Download Chapter 2: Random variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ROHANA
BINTI
ABDUL
HAMID
MADAM
ROHANA
BINTI
ABDUL HAMID
INSTITUT E FOR ENGINEERING MATHEMATICS (IMK)
INSTITUT EMALAYSIA
FOR ENGINEERING
UNIVERSITI
PERLIS MATHEMATICS (IMK)
UNIVERSITI MALAYSIA PERLIS
Free Powerpoint Templates
2.1Introduction
2.2Discrete probability
distribution
2.3Continuous probability
distribution
2.4Cumulative distribution
function
2.5Expected value, variance and
standard deviation

In an experiment of chance, outcomes occur
randomly. We often summarize the outcome
from a random experiment by a simple number.
Definition 2.1
 A variable is a symbol such as X, Y, Z, x or H,
that assumes values for different elements. If
the variable can assume only one value, it is
called a constant.

A random variable is a variable whose value is
determined by the outcome of a random
experiment.
Example 2.1
A balanced coin is tossed two times. List the elements of
the sample space, the corresponding probabilities and
the corresponding values X, where X is the number of
getting head.
Solution
Elements of
sample space
HH
HT
TH
Probability
X
¼
¼
¼
2
1
1
TT
¼
0
TWO TYPES OF RANDOM
VARIABLES
Discrete
Random
Variables
A random
variable is
discrete if its
set of possible
values consist
of discrete
points on the
number line.
Continuous
Random
Variables
A random
variable is
continuous if
its set of
possible values
consist of an
entire interval
on the number
line.
2.2 DISCRETE PROBABILITY
DISTRIBUTIONS
Definition 2.3:
 If X is a discrete random variable, the function
given by f(x)=P(X=x) for each x within the range
of X is called the probability distribution of X.

Requirements for a discrete probability
distribution:
1) The probability of each value of the discrete random variable
is between 0 and 1, inclusive. That is, 0  P( X  x)  1
2) The sum of all the probabilities is 1. That is,
 P( X  x)  1
xS
Example 2.2
 Check whether the distribution is a probability
distribution.
X
0
1
2
3
4
P(X=x)
0.125
0.375
0.025
0.375
0.125
Solution
4
 P( X  x)  P( X  0)  P( X  1)  P( X  2)  P( X  3)  P( X  4)
0
= 0.125+0.375+0.025+0.375+0.125
= 1.025
1
 so the distribution is not a probability distribution.
Example 2.3
 Check whether the function given by
x2
f ( x) 
for x =1,2,3,4,5
25
can serve as the probability distribution of a discrete
random variable.
Solution
1) The probabilities are between 0 and 1
f(1) = 3/25 , f(2) = 4/25, f(3) =5/25, f(4) = 6/25, f(5)=7/25
Solution
5

1
x2
f ( x)  
25
1
= f (1)  f (2)  f (3)  f (4)  f (5)
1 2 2  2 3  2 4  2 5  2
=




25
25
25
25
25
3
4
5
6
7
=
   
25 25 25 25 25
25
=
25
1
5
# so the given function is a probability distribution of a
discrete random variable.
2.3 CONTINUOUS PROBABILITY
DISTRIBUTIONS
Definition 2.4:
 A function with values f(x), defined over the set
of all numbers, is called a probability density
function of the continuous random variable X if
and only if
b
P(a  X  b)   f ( x) dx
a
for any real constant a and b with a  b
Requirements for a probability density function of
a continuous random variable X:
1) f ( x)  0 for -  x  
2)



f ( x) dx  1. That is the total area under graph is 1.
Example 2.4
Let X be a continuous random variable with the
following probability density function
c(2 x3  5) ,  1  x  1
f ( x)  
, otherwise
0
1) Evaluate c
2) Find P(0  X  1)
Solution
a)
P ( 1  X
1
 1) 
3
c
(2
x
 5) dx

1
1
= c  (2 x 3  5) dx
1
4
= c(
1
2x
 5 x)
4
1
 2(1) 4
  2( 1) 4

= c 
 5(1)   
 5( 1)  
4
 

 4
 11   9  
= c 
    
 2   2  
= c 10 
=1
 c
1
10
b)
1
1
2 x 3  5  dx

10
0
P (0  X  1)  
4
1
1 2x
=
(
 5x )
10 4
0
  2(0) 4

1  2(1) 4
=
 5(1)   
 5(0)  

10  4
  4

1  11 
=
 
10  2 
11
=
20
= 0.55
2.4 CUMULATIVE DISTRIBUTION
FUNCTION

The cumulative distribution function of a discrete
random variable X , denoted as F(X), is
F ( x)  P( X  x)   f (t ) for    x  
tx

For a discrete random variable X, F(x) satisfies the
following properties:
1) 0  F ( x)  1
2) If x  y, then F ( x)  F ( y )

If the range of a random variable X consists of the
values x1  x2  x3  ...  xn , then f ( x1 )  F ( x1 ) and
f ( xi )  F ( xi )  F ( xi 1 ) for i  2, 3,..., n

The cumulative distribution function of a
continuous random variable X is
x
F ( x)  P( X  x) 

f (t ) dt for    x  

Let F  x  be the distribution function for a continuous random
dF ( x)
variable X . Then f ( x) 
 F ( x)
dx
wherever the derivative exists.
Example 2.5 (Discrete random variable)
5 x
Given the probability function f ( x) 
for x  1, 2,3, 4,
10
find F ( x)
Solution
x
1
2
3
4
f(x)
4/10
3/10
2/10
1/10
F(x)
4/10
7/10
9/10
1
Example 2.6 a.(Continuous random variable)
Given the probability density function of a random
variable X as follows;
3 2
 x ,
f ( x)   8
0,
0 x2
otherwise
Find the cumulative distribution function, F(X)
ii) Find P(1  X  2)
i)
Solution
i)
For x  0 ,
x
F ( X )   0dt  0

ii)
For 0  x  2
0
x
3 2
F ( X )   0dt   t dt
8

0
3
t

8
3
x
0
x

8
For x  2 ,
0
2
x
3 2
F ( X )   0dt   t dt   0dt
8

0
2
t3

8
2
0
0,
 3
x
F(X )   ,
8
1,
23

1
8
  x  0
0 x2
x2
iii ) P (1  X  2)
 F (2)  F (1)
3
3
2 1
 
8 8
7

8
Example 2.6 b.(Continuous random variable)
If X has the probability density
k  e 3 x for x  0
f ( x)  
elsewhere
0
Find
i) k
ii) F ( x)
iii) P(0.5  x  1)
Solution

i)
 f  x  dx  1


 k e
0
3 x

e 
dx  k 


3

0
3 x
  1 
 k 0   
  3  
k
 1
3
 k 3
ii) for x  0,
F  x 
x
 0 dt  0

for x  0,
F  x 
0


x
0 dt   3e 3t dt
0
x
 0  3 e 3t dt
0
x
e 
 3


3

0
3t
 1 e 3 x  e 0   1  e 3 x
0
 F  x  
3 x
1

e

for x  0
for x  0
iii) P  0.5  X  1  F 1  F  0.5 

 
 1  e 31  1  e 3 0.5
 1  e 3   1  e 1.5 
 0.173

2.5 EXPECTED VALUE, VARIANCE AND
STANDARD DEVIATION
2.5.1 Expected Value


The mean of a random variable X is also known
as the expected value of X as    X  E ( X )
If X is a discrete
random variable,
If X is a continuous
random variable,
2.5.2 Variance
Var ( X )   2   X2  E (( X   ) 2 ), where
Var ( X )   ( X   ) 2 P ( X  x), in the discrete case,
xS

Var ( X ) 
2
(
X


)
f ( x)dx , in the continuous case when it exists.


Var ( X ) exists if and only if   E ( X ) and E ( X 2 ) both exist, and
then Var ( X )  E ( X 2 )  ( E ( X )) 2
2.5.3 Standard Deviation
The standard deviation is    X  Var ( X )   X2
2.5.4 Properties of Expected Values
• For any constant a and b,
i) E (a)  a
ii) E (bX )  bE ( X )
iii) E (aX  b)  aE ( X )  b
2.5.5 Properties of Variances
For any constant a and b,
i) Var (a )  0
ii) Var (bX )  b Var ( X )
2
iii) Var (aX  b)  a 2Var ( X )
Example 2.7
Find the mean, variance and standard deviation
of the probability function
x
f ( x) 
for x  1, 2,3, 4
10
Solution
Mean:
n
E  X    x  f  x
i 1
4
x
 x
10
i 1
1
2
3
4
 1  2   3   4 
10
10
10
10
30

3
10
Varians:
E  X 2    x2  f  x 
n
i 1
4
x
x 
10
i 1
2
3
2 1
2
2
2 4
1   2  3   4 
10
10
10
10
 10
2
Var ( X )  E ( X 2 )  ( E ( X )) 2
 10  32  1
 X  Var ( X )  1
Example 2.8
Let X be a continuous random variable with the
Following probability density function
3
 x(2  x), 0  x  2
f ( x)   4
0
, otherwise
Find
a) E ( X )
b) Var ( X )
Solution
a) E  X

 
x f
 x
dx

2


x
0
3
x  2  x  dx
4
2
3

4

3

4
2
x2
2  x
dx
0
2
3
2
x

x
dx

0
3  2 x3
x4 




4 3
4 
2
0
3

3  2  2 
24 

  0



4
3
4 




34

  1
43
b)E  X

2
 
x2  f
 x
dx

2


x2 
0
3
x  2  x  dx
4
2
3

4

3

4
2
x3
2 
x  dx
0
 2x
3
 x 4 dx
0
3  2x4
x5 




4 4
5 
2
0
4

3  2  2 
25 

  0



4 
4
5 




38
6




45
5
Var ( X )  E ( X 2 )  ( E ( X )) 2
6
1

 12 
5
5
Related documents