Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
POPULATION STATISTICS 100% ACCURATE SINCE THEY INCLUDE A DATA VALUE FROM ALL UNITS IN THE POPULATION • IN OTHER WORDS, A CENSUS • IF THE REGISTRAR’S OFFICE CALCULATES THE MEAN AGE OF A STUDENT FROM ALL ENROLLED STUDENTS, THEN THAT IS THE MEAN AGE, THERE IS NO VARIATION SAMPLE STATISTICS NOT 100% ACCURATE SINCE THEY DON’T INCLUDE A DATA VALUE FROM ALL UNITS IN THE POPULATION • IN OTHER WORDS, A SAMPLE MEAN CAN VARY FROM ONE SAMPLE TO THE NEXT • IN THIS SECTION WE WILL DISCUSS THE BEHAVIOR OF THE VARIATION OF SAMPLE MEANS TAKEN FROM A POPULATION OBSERVE THE FOLLOWING POPULATION 109 114 104 119 99 90 123 90 94 106 91 96 87 100 97 98 95 109 114 91 103 108 80 83 87 79 91 55 62 80 42 44 84 98 103 94 107 90 84 109 79 83 97 117 123 105 23 24 22 25 27 34 17 30 32 31 77 81 74 84 55 69 67 49 51 78 119 125 87 30 32 29 33 37 45 23 40 42 37 29 30 28 32 47 54 24 61 64 36 65 68 25 42 44 40 46 51 64 31 59 62 48 64 67 61 70 70 74 63 78 82 67 64 67 94 58 61 55 63 76 89 48 98 103 62 72 76 69 79 71 71 76 69 73 74 51 54 93 92 97 88 101 108 107 98 119 125 92 67 70 64 73 58 68 60 59 62 70 98 113 81 120 126 115 131 107 113 119 109 114 116 45 47 43 49 56 59 44 62 66 50 112 128 29 87 91 83 95 89 87 94 85 89 87 65 68 62 71 63 72 60 66 69 68 114 130 76 87 91 83 95 73 89 75 73 76 87 58 61 55 63 66 74 53 75 79 62 62 71 114 54 57 52 59 77 85 49 101 106 58 72 76 69 79 79 87 68 91 96 74 61 70 59 98 103 94 107 105 100 107 101 106 97 83 87 79 91 89 90 87 97 101 84 49 56 102 107 112 102 117 88 108 92 98 103 105 91 96 87 100 82 84 94 73 77 91 113 120 131 63 66 60 69 93 81 78 101 106 66 69 72 66 76 62 79 56 69 73 71 121 115 45 120 126 115 131 88 103 111 85 89 116 51 54 49 56 76 76 53 91 96 56 95 101 106 49 51 47 54 68 61 58 66 70 54 98 103 94 107 90 96 97 89 94 97 66 68 88 85 89 81 93 63 87 65 71 75 85 78 82 75 85 79 87 74 89 93 79 59 74 103 37 39 35 40 76 67 48 92 97 43 76 80 73 83 83 81 81 90 95 78 72 79 118 113 119 108 124 87 97 109 76 79 110 86 90 82 94 74 73 91 62 65 86 101 131 66 55 58 53 60 63 74 47 82 86 59 57 60 54 62 46 62 45 47 50 61 129 123 15 69 72 66 76 82 73 82 81 86 71 33 35 32 36 55 61 29 69 73 40 119 88 112 91 96 87 100 64 77 82 53 55 91 75 79 72 82 79 87 71 90 94 77 66 63 92 32 34 31 35 48 58 24 62 65 39 80 84 76 88 87 87 83 92 96 81 52 63 108 63 66 60 69 76 82 60 93 98 66 89 93 85 97 81 87 87 82 86 89 47 91 124 85 89 81 93 89 84 95 90 94 85 68 71 65 74 70 73 69 73 77 71 137 101 70 89 93 85 97 68 74 87 52 55 89 69 72 66 76 65 71 66 64 67 71 129 113 16 43 45 41 47 46 66 25 58 61 49 57 60 54 62 60 69 51 71 74 61 92 115 69 46 48 44 50 79 82 45 104 109 51 60 63 57 66 70 67 65 72 75 64 66 68 115 109 114 104 119 107 105 116 111 117 106 76 80 73 83 63 74 69 60 63 78 67 67 72 99 104 95 108 84 82 106 72 75 98 46 48 44 50 58 67 40 71 74 51 96 56 86 65 68 62 71 50 64 54 46 48 68 68 71 65 74 77 81 67 88 92 71 66 69 116 31 33 30 34 50 59 24 63 67 38 83 87 79 91 82 83 86 84 88 84 119 125 52 68 71 65 74 78 88 62 101 106 71 77 81 74 84 69 74 77 64 67 78 70 74 85 89 81 93 96 81 104 87 91 85 58 61 55 63 57 71 47 67 70 62 86 90 102 107 97 112 64 87 84 56 59 100 53 56 51 58 72 71 57 81 85 57 120 126 20 21 19 22 57 58 19 76 79 29 88 92 84 96 78 87 83 78 82 88 47 49 92 97 88 101 88 99 86 94 99 92 63 66 60 69 72 77 61 78 82 66 63 72 80 84 76 88 92 95 80 106 111 81 77 81 74 84 78 88 72 83 88 78 114 130 99 104 95 108 96 94 106 92 97 98 76 80 73 83 85 93 71 98 103 78 67 77 89 93 85 97 74 86 81 74 77 89 90 95 86 99 98 99 93 106 112 90 82 94 54 57 52 59 69 71 54 79 83 58 101 106 97 111 94 97 103 89 94 99 115 131 81 85 77 89 78 83 80 75 79 82 82 86 78 90 77 90 73 86 90 83 45 51 70 74 67 77 71 85 60 78 82 72 68 71 65 74 84 82 73 86 90 71 94 88 69 72 66 76 88 97 63 104 109 71 96 101 92 105 83 103 82 94 98 95 97 108 Population of 1000 grades Possible score on test 0 to 140 Population Statistics μ = 77.4 median = 77.9 a) Lowest grade_____ 15 σ = 22.3 Highest grade______ 137 μ ± 2σ = ______________________ ( 32.8 , 122 ) b) Since the mean and median are so close, the data is most Approximately Normal likely approximately _________________________________ 109 114 104 119 99 90 123 90 94 106 91 96 87 100 97 98 95 109 114 91 103 108 80 83 87 79 91 55 62 80 42 44 84 98 103 94 107 90 84 109 79 83 97 117 123 105 23 24 22 25 27 34 17 30 32 31 77 81 74 84 55 69 67 49 51 78 119 125 87 30 32 29 33 37 45 23 40 42 37 29 30 28 32 47 54 24 61 64 36 65 68 25 42 44 40 46 51 64 31 59 62 48 64 67 61 70 70 74 63 78 82 67 64 67 94 58 61 55 63 76 89 48 98 103 62 72 76 69 79 71 71 76 69 73 74 51 54 93 92 97 88 101 108 107 98 119 125 92 67 70 64 73 58 68 60 59 62 70 98 113 81 120 126 115 131 107 113 119 109 114 116 45 47 43 49 56 59 44 62 66 50 112 128 29 87 91 83 95 89 87 94 85 89 87 65 68 62 71 63 72 60 66 69 68 114 130 76 87 91 83 95 73 89 75 73 76 87 58 61 55 63 66 74 53 75 79 62 62 71 114 54 57 52 59 77 85 49 101 106 58 72 76 69 79 79 87 68 91 96 74 61 70 59 98 103 94 107 105 100 107 101 106 97 83 87 79 91 89 90 87 97 101 84 49 56 102 107 112 102 117 88 108 92 98 103 105 91 96 87 100 82 84 94 73 77 91 113 120 131 63 66 60 69 93 81 78 101 106 66 69 72 66 76 62 79 56 69 73 71 121 115 45 120 126 115 131 88 103 111 85 89 116 51 54 49 56 76 76 53 91 96 56 95 101 106 49 51 47 54 68 61 58 66 70 54 98 103 94 107 90 96 97 89 94 97 66 68 88 85 89 81 93 63 87 65 71 75 85 78 82 75 85 79 87 74 89 93 79 59 74 103 37 39 35 40 76 67 48 92 97 43 76 80 73 83 83 81 81 90 95 78 72 79 118 113 119 108 124 87 97 109 76 79 110 86 90 82 94 74 73 91 62 65 86 101 131 66 55 58 53 60 63 74 47 82 86 59 57 60 54 62 46 62 45 47 50 61 129 123 15 69 72 66 76 82 73 82 81 86 71 33 35 32 36 55 61 29 69 73 40 119 88 112 91 96 87 100 64 77 82 53 55 91 75 79 72 82 79 87 71 90 94 77 66 63 92 32 34 31 35 48 58 24 62 65 39 80 84 76 88 87 87 83 92 96 81 52 63 108 63 66 60 69 76 82 60 93 98 66 89 93 85 97 81 87 87 82 86 89 47 91 124 85 89 81 93 89 84 95 90 94 85 68 71 65 74 70 73 69 73 77 71 137 101 70 89 93 85 97 68 74 87 52 55 89 69 72 66 76 65 71 66 64 67 71 129 113 16 43 45 41 47 46 66 25 58 61 49 57 60 54 62 60 69 51 71 74 61 92 115 69 46 48 44 50 79 82 45 104 109 51 60 63 57 66 70 67 65 72 75 64 66 68 115 109 114 104 119 107 105 116 111 117 106 76 80 73 83 63 74 69 60 63 78 67 67 72 99 104 95 108 84 82 106 72 75 98 46 48 44 50 58 67 40 71 74 51 96 56 86 65 68 62 71 50 64 54 46 48 68 68 71 65 74 77 81 67 88 92 71 66 69 116 31 33 30 34 50 59 24 63 67 38 83 87 79 91 82 83 86 84 88 84 119 125 52 68 71 65 74 78 88 62 101 106 71 77 81 74 84 69 74 77 64 67 78 70 74 85 89 81 93 96 81 104 87 91 85 58 61 55 63 57 71 47 67 70 62 86 90 102 107 97 112 64 87 84 56 59 100 53 56 51 58 72 71 57 81 85 57 120 126 20 21 19 22 57 58 19 76 79 29 88 92 84 96 78 87 83 78 82 88 47 49 92 97 88 101 88 99 86 94 99 92 63 66 60 69 72 77 61 78 82 66 63 72 80 84 76 88 92 95 80 106 111 81 77 81 74 84 78 88 72 83 88 78 114 130 99 104 95 108 96 94 106 92 97 98 76 80 73 83 85 93 71 98 103 78 67 77 89 93 85 97 74 86 81 74 77 89 90 95 86 99 98 99 93 106 112 90 82 94 54 57 52 59 69 71 54 79 83 58 101 106 97 111 94 97 103 89 94 99 115 131 81 85 77 89 78 83 80 75 79 82 82 86 78 90 77 90 73 86 90 83 45 51 70 74 67 77 71 85 60 78 82 72 68 71 65 74 84 82 73 86 90 71 94 88 69 72 66 76 88 97 63 104 109 71 96 101 92 105 83 103 82 94 98 95 97 108 10.5 32.8 55.1 77.4 99.7 122 0.176 d) P(70 ≤ X < 80) = ______________ The top 20% of the grades were above ________________ 96.2 144.3 109 114 104 119 99 90 123 90 94 106 91 96 87 100 97 98 95 109 114 91 103 108 80 83 87 79 91 55 62 80 42 44 84 98 103 94 107 90 84 109 79 83 97 117 123 105 23 24 22 25 27 34 17 30 32 31 77 81 74 84 55 69 67 49 51 78 119 125 87 30 32 29 33 37 45 23 40 42 37 29 30 28 32 47 54 24 61 64 36 65 68 25 42 44 40 46 51 64 31 59 62 48 64 67 61 70 70 74 63 78 82 67 64 67 94 58 61 55 63 76 89 48 98 103 62 72 76 69 79 71 71 76 69 73 74 51 54 93 92 97 88 101 108 107 98 119 125 92 67 70 64 73 58 68 60 59 62 70 98 113 81 120 126 115 131 107 113 119 109 114 116 45 47 43 49 56 59 44 62 66 50 112 128 29 87 91 83 95 89 87 94 85 89 87 65 68 62 71 63 72 60 66 69 68 114 130 76 87 91 83 95 73 89 75 73 76 87 58 61 55 63 66 74 53 75 79 62 62 71 114 54 57 52 59 77 85 49 101 106 58 72 76 69 79 79 87 68 91 96 74 61 70 59 98 103 94 107 105 100 107 101 106 97 83 87 79 91 89 90 87 97 101 84 49 56 102 107 112 102 117 88 108 92 98 103 105 91 96 87 100 82 84 94 73 77 91 113 120 131 63 66 60 69 93 81 78 101 106 66 69 72 66 76 62 79 56 69 73 71 121 115 45 120 126 115 131 88 103 111 85 89 116 51 54 49 56 76 76 53 91 96 56 95 101 106 49 51 47 54 68 61 58 66 70 54 98 103 94 107 90 96 97 89 94 97 66 68 88 85 89 81 93 63 87 65 71 75 85 78 82 75 85 79 87 74 89 93 79 59 74 103 37 39 35 40 76 67 48 92 97 43 76 80 73 83 83 81 81 90 95 78 72 79 118 113 119 108 124 87 97 109 76 79 110 86 90 82 94 74 73 91 62 65 86 101 131 66 55 58 53 60 63 74 47 82 86 59 57 60 54 62 46 62 45 47 50 61 129 123 15 69 72 66 76 82 73 82 81 86 71 33 35 32 36 55 61 29 69 73 40 119 88 112 91 96 87 100 64 77 82 53 55 91 75 79 72 82 79 87 71 90 94 77 66 63 92 32 34 31 35 48 58 24 62 65 39 80 84 76 88 87 87 83 92 96 81 52 63 108 63 66 60 69 76 82 60 93 98 66 89 93 85 97 81 87 87 82 86 89 47 91 124 85 89 81 93 89 84 95 90 94 85 68 71 65 74 70 73 69 73 77 71 137 101 70 89 93 85 97 68 74 87 52 55 89 69 72 66 76 65 71 66 64 67 71 129 113 16 43 45 41 47 46 66 25 58 61 49 57 60 54 62 60 69 51 71 74 61 92 115 69 46 48 44 50 79 82 45 104 109 51 60 63 57 66 70 67 65 72 75 64 66 68 115 109 114 104 119 107 105 116 111 117 106 76 80 73 83 63 74 69 60 63 78 67 67 72 99 104 95 108 84 82 106 72 75 98 46 48 44 50 58 67 40 71 74 51 96 56 86 65 68 62 71 50 64 54 46 48 68 68 71 65 74 77 81 67 88 92 71 66 69 116 31 33 30 34 50 59 24 63 67 38 83 87 79 91 82 83 86 84 88 84 119 125 52 68 71 65 74 78 88 62 101 106 71 77 81 74 84 69 74 77 64 67 78 70 74 85 89 81 93 96 81 104 87 91 85 58 61 55 63 57 71 47 67 70 62 86 90 102 107 97 112 64 87 84 56 59 100 53 56 51 58 72 71 57 81 85 57 120 126 20 21 19 22 57 58 19 76 79 29 88 92 84 96 78 87 83 78 82 88 47 49 92 97 88 101 88 99 86 94 99 92 63 66 60 69 72 77 61 78 82 66 63 72 80 84 76 88 92 95 80 106 111 81 77 81 74 84 78 88 72 83 88 78 114 130 99 104 95 108 96 94 106 92 97 98 76 80 73 83 85 93 71 98 103 78 67 77 89 93 85 97 74 86 81 74 77 89 90 95 86 99 98 99 93 106 112 90 82 54 57 52 59 69 71 54 79 83 58 101 106 97 111 94 97 103 89 94 99 115 131 81 85 77 89 78 83 80 75 79 82 82 86 78 90 77 90 73 86 90 83 45 51 70 74 67 77 71 85 60 78 82 72 68 71 65 74 84 82 73 86 90 71 94 88 69 72 66 76 88 97 63 104 109 71 96 101 92 105 83 103 82 94 98 95 97 108 10.5 32.8 55.1 77.4 99.7 122 144.3 f) Make a guess. If you select 30 random grades and average them, which of the following would be realistic for the average that you obtain? Why? 94 A) 76.4 – 78.4 B) 69 - 85 C) 60 – 94.8 D) 55.1 – 99.7 E) 32.8 - 122 109 114 104 119 99 90 123 90 94 106 91 96 87 100 97 98 95 109 114 91 103 108 80 83 87 79 91 55 62 80 42 44 84 98 103 94 107 90 84 109 79 83 97 117 123 105 23 24 22 25 27 34 17 30 32 31 77 81 74 84 55 69 67 49 51 78 119 125 87 30 32 29 33 37 45 23 40 42 37 29 30 28 32 47 54 24 61 64 36 65 68 25 42 44 40 46 51 64 31 59 62 48 64 67 61 70 70 74 63 78 82 67 64 67 94 58 61 55 63 76 89 48 98 103 62 72 76 69 79 71 71 76 69 73 74 51 54 93 92 97 88 101 108 107 98 119 125 92 67 70 64 73 58 68 60 59 62 70 98 113 81 120 126 115 131 107 113 119 109 114 116 45 47 43 49 56 59 44 62 66 50 112 128 29 87 91 83 95 89 87 94 85 89 87 65 68 62 71 63 72 60 66 69 68 114 130 76 87 91 83 95 73 89 75 73 76 87 58 61 55 63 66 74 53 75 79 62 62 71 114 54 57 52 59 77 85 49 101 106 58 72 76 69 79 79 87 68 91 96 74 61 70 59 98 103 94 107 105 100 107 101 106 97 83 87 79 91 89 90 87 97 101 84 49 56 102 107 112 102 117 88 108 92 98 103 105 91 96 87 100 82 84 94 73 77 91 113 120 131 63 66 60 69 93 81 78 101 106 66 69 72 66 76 62 79 56 69 73 71 121 115 45 120 126 115 131 88 103 111 85 89 116 51 54 49 56 76 76 53 91 96 56 95 101 106 49 51 47 54 68 61 58 66 70 54 98 103 94 107 90 96 97 89 94 97 66 68 88 85 89 81 93 63 87 65 71 75 85 78 82 75 85 79 87 74 89 93 79 59 74 103 37 39 35 40 76 67 48 92 97 43 76 80 73 83 83 81 81 90 95 78 72 79 118 113 119 108 124 87 97 109 76 79 110 86 90 82 94 74 73 91 62 65 86 101 131 66 55 58 53 60 63 74 47 82 86 59 57 60 54 62 46 62 45 47 50 61 129 123 15 69 72 66 76 82 73 82 81 86 71 33 35 32 36 55 61 29 69 73 40 119 88 112 91 96 87 100 64 77 82 53 55 91 75 79 72 82 79 87 71 90 94 77 66 63 92 32 34 31 35 48 58 24 62 65 39 80 84 76 88 87 87 83 92 96 81 52 63 108 63 66 60 69 76 82 60 93 98 66 89 93 85 97 81 87 87 82 86 89 47 91 124 85 89 81 93 89 84 95 90 94 85 68 71 65 74 70 73 69 73 77 71 137 101 70 89 93 85 97 68 74 87 52 55 89 69 72 66 76 65 71 66 64 67 71 129 113 16 43 45 41 47 46 66 25 58 61 49 57 60 54 62 60 69 51 71 74 61 92 115 69 46 48 44 50 79 82 45 104 109 51 60 63 57 66 70 67 65 72 75 64 66 68 115 109 114 104 119 107 105 116 111 117 106 76 80 73 83 63 74 69 60 63 78 67 67 72 99 104 95 108 84 82 106 72 75 98 46 48 44 50 58 67 40 71 74 51 96 56 86 65 68 62 71 50 64 54 46 48 68 68 71 65 74 77 81 67 88 92 71 66 69 116 31 33 30 34 50 59 24 63 67 38 83 87 79 91 82 83 86 84 88 84 119 125 52 71 65 74 78 88 62 101 106 71 77 81 74 84 69 74 77 64 67 78 70 74 89 81 93 96 81 104 87 91 85 58 61 55 63 57 71 47 67 70 62 86 90 107 97 112 64 87 84 56 59 100 53 56 51 58 72 71 57 81 85 57 120 126 21 19 22 57 58 19 76 79 29 88 92 84 96 78 87 83 78 82 88 47 49 97 88 101 88 99 86 94 99 92 63 66 60 69 72 77 61 78 82 66 63 72 84 76 88 92 95 80 106 111 81 77 81 74 84 78 88 72 83 88 78 114 130 104 95 108 96 94 106 92 97 98 76 80 73 83 85 93 71 98 103 78 67 77 93 85 97 74 86 81 74 77 89 90 95 86 99 98 99 93 106 112 90 82 94 54 57 52 59 69 71 54 79 83 58 101 106 97 111 94 97 103 89 94 99 115 131 81 85 77 89 78 83 80 75 79 82 82 86 78 90 77 90 73 86 90 83 45 51 70 74 67 77 71 85 60 78 82 72 68 71 65 74 84 82 73 86 90 71 94 88 72 66 76 88 97 63 104 109 71 96 101 92 105 83 103 82 94 98 95 97 108 68 85 102 20 92 80 99 89 69 10.5 32.8 55.1 77.4 99.7 122 g) Collect at least 1 sample of test grades by randomly circling 30 test grades. Once you randomly select 30 test grades, enter them into the calculator and report the mean and standard deviation. YOUR Sample Mean = _________ YOUR Sample Standard Deviation = ______________ 144.3 i) We will make a stem and leaf plot of the means: STEM LEAVES 10.5 32.8 55.1 77.4 99.7 122 144.3 65-<68 68-<71 71-<74 74-<77 77-<80 80-<83 83-<86 86-<89 Find the mean of the sample means. Definition of a SAMPLING DISTRIBUTION The SAMPLING DISTRIBUTION of the mean is the probability distribution of all possible values of the random variable 𝑥 computed from samples of size n from the same population. Therefore the sampling distribution is NOT a distribution for x but for 𝑥 . The sampling distribution of 𝑥 represents the variation of the sample means of size n from a population. THE CENTRAL LIMIT THEOREM • THE STEM AND LEAF DISPLAY ON THE BOARD IS THE BEGINNING OF A SAMPLING DISTRIBUTION. A COMPLETE SAMPLING DISTRIBUTION CONTAINS EVERY POSSIBLE MEAN FROM EVERY POSSIBLE SAMPLE OF N DATA VALUES (30 IN OUR CASE). IN EVERYDAY STATISTICS, WE DON’T CREATE SAMPLING DISTRIBUTIONS BECAUSE OF THE FOLLOWING THEOREM ABOUT THEM: THE CENTRAL LIMIT THEOREM THE CENTRAL LIMIT THEOREM STATES THE FOLLOWING: GIVEN: A RANDOM SAMPLE OF N DATA POINTS FROM A POPULATION WITH A MEAN 𝜇 AND A STANDARD DEVIATION OF 𝜎 . THE DISTRIBUTION DOES NOT HAVE TO BE NORMAL. IT CAN BE UNIFORM, EXPONENTIAL, SKEWED LEFT, SKEWED RIGHT, OR ANYTHING ELSE. Central Limit Theorem: Given: A random sample of n data points from a population with a mean 𝜇 and a standard deviation of 𝜎. 91 73 60 68 85 88 72 88 71 99 60 76 Stems Leaves 0 1 2 3 4 5 6 0088 7 2136 8 5588 9 1139 10 Uniform Data 85 68 91 93 30 97 88 52 52 44 44 100 59 66 Stems Leaves 0 1 2 3 0 4 44 5 229 6 6329 7 5557 8 258 9 57 10 0 Normal Data 75 63 75 62 75 69 77 85 95 85 72 55 18 33 10 63 10 33 11 99 10 43 11 12 10 49 28 13 29 55 Stems Leaves 0 1 0112345888000 2 898992 3 00033 4 239 5 55 6 3 7 2 8 9 9 10 Exponential Data 29 14 29 28 15 22 30 18 30 42 18 30 Central Limit Theorem: Given: A random sample of n data points from a population with a mean 𝜇 and a standard deviation of 𝜎. THE CENTRAL LIMIT THEOREM GIVEN: A RANDOM SAMPLE OF N DATA POINTS FROM A POPULATION WITH A MEAN 𝜇 AND A STANDARD DEVIATION OF 𝜎. CONCLUSION: WHEN THE SAMPLE SIZE N IS SUFFICIENTLY LARGE ( ≥ 30), THE SAMPLING DISTRIBUTION OF 𝑥 WILL BE APPROXIMATELY A NORMAL DISTRIBUTION WITH 𝜇𝑥 = 𝜇 𝜎𝑥= 𝜎 𝑛 𝜇𝑥 = 𝜇 𝑥 THE CENTRAL LIMIT THEOREM THE CENTRAL LIMIT THEOREM THE CENTRAL LIMIT THEOREM f(x) Given An Exponential Distribution with mean μ and standard deviation σ 1 x x A sampling distribution or the distribution of the sample mean x is approximately normally distributed with x x n THE CENTRAL LIMIT THEOREM GIVEN: A RANDOM SAMPLE OF N DATA POINTS FROM A POPULATION WITH A MEAN 𝜇 AND A STANDARD DEVIATION OF 𝜎. CONCLUSION: WHEN THE SAMPLE SIZE N IS SUFFICIENTLY LARGE ( ≥ 30), THE SAMPLING DISTRIBUTION OF WILL BE APPROXIMATELY A NORMAL DISTRIBUTION WITH Note: If n is less than 30 then the distribution does have to be NORMAL. This means that is n is less that 30, then the given distribution has to be normal to assume the sampling distribution is normal. 𝜇𝑥 = 𝜇 𝜎𝑥= 𝜎 𝑛 Given A Normal Distribution with mean μ and standard deviation σ x ` A sampling distribution or the distribution of the sample mean x is approximately normally distributed with x x n EXAMPLE 1 MEN’S WEIGHTS ARE NORMALLY DISTRIBUTED WITH A MEAN OF 𝝁 = 182.9 LBS AND A STANDARD DEVIATION OF 𝝈 = 𝟒𝟎. 𝟖 LBS. A) GRAPH THE GIVEN DISTRIBUTION AND INCLUDE THE TWO STANDARD DEVIATION INTERVAL. 101.3 182.9 264.5 EXAMPLE 1 MEN’S WEIGHTS ARE NORMALLY DISTRIBUTED WITH A MEAN OF 𝝁 = 182.9 LBS AND A STANDARD DEVIATION OF 𝝈 = 𝟒𝟎. 𝟖 LBS. B) SINCE WE ARE DEALING WITH A NORMAL DISTRIBUTION, APPROXIMATELY 95% OF MEN WOULD WEIGH BETWEEN _______________ AND __________________. 101.3 182.9 264.5 EXAMPLE 1 MEN’S WEIGHTS ARE NORMALLY DISTRIBUTED WITH A MEAN OF 𝝁 = 182.9 LBS AND A STANDARD DEVIATION OF 𝝈 = 𝟒𝟎. 𝟖 LBS. C) WHAT PERCENT OF MEN WEIGH OVER 200 LBS? OR IN DIFFERENT WORDING, WHAT IS THE PROBABILITY THAT A RANDOMLY SELECTED MAN WEIGHS OVER 200 LBS? 101.3 182.9 264.5 P(x>200) = normalcdf(200, 999999, 182.9, 40.8) P(x>200) = .338 or approximately 34% of men EXAMPLE 1 MEN’S WEIGHTS ARE NORMALLY DISTRIBUTED WITH A MEAN OF 𝝁 = 182.9 LBS AND A STANDARD DEVIATION OF 𝝈 = 𝟒𝟎. 𝟖 LBS. D) 10% OF MEN WEIGH BELOW _______________. a 101.3 P(x<a) = .1 182.9 264.5 a = invnorm(.1, 182.9, 40.8) a = 130.61 10% of men weigh below 130.61 lbs EXAMPLE 1 MEN’S WEIGHTS ARE NORMALLY DISTRIBUTED WITH A MEAN OF 𝝁 = 182.9 LBS AND A STANDARD DEVIATION OF 𝝈 = 𝟒𝟎. 𝟖 LBS. Given A Normal Distribution with mean μ and standard deviation σ x ` A sampling distribution or the distribution of the sample mean x is approximately normally distributed with x x n E) FOR A SAMPLE OF 36 RANDOMLY CHOSEN MEN, GRAPH normally THE SAMPLING DISTRIBUTION OF THE C.L.T. says that 𝑥 is ______________ distributed AND LOCATE THE TWO STANDARD 𝜎 40.8 = = 6.8 𝜇 = 182.9 DEVIATION INTERVAL. with 𝜇𝑥 = ____________ and 𝜎𝑥 = ____________. 𝑛 36 EXAMPLE 1 MEN’S WEIGHTS ARE NORMALLY DISTRIBUTED WITH A MEAN OF 𝝁 = 182.9 LBS AND A STANDARD DEVIATION OF 𝝈 = 𝟒𝟎. 𝟖 LBS. 𝜇 = 182.9, 𝜎 = 40.8 Given A Normal Distribution with mean μ and standard deviation σ 101.3 x 264.5 ` A sampling distribution or the distribution of the sample mean x is approximately normally distributed with E) FOR A SAMPLE OF 36 RANDOMLY CHOSEN MEN, GRAPH THE SAMPLING DISTRIBUTION OF AND LOCATE THE TWO STANDARD DEVIATION INTERVAL. x 169.3 𝜇𝑥 = 182.9 𝜎𝑥 = 6.8 196.5 x n EXAMPLE 1 MEN’S WEIGHTS ARE NORMALLY DISTRIBUTED WITH A MEAN OF 𝝁 = 182.9 LBS AND A STANDARD DEVIATION OF 𝝈 = 𝟒𝟎. 𝟖 LBS. 𝜇 = 182.9, 𝜎 = 40.8 Given A Normal Distribution with mean μ and standard deviation σ 101.3 x 264.5 ` A sampling distribution or the distribution of the sample mean x is approximately normally distributed with • F) FIND THE PROBABILITY THAT A RANDOMLY SELECTED MAN WILL WEIGH BETWEEN 180 AND 190. THEN, FIND THE PROBABILITY THAT A SAMPLE OF 36 MEN WILL HAVE A MEAN WEIGHT BETWEEN 180 AND 190. • x x n 169.3 𝜇𝑥 = 182.9 196.5 𝜎𝑥 = 6.8 P(180< x <190) = normalcdf(180, 190, 182.9, 40.8) P(180< 𝑥 <190) = normalcdf(180, 190, 182.9, 6.8) =0.097 =0.517 EXAMPLE 1 H) FROM PART B, APPROXIMATELY 95% OF MEN WEIGHT BETWEEN __________ AND __________ 101.3 264.53 BUT WE WOULD EXPECT THE MEAN OF 36 MEN TO FALL BETWEEN 196.5 169.3 AND ________, ________ 95% OF THE TIME. 𝜇 = 182.9, 𝜎 = 40.8 Given A Normal Distribution with mean μ and standard deviation σ 101.3 x 264.5 ` A sampling distribution or the distribution of the sample mean x is approximately normally distributed with x 169.3 𝜇𝑥 = 182.9 196.5 𝜎𝑥 = 6.8 x n Example 2 Suppose that for the summer months in a certain city the high temperature is uniformly distributed between 80 and 100 degrees Fahrenheit. a) Graph this distribution, including the mean, c, and d. 𝑓 𝑥 = 𝜎= 1 20 = 5.8 c= 80 μ = 90 d= 100 𝑑−𝑐 12 Example 2 Suppose that for the summer months in a certain city the high temperature is uniformly distributed between 80 and 100 degrees Fahrenheit. b) What percent of days is a high temperature between 94 and 100 degrees observed? _______ 30% P(94<x< 100) 𝑓 𝑥 = 1 20 = 6 x 1/20 = 0.3 94 100 Example 2 Suppose that for the summer months in a certain city the high temperature is uniformly distributed between 80 and 100 degrees Fahrenheit. c) Graph the sampling distribution of and locate the two standard deviation interval. Assume you are dealing with 30 days of high temperatures. 𝜇 = 90, 𝜎 = 5.8 1 20 80 100 𝜎𝑥 = 87.8 𝜇𝑥 = 90 𝜎𝑥 = 1.1 92.2 = 1.1 5.8 30 Example 2 Suppose that for the summer months in a certain city the high temperature is uniformly distributed between 80 and 100 degrees Fahrenheit. d) What is the probability that the AVERAGE TEMP of 30 randomly selected days is between 94 and 100 degrees? Why? What about 91 to 93 degrees? 𝜇 = 90, 𝜎 = 5.8 1 20 80 100 P(94< 𝑥 <100) = normalcdf(94, 100, 90, 1.1) = 0.0001 87.8 𝜇𝑥 = 90 𝜎𝑥 = 1.1 92.2 Example 2 Suppose that for the summer months in a certain city the high temperature is uniformly distributed between 80 and 100 degrees Fahrenheit. d) What is the probability that the AVERAGE TEMP of 30 randomly selected days between 94 and 100 degrees? Why? What about 91 to 93 degrees? 𝜇 = 90, 𝜎 = 5.8 1 20 80 100 P(91< 𝑥 <93) = normalcdf(91, 93, 90, 1.1) = 0.18 87.8 𝜇𝑥 = 90 𝜎𝑥 = 1.1 92.2 Example 2 e) Give an interval that you expect the average high temp of 30 days to fall in 95% of the time. 𝜇 = 90, 𝜎 = 5.8 1 20 80 100 (87.8, 92.2) ________________ f) Give an interval that you expect a high temp to fall in 100% of the time. (80, 100) __________________ 87.8 𝜇𝑥 = 90 𝜎𝑥 = 1.1 92.2 EXAMPLE 3 The time that a bus in late (x) for one particular stop is exponentially distributed with mean 3 and standard deviation _____. 3 a) Graph this distribution 0 3 9 EXAMPLE 3 The time that a bus in late (x) for one particular stop is exponentially distributed with mean 3 and standard deviation 3. b) Which of the following statements describes the sampling distribution of for 40 random late times. A) The sampling distribution of is exponentially distributed with a mean of 3 and a standard deviation of 3 B) The sampling distribution of is normally distribution with a mean of 3 and a standard deviation of 3 C) The sampling distribution of is normally distribution with a mean of 3 and a standard deviation of 0.47 D)The sampling distribution of is uniformly distributed with a mean of 3 and a standard deviation of 3 f(x) EXAMPLE 3 𝜇 = 3, 𝜎 =3 1 c) Graph the sampling distribution and locate the two standard deviation interval. Given An Exponential Distribution with mean μ and standard deviation σ x x A sampling distribution or the distribution of the sample mean x is approximately normally distributed with x 2.06 𝜇𝑥 = 3 𝜎𝑥 =0.47 3.94 x n EXAMPLE 3 f(x) d) Suppose someone who rides the bus is running late. It takes them 2.5 minutes to get to the bus stop and they are already 1minute late. What is the probability that they catch the bus? Which distribution would you use, the one for X or 𝑥 ? 2.06 𝜇 = 3, 𝜎 =3 1 Given An Exponential Distribution with mean μ and standard deviation σ P(x > 3.5) x x = 𝑒 −3.5/3 A sampling distribution or the distribution of the sample mean x is approximately normally = .311with distributed x 𝜇𝑥 = 3 𝜎𝑥 =0.47 3.94 x n EXAMPLE 3 f(x) 𝜇 = 3, 𝜎 =3 e) Find the probability that the average of 40 late times is greater than 3.5 minutes. 1 Given An Exponential Distribution with mean μ and standard deviation σ P( 𝑥 > 3.5) = x normalcdf(3.5, ∞, 3, 0.47) x = 0.14 A sampling distribution or the distribution of the sample mean x is approximately normally distributed with x 2.06 𝜇𝑥 = 3 𝜎𝑥 =0.47 3.94 x n