Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Parametric Down Conversion Quantum optics seminar 77740 Winter 2008 Assaf Shaham context • Introduction • Theory of classic Sum Frequency Generation • Quantum Hamiltonian for PDC • Applications Non linear optics • Creation of new frequencies in the system. • Usually, the new frequencies have small amplitude relative to the input frequencies. Harmonic Difference Generation ω3 ω1 ω2 pump pump idler Non linear medium idler signal ω3 ω1 ω 2 = ω 3 − ω1 (optional) PDC: the degenerate case ω1 = ω2 = ω3 / 2 ω3 pump Non linear medium ω3 ω2 = ω3 / 2 pump Signal, idler Nonlinear medium Non linear dependency of the polarization in the electrical field: r r r D = E + 4πP c.g.s r t (1) r t (2) r 2 t (3) r 3 P(t ) = χ E (t ) + χ E (t ) + χ E (t ) + ... = r (1) r (2) r (3) = P (t ) + P (t ) + P (t ) + ... = r (1) r NL = P (t ) + P (t ) t The susceptibility χ is a tensor. r r r (1) r NL r r NL (1) D = E + 4π P (t ) + P (t ) = ε E + 4πP (t ) ( ) Substituting in Maxwell equation gives: r r r 1 ∂ r 4π ∂ P 2 −∇ E + ∇(∇ ⋅ E ) + 2 2 E = − c ∂t c ∂t 2 2 2 r r ∇ E >> ∇ (∇ ⋅ E ) r ∇ ⋅ D = 4πρ r r 1 dB ∇× E = − c dt r ∇⋅B = 0 r r 1 dD 4π r ∇× H = + J c dt c Assuming ( ρ = 0 , Slowly varying Amplitude) and we get the wave equation in a medium: 2 r r 1 ∂ r 4π ∂ P 2 −∇ E + 2 2 E = − c ∂t c ∂t 2 2 2 Representing the frequency component: r r r E (r , t ) = ∑ n En (r , t ) = ∑ n En (r ) ⋅ e− iωnt + c.c. r NL r NL r NL P (r , t ) = ∑ n P n (r , t ) = ∑ n P n (r ) ⋅ e− iωnt + c.c. For every n we have: r ωn 2 (1) r 4πωn 2 NL −∇ En (r ) − 2 ε En (r ) = − Pn (r ) c c 2 Properties of the second order susceptibility Pi ( ω n + ω m ) = ∑ ∑ χ ( ) (ω 2 ijk n + ω m , ω n , ω m ) E j (ω n ) E k (ω m ) j ,k n ,m • Symmetries t ( 2 ) reduce the number of numbers need to describe χ . t ( 2) χ • is real for Lossless media. • Kleinman symmetry: ( ωn , ωm ) is far away from resonance of the media. ω Pi ( ω n + ω m ) = ∑ ∑ χ (ijk2 ) E j (ω n ) E k (ω m ) j ,k n ,m P ( ω3 ) = 4 d eff E ( ω1 ) E ( ω 2 ) For the degenerate case: P ( 2 ω ) = 2 d eff E 2 ( ω) Theory of classic Sum Frequency Generation Inverse process of Harmonic Difference Generation ω1 ω2 ω1 ω2 Non linear medium ω 3 = ω1 + ω 2 We concentrate on the ω3 wave, defining: r i k z −ω t E3 ( z, t ) = A3e ( 3 3 ) + c.c. k3 = n3ω3 , c n3 = ε(1) (ω3 ) P3 ( z , t ) = P3e − iω3t + c.c. = 4d eff E1E2e −iω3t + c.c. = 4d eff A1 A2ei ( k1+k2 ) e − iω3t Substituting in r ωn 2 (1) r 4πωn 2 NL −∇ En (r ) − 2 ε En (r ) = − Pn (r ) c c 2 16πd eff ω 3 d 2 A3 dA3 i ( k1 + k 2 − k3 ) z 2 + ik = − A A e 3 1 2 dz d 2z c2 gives 2 Slowly varying Amplitude approximation: d 2 A3 dA3 << k 3 dz d 2z We find the dependency of A3 in A1 and A2 d eff ω 3 2 dA3 i∆kz = 8πi A A e 1 2 dz k3c 2 (∆k = k1 + k2 − k3 ) By the same way we find also that d eff ω1 dA1 * −i∆kz = 8πi A A e 3 2 2 dz k1c 2 d eff ω 2 2 dA2 * −i∆kz = 8πi A A 3 1 e dz k2c 2 Non depleting pump approximation: A3 ( L) = 8πi d eff ω 3 k3c 2 2 L A1 A2 ∫ e i∆kz dz = 8πi 0 d eff ω 3 k3c 2 2 A3 << A1 , A2 ⎛ e i∆kL − 1 ⎞ ⎟⎟ A1 A2 ⎜⎜ ⎝ i∆k ⎠ L =non linear medium length nc I 3 = 3 A3 2π d eff ω 3 n3 c 2 2 64π A A2 = 1 2 2π k3 c 4 2 2 4 d ω n ⎛ e i∆kL − 1 ⎞ 2 2 ⎛ ∆kL ⎞ ⎜⎜ ⎟⎟ = 32π eff 2 33 3 A1 A2 L2 sinc 2 ⎜ ⎟ 2 i k ∆ k c ⎝ ⎠ ⎝ ⎠ 3 2 2 4 2 I 3 = 512π 5 2 2 ⎛ ∆kL ⎞ sinc L ⎜ ⎟ 2 n1 n 2 n3 λ3 c ⎝ 2 ⎠ d eff I 1 I 2 Implications: •The intensity is quadratic in L if ∆k = 0 . • I 3 ∝ I1 ⋅ I 2 . •If ω 1 = ω 2 (Second Harmonic Generation), then I 3 (ω3 = 2ω1 ) ∝ I12 (ω1 ) . Method to achieve phase matching k1 + k 2 − k 3 = 0 We need to control the refraction index n for every frequency: • Angle tuning - using birefringence properties of the nonlinear crystal. (KDP - KH2PO4, BBO - Beta-BaB2O4) • Temperature tuning (lithium niobate LiNbO3) Phase Quasi matching Phase • Quasi phase matching matching (LiNbO3, LiTaO3, KTP - KTiOPO4) No Phase matching From Ref. pic [1]• Birefringence k1 + k 2 − k 3 = 0 ω3 = ω1 + ω 2 n1ω1 + n2ω2 = n3ω3 n3 − n2 = (n1 − n2 ) assume ω3 ≥ ω2 ≥ ω1 ω1 ω3 For normal dispersion, n(ω ) is rising monotonically Sellmeier BBO type 1 Sollution: using birefringence crystal n(ω1 , j1 )ω1 + n(ω2 , j2 )ω2 = n(ω3 , j3 )ω3 j = e, o n (λ ) no ne (θ ) Example (for type 1 uniaxial) ω3 = 2ω j1 = j2 = o , ( ω1 = ω2 = ω ) j3 = e 2 ⋅ n(ω , j1 = o)ω = n(ω3 , j3 = e)ω3 = n(ω3 , j3 = e)2 ⋅ ω ne λ[ µm] ne θ (2ω , λ = 0.39 µm) = no (ω , λ = 0.78 µm) Index ellipsoid for uniaxial crystals ne ẑ • • r k x2 y2 z2 + 2 + 2 =1 2 no no ne θ ne (θ ) no • ŷ • no z is the optical axis (extraordinary). x, y are ordinary axes. Polarization D1 is on the x-y plane and have no . Polarization D2 have ne (θ ). 1 sin 2 (θ ) cos 2 (θ ) = + 2 2 2 ne (θ ) ne no x̂ From Ref. pic [2]• Properties of birefringence crystals • For uniaxial crystals: Positive uniaxial ( ne > no ) Type 1 no 3ω3 = ne1ω1 + ne 2 ω2 Type 2 no 3ω3 = no1ω1 + ne 2 ω2 • ( ne < no ) ne 3ω3 = no1ω1 + no 2 ω2 ne 3ω3 = ne1ω1 + no 2 ω2 Propagating direction examples: Collinear, Ke Ko • Negative uniaxial Walk off: spatial, temporal. non collinear classical parametric down conversion is impossible ω1 = ω3 = ω2 / 2 2 I 3 = 512π 5 2 2 ⎛ ∆kL ⎞ sinc L ⎜ ⎟ 2 2 n1n2 n3λ3 c ⎝ ⎠ d eff I1 I 2 If I1 ( z = 0) = I idler ( z = 0) = 0 there will be no PDC according to the classical theory. ω3 Non linear medium ω3 ω2 = ω3 / 2 pump 0 pump Signal, idler ẑ => We have to use Quantum mechanics Quantum Hamiltonian for Spontaneous Parametric Down Conversion Classical electrical energy in non linear media: 1 1 2 3 H= B r t d r + d 3r ( , ) ∫ ∫ 8π 8π D ( r ,t ) 1 1 2 3 = B r t d r + d 3r ( , ) ∫ ∫ 8π 8π D ( r ,t ) ∫ E (r , t ) ⋅ dD(r , t ) = 0 ∫ E (r , t ) ⋅ d (ε E + 4πP NL ) 0 Pi = χ ij (ω1 ; ω1 ) E j (ω1 ) + χ ijk (1) (1) ( 2) (ω1 ; ω1 − ω 2 , ω 2 ) E j (ω1 − ω 2 ) E k (ω 2 ) + + χ ijkl (ω1 ; ω1 − ω 2 − ω 3 , ω 2 , ω 3 ) E j (ω1 − ω 2 − ω 3 ) E k (ω 2 ) El (ω 3 ) + .... ( 3) H= 1 1 2 3 B ( r , t ) d r + d 3 r (ε (1) E 2 + X 1 (r ) + X 2 (r ) + ...) ∫ ∫ 8π 8π 1 (1) ′ d ω d ω χ (ω , ω ′) Ei (r , ω ′) E j (r , ω ) ij ∫∫ 2 1 ( 2) X 2 (r ) = 4π ∫∫∫ dωdω ′dω ′′χ ijk (ω ′′; ω − ω ′, ω ′) Ei (r , ω ′′) E j (r , ω ′ − ω ) E k (r , ω ) 3 X 1 (r ) = 4π Second quantization for the X 2 (r ) term: X 2 (r ) = 4π 1 (2 ) dωdω ' dω"χ ijk (ω" ; ω − ω ' , ω ')Ei (r , ω")E j (r , ω '−ω )Ek (r , ω ) ∫∫∫ 3 (+ ) E j (ω ) = ∑ E jk aˆ jk e Define: ( i kr −ω jk t ) k E jk = hω jk j = 1,2 n jkV V = quatization volume â jk is the annihilation operator for j,k mode ( H X 2 ∝ ∫ d 3 r χE (+ ) (ω ) E (− ) (ω − ω ' ) E (− ) (ω ' ' ) + χE (− ) (ω ) E (+ ) (ω − ω ' ) E (+ ) (ω ' ' ) ) In the degenerate case, when ω = ω ′ : + + + H X 2 ∝ hχ [aˆ0 (2ω )aˆ1 (ω )aˆ1 (ω ) + aˆ0 (2ω )aˆ1 (ω )aˆ1 (ω )] Normal ordering, and assuming classical pump a 0 = ν 0 e −2 ω t , + + nˆ1 (t ) = nˆ2 (t ) << ν 0 H X 2 ∝ hχ [aˆ1 (ω )aˆ1 (ω )ν 0 e − i 2 ωt + c.c.] 2 χ = Coupling constant Equations of motion Slowly complex mode amplitudes ˆ (t ) = aˆ (t )e iω1t Α 1 1 ˆ (t ) = aˆ (t )e iω 2t Α 2 2 ˆ (t ) 1 dΑ 1 ˆ (t ), Hˆ ] = −iχν Aˆ + (t )ei (ω1+ω2 −ω0 )t = −iχν Α ˆ + = [Α χ2 1 0 2 0 2 (t ) dt ih ˆ (t ) 1 dΑ 2 ˆ (t ), Hˆ ] = −iχν Aˆ + (t )ei (ω1+ω2 −ω0 )t = −iχν Α ˆ + = [Α χ2 2 0 1 0 1 (t ) dt ih ˆ (t ) d 2Α 2 2 1 ˆ χ ν = 0 Α1 (t ) 2 dt ˆ (t ) d 2Α 2 2 2 ˆ χ ν = 0 Α 2 (t ) 2 dt ˆ (t ) = Α ˆ (0) cosh( χ ν t ) − ie iθ Α ˆ + (0) sinh( χ ν t ) Α 1 1 0 2 0 ˆ (t ) = Α ˆ (0) cosh( χ ν t ) − ie iθ Α ˆ + (0) sinh( χ ν t ) Α 2 2 0 1 0 ν 0 =| ν 0 | e iθ Photon statistics r The r’th moment of nˆ1 (t ) : r ˆ + r (t )Α ˆ r (t ) | Ψ >= < 0 | Α ˆ + r (t )Α ˆ r (t ) | 0 > = nˆ1 (t ) =< Ψ | Α 1 1 1, 2 1 1 1, 2 [ ˆ + (0) cosh( χ ν t ) + ie −iθ Α ˆ (0) sinh( χ ν t ) =1, 2 < 0 | Α 1 0 2 0 ( ) ] [Αˆ (0) cosh( χ ν r 1 ] r iθ ˆ + t ) − ie Α ( 0 ) sinh( χ ν t ) | 0 >1, 2 = 0 2 0 2 = − ie iθ sinh r (χ | ν 0 | t )Α 2 (0) | 0 >1, 2 = +r r ˆ r (0 )Α ˆ + r (0 ) | 0 > = = sinh 2 r (χ | ν 0 | t )1, 2 < 0 | Α 2 2 1, 2 = sinh 2 r (χ | ν 0 | t )1, 2 < 0 | (nˆ 2 + 1)(nˆ 2 + 2 ).....(nˆ 2 + r ) | 0 >1, 2 = = r!sinh 2 r (χ | ν 0 | t ) r For nˆ 2 (t ) we get the same result: r nˆ2 (t ) = r!sinh 2 r (χ | ν 0 | t ) Result are similar to thermal photon statistics: ρˆ = exp( − Hˆ / K B T ) tr exp( − Hˆ / K B T ) [ (r ) nˆ k , s = (e r! β −1 ) r ] k = momentum s = polarizati on r nˆ2 = ( nˆ 2 + 1)( nˆ 2 + 2)...( nˆ 2 + r ) Optical Parametric Oscilator • Gain is asymptotically if exponential if ∆k = 0 : A1 (z ) ⇒ 1 A1 (0 )e gz 2 g = 64π 2ω1 d eff A3 / ki c 4 2 2 2 • Tunable by changing the phase matching condition, or changing the cavity’s length. • Better Finesse ω p = ω3 ωs = ω1 ωi = ω2 From Ref. pic [1]• Generating of squeezing state using OPO Signal to noise Source for single photons H.W.P P.B.S Laser ω type 2 ω/2 colinear crystal ω/2 Q.W.P |H > ω ω POL |V > Homodyne detection P.B.S: Polarizing Beam Spliter H.W.P: Half Wave Plate Q.W.P: Quarter Wave Plate POL: polarizer Source for entanglement photons Non collinear type 2 SPDC 1 iϕ | , | V1 , H 2 > ) Ψ= H V > + e ( 1 2 2 From Ref. pic [3]• references • • • • • • • • • • R.W. Boyd, Nonlinear optics, 2nd edition, Academic Press, New York, 2003. L. Mandel, E Wolf, Optical coherence and Quantum optics, Cambridge university press, New York, 1995. Wu L.A, Kimble H.j., Hall J.L., Wu Huifa, Generation of squeezed states by parameteric down conversion, Phys rev Lett 57, 2520 – 2523, 1986. Breitenbach G, Schiller S, Mlynek J, Measurement of the quantum states of squeezed light, Nature, 387, 471-475, 1997. Rubin M.H., Klyshko D.N., Shin Y.H., Sergienko A.V., Theory of two photon entanglement in type-II optical parametric down-conversion , Phys. Rev. A 50, 5122-5133 ,1994. Kwiat P. G., Mattle K., Weinfurter H., Zeilinger A., Sergienko A. V., Shih Y., New High-Intensity source of Polarization-entangled photon pairs, Phys. Rev. Lett. 75, 4337-4341, 1995. Halevi A., Thesis Work, The Hebrew University of Jerusalem, 2008. Pictures from: [1] RP Photonics: http://www.rp-photonics.com/img/qpm.png [2] http://www.cooper.edu/engineering/projects/gateway/ee/solidmat/modlec3/node8.html [3] Geiger Mark S. , Keller S. James, Creation and Characterization of entangled photons Via second Harmonic Generation of Infrared Diodes, Kenyon College, Gambier OH. 2006: http://biology.kenyon.edu/HHMI/posters_2005/GeigerM.jpg