-Signal
Vdd
Vdd
R1
R1
Vout
Vout
Vb
Vin
rp
+
V
-
Vout
R1
gmV
Vin
GND
Iref = (1V) / R1
Have Input Bias
gm = (1V) / (R1 UT)
Vb
Vin
GND
Output Voltage
Bias = 4.0V
or
gm = (2V) / (R1(Vb- Vin-VT) )
Gain = gm R1
Gain = (1V) / UT
or
Gain = (2V) / (Vb- Vin-VT)
Common Gate: Small-Signal
Vdd
Vdd
R1
R1
Vout
Vout
Vb
Vin
GND
rp
Vout
R1
gmV
Vin
GND
Iref = (1V) / R1
Have Input Bias
gm = (1V) / (R1 UT)
Vb
Vin
+
V
-
Output Voltage
Bias = 4.0V
or
gm = (2V) / (R1(Vb- Vin-VT) )
Gain = (1V) / UT
or
Gain = (2V) / (Vb- Vin-VT)
Output Resistance = R1
Source Degeneration
Vdrain
Vdrain
Vin
Vin
Va
R1
GND
Va
Modify
gm
R1
GND
Small-Signal Model: Common Drain
Vdd
Vdd
+ V -
Vin
Vin
Vout
Vout
R1
R1
Vin
Vout
rp
R1
gmV
GND
GND
GND
GND
Vout / Vin = 1 / ( 1 + [ 1 / (R1 gm)] ) = R1 gm / (1 + R1 gm)
R1 << 1/gm
Vout / Vin = (R1 gm)
(Resistor has a small effect)
R1 >> 1/gm
Vout / Vin ~ 1
(Resistor sets gm)
Source Degeneration
Vdrain
Vdrain
Vdrain
Vin
Vin
Va
R1
Gm:
Vin
Va
Modify
gm
GND
R1
gmV
Vdrain
GND
=
Va
rp
R1
gmV = gm(Vin - Va ) = gm(1 (ignore ro here)
ro
+ V -
R1 gm
1 + R1gm
gm
1 + R1gm
Vin
) Vin
R1gm << 1
R1gm >> 1
gmVin
Vin /R
GND
Source Degeneration
Vdrain
Vdrain
Vdrain
Vin
Vin
Va
Va
GND
R1
GND
Gm = 1 /R
Rout:
ro
+ V -
Modify
gm
R1
GND
Va
rp
R1
gmV
Vdrain
GND
Source Degeneration
Vdrain
Vdrain
Vdrain
Vin
gmVa
ro
Vin
Va
R1
GND
Gm = 1 /R
Rout:
Vdrain
Va
Modify
gm
Va
rp // R1
R1
GND
GND
small
Solve for Va: Va / (rp // R1) + gmVa = (Vdrain - Va)/ ro
small
Va [ro (gm+ (1/(rp // R1)) )] = Vdrain
Va = Vdrain /[rogm]
Source Degeneration
Vdrain
Vdrain
Vdrain
Vin
gmVa
ro
Vin
Va
R1
GND
Gm = 1 /R
Vdrain
Va
Modify
gm
Va
rp // R1
R1
GND
GND
Va = Vdrain /[rogm]
Solve for Current: I = Va / (rp // R1)
Rout:
I = Vdrain /[rogm(rp // R1)]
Rout = rogm(rp // R1)
Source Degeneration
Vdrain
Rin: (conductance is zero
for a MOSFET)
Vdrain
Vin
Vin
Va
R1
Va
Vdrain
Modify
gm
GND
“Reflect R1 through the base”
R1
GND
Rin
bR1
Vin
Gm = 1 /R
Rout = rogm(rp // R1)
GND
small
Rin = bR1 + rp = b R1(1 + (1/(gmR1) ) )
Rin = b R1
Source Degeneration
Vdrain
Vdrain
Vin
Vin
Vin
Va
R1
Va
Modify
gm
R1
Rin
+
V
-
Vdrain
GmV
Rout
GND
GND
Gm = 1 /R
Rout = rogm(rp // R1)
Rin = b R1
GND
Voltage Gain: Gm Rout = rogm(1 // (R1/rp ) )
Related documents