* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Collapse of rapidly rotating massive stellar core to a black hole
		                    
		                    
								Survey							
                            
		                
		                
                            
                            
								Document related concepts							
                        
                        
                    
						
						
							Transcript						
					
					Collapse of rapidly rotating massive stellar core to a black hole in full GR Tokyo institute of technology Yu-ichirou Sekiguchi University of Tokyo Masaru Shibata AIU @ KEK 13/03/2008 Introduction  Collapse of stellar cores  Association with supernova explosion (SN)  Association with long GRBs (BH + Disk formation)  Main path of stellar-mass BH formation  A wide variety of observable signals (GWs, neutrinos, EM radiation)  Observations of GWs and neutrinos can prove the innermost part  All known four forces play important roles  Microphysics • weak interactions — neutrino emission — electron capture • nuclear physics — equation of state (EOS) of dense matter  Macro Physics • hydrodynamics — rotation, convection • general relativity • magnetic field — magnetohydrodynamics Importance of GR Dimmelmeier et al (2002) A&A 393, 523 GR Newton  Rotation increases strongly during collapse  Newtonian : hard to reach nuclear density  GR : stronger gravitational attraction ⇒ multiple-spike waveform ⇒ burst-like waveform Qualitative difference in collapse dynamics and in waveforms Importance of microphysics  Strong interactions : nuclear EOS  Maximum neutron star (NS) mass  Dynamics of proto-neutron star (PNS)  Weak interactions :  Drive hydrodynamic instabilities  Convection, SASI   Neutrino heating mechanism in ee   SN explosion Hot disk  Realistic calculation of GWs  GRBs (collapsar scenario)    e  e  YS & Shibata (2007) Contents of my talk  Rotating collapse to a BH with simplified EOS  Collapsar scenario  BH + Disk formation  Full GR simulation with microphysics  Summary of implementation  GWs from proto-neutron star (PNS) convection  Summary and Future works Rotating collapse to a BH Collapsar model Woosley (1993); MacFadyen & Woosley (1999)  Central engine of GRBs : BH + Disk  Energy source :  Gravitational energy of accretion matter neutrino annihilation (   e  e) EGRB, ~  v ⇒ GM BH M Disk  0.42  M Disk c 2 RISCO  BH spin ⇒ electromagnetic flux  E.g. via Blandford-Znajek process EGRB,B GRB,B f (q)M BHc2  0.29GRB,B M BHc2 MacFadyen & Woosley 1999 What is done  Collapse simulation of rapidly rotating, massive core in full GR     (Einstein eq. : BSSN formalism) (Gauge condition : 1+log slicing, Dynamical shift) (hydrodynamics : High-resolution central scheme) (A BH excision technique (Alcubierre & Brugmann (2001)))  Simplified EOS (e.g. Zwerger & Muller (1997))  Qualitative feature can be captured  Rigidly rotating polytrope (Γ=4/3) at mass shedding limit  Formation of BH + Disk formation  Mass (BH : Disk), BH spin  Disk structure  Estimates of neutrino luminosity P  Pcold  Pth   K   1 ,    nuc Pcold      K 2  ,    nuc 1  4 / 3,  2  2.0 Pth  ( th  1)  YS & Shibata (2007) BH + Disk formation  massive core:4.2Msun  spin parameter = 0.98 (rigid rotation)  Simplified EOS Slightly before the AH formation  BH + Disk formation  Shock wave formation at Disk  BH : 90~95% mass  Disk : 5~10% mass  BH spin ~ 0.8 Density contour log(g/cm^3) YS & Shibata (2007) BH + Disk formation  massive core:4.2Msun  spin parameter = 0.98 (rigid rotation)  Simplified EOS Slightly before the AH formation Larger region  BH + Disk formation  Shock wave formation at Disk  BH : ~95% mass  Disk : ~5% mass  BH spin ~ 0.8 Density contour log(g/cm^3) BH mass and spin 1.315  1.32 1.325 density Outcome  Convenient for GRB fireball  Low density region  [   e  e ]  L L  [n  e  p  e]   L e temperature  Shock heating  Large neutrino luminosities  Less Pauli blocking by electrons  Thick Disk  rate  1  cos colision  Preconditioning: Subsequent evolution on viscous time-scale Q ~ 2 , L   , L vis   2 Neutrino emission Disk structure: High temperature (10^11K) due to shock Small density along the rotational axis Neutrino luminosity 1   Rdisk    N  T   L  5 1053 erg/s     11   17  2    3   10 K   10 g/cm   70km  2 2 Full GR study with microphysics required Pair annihilation rate (Setiawan et al. (2005)) L L   5 1052 erg/s   53  5 10 erg/s  2 Notes No mechanism for time variation More sophisticated studies are required Full GR simulation with microphysics Current status  No full GR, multidimensional simulations including realistic EOS, electron capture, and neutrino cooling  Necessary for rotating BH formation, GRBs, and GW  Electron capture with not self-consistent manner Ott et al. (2006); Dimmelmeier et al. (2007)  Recently, I constructed a code including all the above for the first time (the following 2nd part of my talk) ○ ○ sophisticated Difficulty in full GR simulation  To treat the neutrino cooling in numerical relativity  If one adds a cooling term into the right-hand side of the matter equation    T   Q  0 ⇒ constraint violation  One have to add the cooling in terms of the energy momentum tensor Energy momentum tensor leak loc Q Q eff Qb  Q ub  leak u loc b  Energy momentum tensor Q Q  ,stream (T tot )  (T Matter )  (T  )  (T M )Qloc(T  ,trap )  ( T ))  short T diff ( for    leak  (T )  (T ) (otherwise) Q  Neutrino part : streaming(cneutrino . f . Ruffert et al. (1996); Fluid  ,stream  Fluid part : baryons, e/e+, Rosswog radiation, trapped neutrino (2002)) & Liebendoerfer  Basic equations: a (T Fluid )ba  Qb a (T  ,stream )ba  Qb Qb includes : e capture (Fuller et al. (1985))  / capture (Fuller et al. (1985)) e -annihilation (Cooperstein et al. (1986)) plasmon decay (Ruffert et al. (1996)) (T Fluid )ab : perfect fluid bremsstrahlung (Burrows et al. (2004)) (T  ,stream )ab  Ena nb  F a nb  F b na  P ab neutrino leakage (described later) Lepton conservations  Lepton evolution : Ye,  e,  e,  x dYe   e-cap   ep-cap dt d (Y e )   e-cap   pair   plasmon    eleak dt d (Y e )   ep-cap   pair   plasmon    e leak dt d (Y x )   pair   plasmon    xleak dt d (Yl )   lleak dt In Beta equilibrium  e-cap/ep-cap : Fuller et al.(1985)  pair : Cooperstein et al. (1986)  plasmon : Ruffert et al. (1996)   leak : neutrino leakage (explained later) Neutrino emission  Neutrino Leakage Scheme Cross sections by Burrows et al. (2003)  “Cross sections” :  i ( E )   i E2  “Opacities” A p n e 2  ( E )   ( E )   E   i   : 2  ( E )   ds   E    “Optical depth” :   Diffusion time : diff T  A e p  p  en n e x( E ) 2 2 ( E )   ( E )  E c c (T  s ) diff n   nˆ ( E )dE pe   Neutrino energy and number diffusion : E nˆ ( E ) Q    diff dE  T 2 F1 ( ) T ( E ) nˆ ( E ) diff  R    diff dE  T F0 ( ) T ( E ) ne  (T  t ) Tdiff ~ Tdyn Equations of state  Baryons  EOS table based on relativistic mean field theory (Shen et al. (1998))  Sound velocity does not exceed the velocity of light EOS table is constracted  Electrons and positrons  Ideal Fermi gas  Charge neutrality condition (Yp=Ye)  Radiation 4  Pr  arT / 3,  r  3Pr /   Neutrinos : ideal Fermi gas Shen et al. (1998) PNS convection (using old ver. leakage) Using S15 model of Woosley et al. (2001)  Neutrino burst emission  Shock passes the neutrino sphere ⇒ Copious neutrino emission from hot region behind the shock ⇒ shock stalls  ⇒ negative lepton/entropy gradients  ⇒ convectively unstable Ye 202.8 201.3 ms 197.8 199.7 ms Ye contours 215.5ms 217.3 ms 206.7 ms 211.9 Gravitational waves YS (2007)  Amplitude : h ~ 6-9×10-21 @10 kpc  ~rotational core bounce  frequency : 100-1000 Hz  Convection timescale : 1~10 ms  Convective eddies penetrate PNS Core bounce The previous study Muller and Janka (1997) A&A 317, 140  amplitude : h ~ 3×10-21 @ 10 kpc  frequency : 100-1000 Hz Spherical model No neutrino transfer  The hydrostatic condition is imposed at PNS surface  Convective motions are suppressed near the boundary 80  Smaller  Amplitude  frequency 0 110 115 km Notes  Gravitational wave amplitude 2 2 d Q 2 G 1 2 GM R v   ij  Due to convection h ~ ~  nonsphe 2   c 4 D dt 2 c R D c 2  C    10kpc R v     nonsphe omp ~ 1020        0.1  0.3   D  10km  0.1c   Cf. Due to core bounce ~ 10 20   nonsphe   0.1 2   10kpc   M   R  f       D 1.4 M 10km 1kHz          No effects to suppress the convective activities  Neutrino transport will flatten the existing negative gradients  The GW amplitude is the maximum estimates Summary  Rotating collapse to a BH  BH + Disk formation (with simplified EOS)  Shock occurs at the disk  Outcome: low density region, high temperature thick disk  New full GR code with microphysics  Brief description of the implementation  neutrino radiation energy momentum tensor  leakage scheme for neutrino cooling  nuclear EOS by Shen et al. (1998)  GWs from PNS convection  As large amplitude as GWs from rotational core bounce Future works  Formation of Kerr BH  Association of GRBs (BH+Disk formation)  Initial conditions based on stellar evolution are now available (Yoon et al (2006); Woosley & Heger (2006))  PopIII star collapse  GWs from it  Realistic calculation of gravitational waveforms  Effects of magnetic fields Fruitful scientific results will be reported near feature What to explore further ee     BH + Disk formation  Disk structure  Shock strength  Neutrino luminosity Hot, thick Disk  Time variability in Lν  Mass, angular momentum dependence Low density region  Magnetic field  Metallicity dependence Einstein’s equation  Gab  8 G Tab 4 c  BSSN reformulation (Shibata & Nakamura (1995); Baumgarte & Shapiro (1999))  Cartoon method (Alcubierre et al (2001) )is adopted to solve equations in the Cartesian coordinate  Gauge condition  Approximate maximal slicing (Balakrishna et al. (1996); Shibata (1999))  Dynamical shift (Shibata (2003))    t   t Fi   jl  l  L   ij   2  jl l Aij  Aij jl l 1 L      K 6 t  L    ij  2 Aij t  L   Aij  e 4  Rij  Di D j   TF    KAij  2 Aik Akj  8  e 4 Sij   ij S / 3  t   L   K   D k Dk   Aij Aij  K 2 / 3  4  h  S    Simplified EOS  Equation of State  parametric EOS : P  Pcold  Pth  Pcold    K1   ,    nuc  , Pth  ( th  1)     K 2  ,    nuc  idealized EOS : microphysics is treated only qualitatively  maximum allowed mass of EOS : M max,EOS  2M  c.f. the maximum pulsar mass : M  2.1  0.2M  parameters of EOS  ( 4 / 3)  1.31 1.325 2  2.45  2.6, nuc  2 1014 g/cm3  th  1 (Nice et al. 2005)  BH formation → Disk formation  mass of the (inner) core is larger than the maximum allowed mass → prompt BH formation  matter with large angular momentum forms a thin disk around the BH  kinetic energy is converted into thermal energy at the disk surface by shocks GM BH M disk  The gravitational energy released : E  4  9 1052 erg RISCO M disk 0.1  0.2M , RISCO 4  5Gc 2 M BH  Disk formation → shock wave formation (1)  The disk height H increases as the thermal energy is stored (balance relation) Pdisk  Pram s H GM BH H 2 ( RISCO  H 2 )3/ 2 GM BH H 3 RISCO 2  Pdisk  Pram    H  2 1031  11 s   dyn/cm   10 g/cm   RISCO  3  temperature and density of the disk increase to be disk 1012 g/cm3 , Tdisk 1011 K  Pdisk  While the ram pressure decreases: Pram vf 1031 dyn/cm 2 f vf2  1030 ( f /1010 g/cm ) dyn/cm 2 3 (2GM BH / RISCO )1/ 2 0.4  0.5c  Disk formation → Shock wave formation (2)  Now Pdisk 1031 dyn/cm 2 , Pram Pdisk  Pram s H GM BH H 2 ( RISCO  H 2 )3/ 2 Pdisk , then H / RISCO GM BH H2  Pdisk  Pram 1 GM BH  s H  The disk expands escaping the gravitational bound  Pdisk Pram :strong shock waves are formed and propagated  Shock waves are mildly relativistic ~ 0.5c  does neutrino cooling work ?  condition that thermal energy be stored is GM BH m  L 1053 erg/s RISCO  m   M s 1  The present results show m 10M s 1 1.315  Unless the conversion efficiency is too low (<<0.1), thermal energy is stored  In the a few millisecond,  disk 1031 erg/cm 3 Pdisk  α1.32 the 1.325 Sack et al. 1980 neutrino loss small neutrino loss large Stall of shock wave  Note that the shock stalls due to insufficient energy input  bounce core mass (Goldreich & Weber (1980) ApJ. 238, 991; Yahil (1983) ApJ. 265, 1047) : M core  K     Kinit  3/ 2 M init  Y ~ l Y  l ,init 2   M init ~ 0.6M init ,   Initial shock energy (input):  accretion power (input):  Photo-dissociation (loss) : ~ 1.5×1051 erg per 0.1 Msolar Eshock, init Lhydro Ldiss Y  hc K (3 1/ 3  l  4  mB   M core   vinfall 2  6 10 erg    M 0.4 c     51  R  1.4 10 erg/s  shock   100km  53  R  1.110 erg/s  shock   100km  53 4  neutrino cooling (loss) : 4/3 2 2  infall   vinfall   9  3   10 g/cm   0.2c   infall   vinfall   9  3   10 g/cm   0.2c  2  T   R  L ~ 1053 erg/s      block  10 MeV   50 km  3 PNS Convection  Vigorous convective motion  Shock wave is pushed outward  Enhancement in neutrino luminosity Contours of electron fraction 197.8 ms 206.7 ms 199.7 ms 211.9 ms 201.3 ms 215.5 ms 202.8 ms 217.3 ms Energy available in convection  Exchange of fluid element via ⊿h          (d  ) blob    (dP)amb (ds ) blob   blob    (dYe ) blob   s  Y  P  s ,Ye   P ,Ye  e s,P          (d  )amb    (dP)amb    (ds)amb    (dYe )amb  Y  P  s ,Ye  s  P ,Ye  e s,P  Free energy available per unit mass 1 w  g eff amb (d  blob  (d  )amb    g eff h blob (dP)blob  (dP)amb 1   ln P    ln P 1 (ds)     (dYe )amb   ln P  ln P amb    h          ln s   ,Ye   ln   s ,Ye s   ln Ye   , s   ln   s ,Ye Ye   Convection of mass ⊿M W amb  M   h   | Ye | | s |   50km   M PNS  1051 ergs  ,      0.3 M 10km Y s r M      e      [( ln P /  ln  s ,Ye  ( ln P /  ln s   ,Ye  ( ln P /  ln Ye s ,   O (1)] Applications : rotational core bounce  Deformation of neutrino sphere due to the rotation  will play an important role  Shock propagate in z-direction suffered more from the neutrino burst  Deceleration of motion along the rotational axis  GWs are also modifeid Contours of electron fraction Deformed neutrino sphere Gravitational wave signal  Gravitational waves : Type-I waveform  Comparison with Ott et al. (2006) : Second peak is surppressed  Due to deceleration along z-direction A2  I zz  I xx  Spectrum is similar  GW is mainly due to bounce motion Ott et al. (2006) This peak is associated with non-axisymmetric instabilities Neutrino emission  Neutrino Leakage Scheme  “Cross sections” :  i ( E )   i E2  “Opacities” Cross sections by Burrows et al. (2003) :  (E )  i (E )   E2 2  “Optical depth” :  ( E )    ds   E  Diffusion time-scale : T diff x( E ) 2 2 ( E )   ( E )  E c c  Neutrino energy and number diffusion : E nˆ ( E ) 4 cg  diff 2 Q    diff dE  ( k T ) F1 ( ) B 3 2 T ( E ) (hc)  nˆ ( E ) 4 cg  diff  R    diff dE  (k BT ) F0 ( ) 3 2 T ( E ) (hc)  n   nˆ ( E )dE   (T  t ) Tdiff ~ Tdyn (T  s )
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            