Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Intelligenza artificiale Introduzione al corso Stefano De Luca 11 Ottobre 2010 Obiettivi del corso  Introdurre le tematiche principali dell’intelligenza artificiale (IA)  Focus sul semantic web, ontologie e logica  Introduzione al linguaggio PROLOG  Introduzione a tecniche di IA non logiche, come reti neurali, classificatori e clustering  Alla fine del corso, gli studenti saranno capaci di progettare un semplice agente intelligente, scegliendo la tecnica più consona Programma  Introduzione all’IA  Cos’è un agente; introduzione al semantic web  Ricerche e pianificazioni  Logica, semantic web e PROLOG  Tecniche non simboliche:  Reti neurali  Algoritmi genetici  Clustering. KNN e reti di Kohonen  Classificazione. SVM Chi insegna  Docente: Stefano De Luca  Si occupa di intelligenza artificiale da più di 20 anni  Lavora in un’azienda specializzata in intelligenza artificiale, evodevo  Responsabile di numerosi progetti che hanno usato ed usano tecniche di IA  Pubblicazioni internazionali in particolare su agenti e semantic web  Nel review board di riviste internazionali di IA ( International Journal of Agent Technologies and Systems )  Reviewer per conferenze internazionali di IA (AAMAS) e per pubblicazione di libri internazionali  Temi di ricerca: analisi dei testi, semantic web e semantic GIS, uso dell’IA per sistemi di investigazione  Ricevimento: alla fine della lezione, su appuntamento  eMail: [email protected], [email protected] Orientamento  Il corso sarà orientato alla presentazione di idee più che di elementi specifici di programmazione  Alcune parti del corso verranno introdotte tramite il linguaggio di programmazione Prolog  Prequisiti al corso: non ci sono prerequisiti specifici Libri di testo & letture  Tutto il materiale del corso verrà distribuito sulla pagina del corso stesso  Verranno fornite delle dispense e degli articoli su cui studiare (sempre in formato elettronico)  Durante il corso, verranno proposte delle letture su temi attuali dell’IA; gli articoli verranno forniti in formato elettronico. È molto gradita la lettura di questi articoli, per poter poi avviare una discussione in classe (ultima parte della lezione di venerdì) Modalità di esame  L’esame consta di una parte scritta obbligatoria e una parte orale.  Lo scritto è basato su esercizi e sulla descrizione della     progettazione di un agente intelligente È previsto un esonero a metà corso; l’esonero sarà preceduto da una esercitazione Per superare l’esame, è necessario presentare un progetto su uno dei temi che verrà fornito. Il progetto (per 2..4 persone) è relativo alla messa in pratica di una delle tematiche trattate. Chi vuole, può presentare una tesina su un argomento concordato. Per i non informatici: il progetto non è obbligatorio, eventualmente va sostituito dalla tesina. Software necessari  Per la creazione di ontologie:  Protégé, http://protege.stanford.edu/  Per il Prolog:  SWI Prolog, http://www.swi-prolog.org/  Sono entrambi open source e free, e disponibili su più sistemi operativi. Cos’è l’intelligenza artificiale La “vecchia” IA AI 10 18/10/2010 Ora: Smart Music System  The Bose uMusic system uses artificial intelligence to learn the listening habits and preferences of its users. Load your CDs into the digital music delivery system, it can hold thousands of songs, and it will learn your listening preferences and prioritize your music collection. 11 AI 18/10/2010 Pandora.com AI 12 18/10/2010 Control systems AI 13 18/10/2010 Google Instanst Search Foundations of AI  Different fields have contributed to AI in the form of ideas,viewpoints and techniques.  Philosophy: Logic, reasoning, mind as a physical system, foundations of learning, language and       AI rationality. Mathematics: Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability. Psychology: adaptation, phenomena of perception and motor control. Economics: formal theory of rational decisions, game theory. Linguistics: knowledge represetatio, grammar. Neuroscience: physical substrate for mental activities. Control theory: homeostatic systems, stability, optimal agent design. 15 18/10/2010 Basi dell’IA Robotica Logica Filosofia IA Sistemi basati sulla natura ALife Economia Scienze Sociali Test di Turing  When does a system behave intelligently?  Turing (1950) Computing Machinery and Intelligence  Operational test of intelligence: imitation game  Test still relevant now, yet might be the wrong question.  Requires the collaboration of major components of AI: knowledge, reasoning, language understanding, learning, … AI 17 18/10/2010 A brief history  What happened after WWII?  1943: Warren Mc Culloch and Walter Pitts: a model of artificial boolean neurons to perform computations.  First steps toward connectionist computation and learning (Hebbian learning).  Marvin Minsky and Dann Edmonds (1951) constructed the first neural network computer  1950: Alan Turing’s “Computing Machinery and Intelligence”  First complete vision of AI.  Idea of Genetic Algorithms AI 18 18/10/2010 A brief history (2)  The birth of (the term) AI (1956)  Darmouth Workshop bringing together top minds on automata theory, neural nets and the study of intelligence.  Allen Newell and Herbert Simon: The logic theorist (first nonnumerical thinking program used for theorem proving)  For the next 20 years the field was dominated by these participants.  Great expectations (1952-1969)  Newell and Simon introduced the General Problem Solver.  Imitation of human problem-solving  Arthur Samuel (1952-)investigated game playing (checkers ) with great success.  John McCarthy(1958-) :  Inventor of Lisp (second-oldest high-level language)  Logic oriented, Advice Taker (separation between knowledge and reasoning) AI 19 18/10/2010 A brief history (3)  The birth of AI (1956)  Great expectations continued ..  Marvin Minsky (1958 -)  Introduction of microworlds that appear to require intelligence to solve: e.g. blocks-world.  Anti-logic orientation, society of the mind.  Collapse in AI research (1966 - 1973)  Progress was slower than expected.  Unrealistic predictions.  Some systems lacked scalability.  Combinatorial explosion in search.  Fundamental limitations on techniques and representations.  Minsky and Papert (1969) Perceptrons. AI 20 18/10/2010 A brief history (4)  AI revival through knowledge-based systems (1969-1970)  General-purpose vs. domain specific  E.g. the DENDRAL project (Buchanan et al. 1969)  First successful knowledge intensive system.  Expert systems  MYCIN to diagnose blood infections (Feigenbaum et al.)  Introduction of uncertainty in reasoning.  Increase in knowledge representation research.  Logic, frames, semantic nets, … AI 21 18/10/2010 A brief history (5)  AI becomes an industry (1980 - present)  R1 at DEC (McDermott, 1982)  Fifth generation project in Japan (1981)  American response …  Puts an end to the AI winter.  Connectionist revival (1986 - present)  Parallel distributed processing (RumelHart and McClelland, 1986); back- propagation AI 22 18/10/2010 A brief history (6)  AI becomes a science (1987 - present)  Neats vs. scruffies.  In speech recognition: hidden markov models  In neural networks  In uncertain reasoning and expert systems: Bayesian network formalism  …  The emergence of intelligent agents (1995 - present)  The whole agent problem: “How does an agent act/behave embedded in real environments with continuous sensory inputs” AI 23 18/10/2010 The Hype Cycle of Emerging Technologies (Gartner 2005) AI 24 18/10/2010 Major research areas (Applications)  Natural Language Understanding  Image, Speech and pattern recognition  Uncertainty Modeling  Expert systems  Virtual Reality  ….. AI 25 18/10/2010 Symbolic Programming  Program as Representation of world  Symbol as basic element of representation  atom, property, relationship     Symbolic Expression as method of combination LISP for Symbolic programming PROLOG for logic programming Object-Oriented Concept Knowledge Representation  What kind of Knowledge needed for Problem solving ?  Structure of knowledge ?  declarative vs procedural  Representation techniques ?  explicit vs (implicit + inference)  logic, frame, object-oriented, semantic net, script  Knowledge acquisition and update Search Theory  An Optimization method  Analyze alternative cases and select one  Cope with Exponential complexity, NP classes  Try likely one first (Heuristic Search)  Utilize local information (Hill Climbing Method)  Optimal solution vs good solution  Genetic Algorithm, Simulated Annealing  Stochastic search Automated Reasoning  Qualitative Reasoning  Utilization of qualitative knowledge such as  Non-monotonic Reasoning  Ostrich flys ?  Plausible Reasoning  Information fusion under uncertainty  Case-based Reasoning  Utilization of Experience Machine Learning  Performance improvement by experience     How much of knowledge required to start learning ? Method of acquiring new knowledge and merging it to existing knowledge-base Role of teacher Role of examples and experience  Parameter Adjustment  Inductive learning  Computational Learning Theory  Quality of generalization capability in terms of Training data  Used in Practice such as Data Mining Data Mining Knowledge extraction for decision making Data AI 31 Information / knowledge Decision Making 18/10/2010 Neural Network  Computational model of Neurons  Power comes from Connection of simple processing element - connectionism X1 X2 . . . Xn w1 w2 wn S F(X1, X2, …, Xn) Neural Network  learning = link weigh adjustment  Error-back-propagation : supervised learning  Any Functional Mapping is learnable  Strong at Sensory Data Processing  Symbolic Grounding  Old Horse on the race again  Massive parallelism, graceful degradation AI 33 18/10/2010 Neural Network Classifier Job(1/0) good age medium Salary bad #mouth Debt Input layer AI 34 Hidden layer Output layer 18/10/2010 Genetic Algorithms  Computational model of life evolution  Stochastic optimization technique  Initial chromosome creation  New generations are made (cross over, mutation)  survival of the fittest  Base of artificial life research  study evolution of life, by simulation AI Success Story (Planning)  MARVEL (Schwuttke, 1992)  Real-time Space shuttle Mission planning  Berth assignment (KAL, 1997)  Unmanned Vehicle  Ground and air  Pathfinder Rover, 1996  Asimo – a walking robot 36 AI 18/10/2010 Autonomous Land Vehicle (DARPA’s GrandChallenge contest) AI 37 18/10/2010 AI Success Story : Medical expert systems Programs listed by Special Field  Antibiotics & Infectious           AI Diseases Cancer Chest pain Dentistry Dermatology Drugs & Toxicology Emergency Epilepsy Family Practice Genetics Geriatrics 38 Gynecology Imaging Analysis Internal Medicine Intensive Care Laboratory Systems Orthopedics Pediatrics Pulmonology & Ventilation Surgery & Post-Operative Care Trauma Management 18/10/2010 Pattern Recognition Applications  Handwriting and document recognition  forms, postal mail, historic documents  PDA pen recognition  Signature, biometrics (finger, face, iris, etc.)  Gesture, facial expression  As a Human computer intertraction  EEG, EKG, X-ray  Trafic monitoring, Remote Sensing  Smart Weapon – guided missile, target homing AI 39 18/10/2010 Handwriting Understanding AI 40 18/10/2010 전자 펜으로 수식 입력 수식 인식 Decision Support Systems (DSS) 41 AI 18/10/2010 Intelligent Transportation Systems AI 42 18/10/2010 Future of AI  Making AI Easy to use  Easy-to-use Expert system building tools  Web auto translation system  Recognition-based Interface Packages  Integrated Paradigm  Symbolic Processing + Neural Processing  AI in everywhere, AI in nowhere  AI embedded in all products  Ubiquitous Computing, Pervasive Computing AI 43 18/10/2010