Download Name: Date: Period: ______ AP Statistics FID Day #1 Assignment

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Taylor's law wikipedia , lookup

Bootstrapping (statistics) wikipedia , lookup

Student's t-test wikipedia , lookup

Transcript
Name: ________________________________________ Date: ___________________________ Period: _______
AP Statistics
FID Day #1 Assignment
28 Points
The heights of young women vary approximately according to the Normal distribution with a mean (πœ‡) of 64.5 inches
and a standard deviation (𝜎) of 2.5 inches. The random variable measured is X = the height of a randomly selected
young woman. In this assignment, you will use a random number generator (RNG) to sample from this distribution
and then construct a distribution of the averages.
1. (2 points) Collect your sample using N(64.5, 2.5) distribution. On your calculator, clear your lists.
ο‚· Put your cursor over L1.
ο‚· Press Math οƒ  PRB and choose β€œrandNorm(.β€œ
ο‚· Complete the command: randNorm(64.5, 2.5, 100) and press enter. You will see 100 randomly selected
heights appear in your list.
Write down the first 10 heights that were given to you: _________, _________, _________, _________,
_________, _________, _________,_________, _________, _________
2. (4 points) Plot a histogram of your data using the graphing calculator. Adjust your window to the following
parameters: Xmin = 57, Xmax = 72, Xscl = 2.5, Ymin = -10, Ymax = 45, Yscl = 5, Xres = 1. Show a sketch below.
Use the trace button to label the values on your x- and y- axes.
3. (4 points) Describe the shape of your sample distribution. What are the appropriate measures of center and
spread of your sample data? Provide the values.
4. (1 points) Approximately how many heights should be within 3 standard deviations of the mean (i.e. between 57
and 72)?
5. (1 points) Use the TRACE button to count the number of heights within 3 SD in your histogram.
6. (1 points) Approximately how many heights should be within 2 standard deviations of the mean?
7. (1 points) Use the TRACE button to count the number of heights within 2 SD in your histogram.
8. (4 points) Repeat step 1 fifteen times. Each time, record the mean, median, standard deviation, and the shape of
the distribution. Organize your data in the table below:
Μ…
Sample
Median
s
Symmetry
𝒙
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
9. (4 points) Graph a histogram of all of the sample means. Stay in the same window as defined in #2. Show a
sketch with numerical labels.
10. (2 points) What is the sample mean of all of the sample means? How does this compare to the true mean (πœ‡)?
11. (2 points) What is the sample standard deviation of all of the sample means? How does this compare to
12. (2 points) What theorem does this lab describe? Explain.
𝜎
?
βˆšπ‘›