Download 3–8 Storey Modular Element Buildings

Document related concepts

Curtain wall (architecture) wikipedia , lookup

Contemporary architecture wikipedia , lookup

Green building wikipedia , lookup

Sustainable architecture wikipedia , lookup

Skyscraper wikipedia , lookup

Triangle Shirtwaist Factory fire wikipedia , lookup

The English House wikipedia , lookup

Building insulation materials wikipedia , lookup

Slab hut wikipedia , lookup

Earthbag construction wikipedia , lookup

Glaspaleis wikipedia , lookup

Building regulations in the United Kingdom wikipedia , lookup

Framing (construction) wikipedia , lookup

Structural integrity and failure wikipedia , lookup

Building material wikipedia , lookup

Transcript
Building Systems
by Stora Enso
3–8 Storey Modular Element Buildings
Table of contents
1
Introduction and disclaimer.......................................................................................................... 3
1.1 Introduction ........................................................................................................................ 4
1.2 Thebenefitsofthesystem .................................................................................................. 5
1.3 Disclaimer ........................................................................................................................... 5
2 AnatomyoftheStoraEnsomodularbuildingsystem .................................................................. 6
2.1 Anatomyofamodularbuilding ........................................................................................... 7
2.2 Anatomyofamodularelement ........................................................................................... 8
2.3 Elementsystemsinthefieldofconstructiontechnologies ................................................ 9
6.4.3 Managementoftheindoorconditions................................................................... 89
6.4.4 Inspectionstobemadebeforeinstallationoffinishes .......................................... 89
7 Sustainability .............................................................................................................................. 90
7.1 StoraEnsobuildingsolutionsforsustainablehomes ...................................................... 91
7.1.1 Responsiblysourcedrenewablewoodforlowcarbonbuildingsolutions............ 91
7.1.2 Energyefficientandlowcarbonhomes ................................................................ 92
7.2 Occupanthealthandwellbeing–Indoorclimateandthermalcomfort ........................... 92
7.3 ElementsoflifecycledesigninCLTandLVL9basedbuildings ........................................ 93
7.4 Certificationofsustainableandlowcarbonhomes ......................................................... 93
3 Architecturaldesignguidelines .................................................................................................. 10
8
4 BuildingSystembyStoraEnso ...................................................................................................17
4.1 Structuralcomponentsofthemodularsystem ................................................................ 18
4.2 Manufacturingprocessofthemodularelements ............................................................ 19
4.3 Principlesofbuildingacoustics ........................................................................................ 20
4.4 Principlesoffiredesign .................................................................................................... 21
4.5 Principlesofcontrollingdeformationsandcracking........................................................ 23
4.6 PrinciplesofHVACdesign ................................................................................................ 25
4.7 Bracingsystemsofmodularbuildings ............................................................................. 26
4.8 Principlesofseismicsafety .............................................................................................. 27
4.9 Erection procedure sequence .......................................................................................... 28
5 Structuraldesign ........................................................................................................................ 29
5.1. Structuraltypes ................................................................................................................ 30
5.2. Structural details............................................................................................................... 51
6 Transportationandinstructionsforon-siteassembly ............................................................... 86
6.1 Transportationofmodularelements ................................................................................ 87
6.2 Principlesoferection ........................................................................................................ 87
6.2.1 General .................................................................................................................. 87
6.2.2Installationofmodularelements ........................................................................... 87
6.3 Protectionon-site ............................................................................................................. 87
6.3.1 Moisture control ..................................................................................................... 87
6.3.2Personsinchargeofthemoisturecontrol ............................................................. 87
6.3.3 Moisturecontrolplanandemployeeengagement ................................................ 87
6.3.4 Assuranceofmoisturetechnicalqualityincaseofmoisturedamage .................. 88
6.4 Protectionofstructuresandmaterialon-site ................................................................... 88
6.4.1 Protectionofwallsinmodularelements ................................................................ 88
6.4.2 Protectionofroofsinmodularelements ............................................................... 88
2
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Stora Enso .................................................................................................................................. 94
1 Introduction
and disclaimer
3
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
1.1
Introduction
ThismanualdescribestheStoraEnsomodularelementsystemforwoodenmulti-storey
residentialbuildings.Itisintendedfordesigners,contractors,buildingownersand
developers.
ThecoreofthesystemareStoraEnso’sstructuralwallpanelsandfloorslabs,whichform
thestrongandstableload-bearingstructureofeachmodularelement.Theelementsare
builtincontrolledfactoryconditionsanddeliveredtothesitewithallfinishingmaterials
andcomponentsinstalled.Thetechnologyprovideshightechnicalperformanceand
outstandingquality.Theseelementsenableanindustrialmethodofconstructionthat
reducesassemblytimeonsiteandminimizestheneedforfinishingworkonsite.
Thebuildingsystemisflexibleandcanbeadjustedtovariousmarketandcustomer
requirementsdependingonlocalneeds.Adjustmentsmightinclude:
Architectural considerations
• Typologyandscaleofthebuilding
• Unitandroomlayouts
• Customerdemandsorlocalmarketfactors
Engineeringconsiderations
• Localperformancerequirements(acoustics,fireprotection,thermalinsulation,etc.)
• Localcoderequirements(definedbyrelevantbuildingauthorities)
• Levelofpre-fabrication(interiorsandfaçades)
ThismanualoffersagoodoverviewofcommonEuropeanstructuresandbuildingtypes,
butitshouldalsoprovideinspirationfornewideasandexperiments.
Detaileddesigninstructionsandstructuraldrawingscanbedownloadedfromtheweb
pagesofStoraEnsoBuildingSolutions.
4
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
1.2 Thebenefitsofthesystem
1.3 Disclaimer
Thesystemoffersbenefitsforallpartiesinbuildingprocess.
Themanualismeantforpreliminarydesignofbuildingsandstructures.
Forarchitects,itprovides
• Systemsandmaterialsthatenablehighindustrialqualityofexteriorand
interior architecture
• Asystemofassemblythatallowsproducts,structuresandshapestobe
easilycombined
• Safesolutionsandproventechnologiestofulfiltherequirementsof
buildingauthorities
• Aclearframeworkforthedevelopmentofthebuildingdesign
Useofthestructuralsolutions[andreferencevalues]shownheredoesnot
replacetheneedforfinaldesignandcalculationsbyresponsibledesigners(includingbutnotlimitedtostructural,acoustic,fireorbuildingphysics
experts).Allsolutionsanddetailsusedinconstructionmustbereviewed,
verifiedandapprovedbytheresponsibledesignersoftheproject.Conformancewithlocalbuildingregulationsmustbeconfirmedbytheresponsibledesigners.Designdetailsaresubjecttochange.
Forengineersitprovides
• Aneasy,safeanddependablesystemfordesign
• Proven structural details
• Clearlydefinedperformancevaluesforstructures
• Aclearsystemandguidelinesforbracingthebuilding
• Qualitysupportmaterialsanddesigntools
• Structuraldetailsavailablefordownload
• Amanualandsoftwareforstructuralcalculations
Forcontractorsandindustryitprovides
• Safesolutions:testedandproveninstructionsforthewholebuildingprocess
• Fastassemblytimes
• Aprovenstructuralsystem
• Readysolutions–easycostanddesignmanagement
• Industrialcomponentswithfactoryprecision–lessfinishingworkonsite
• Nodryingorcuringtimes
• Lightweightstructuresthatreduceoreliminatetheneedforheavyliftingequipment
Forownersandoccupantsitprovides
• Costefficiency
• Moderndesignwithvisiblewoodeninteriorsurfaces(inaccordancewith
localfirerequirements)
• Healthylivingwithnaturalmaterials
• Energyefficiency–lowheatingandcoolingcostsforthewholebuilding
• Ecologicalbenefits;lowenergyconsumptionandalowercarbonfootprint
• Technicallysafeanddurablesolutions
For developers it provides
• Ashortconstructionphase–lesstimetowaitoninvestmentreturns
• Anattractiveproductformodernandenvironmentallyconsciouscustomers
• Asystemthatcanbecustomizedforvaryingappearances,buildingtypesandsizes
• Industrialquality–allcriticalphaseshavebeenbuiltincontrolledcircumstances
• Anattractiveobjectofinvestmentforenvironmentallyconsciouspersons
5
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
StoraEnsodoesnotgiveanywarrantiesorundertakingsabouttheaccuracy,validity,timelinessorcompletenessofanyinformationordatainthis
manualandexpresslydisclaimsanywarrantiesofmerchantabilityorfitness
forparticularpurpose.InnoeventwillStoraEnsobeliableforanydirect,
special,indirect,consequentialincidentaldamagesordamagesofanykind
causedbytheuseofthismanual.
ManualCopyright©StoraEnso.
2 Anatomy of the
Stora Enso modular building system
6
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
2.1 Anatomyofamodularbuilding
• Readymodulesandoptimizeddetails—fasterectiontime
• Stiffandrigidcentralcore
• Thesystemcanbelocalizedtomeetlocalbuildingtraditionandrequirements
• Firesafetywithmassivewoodandfireprotectivesurfacelayers
• Acousticperformancewithengineeredstructuraldetailsandacousticlayers
Roof
• prefabricatedelements/constructedonsite
Room modules
• prefabricated
Technical modules
• prefabricated
Elevatorshaft
• massivewood
• notelocalfireregulations
Centralcorridor(assembledonsite)
• massivewoodslabs,beamsandstairways
Façade
• assembledinfactoryoronsite
• differentfaçadematerialsarepossible
HVACinstallations/Verticalshafts
• assembled on site
Additionalelements(balconyzone)
• prefabricatedelements
• technicallypossibletousedifferentbalconytypes
• railings/glazing
Surfacestructures
• finishedonsiteaftertechnicalinstallations
Additional elements
• façadepanels
Concretegroundfloor/Basement/Foundation
• commercial/multipurposespaces
• storages/technicalrooms
• constructed on site
7
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
2.2 Anatomyofamodularelement
• Prefabricatedinfactoryconditions
• Readysurfaces,technicalinstallationsandfixedfurniture
• Basicmodules:
• roommodule(livingroom,bedroom,diningroom,workspace)
• technicalmodule(kitchen,bathroom,toilet)
• Firesafetywithmassivewoodandfireprotectivesurfacelayers
• Acousticperformancewithengineered
structuraldetailsandacousticlayers
A
MODULE VARIATION: A
REPETITION: 1 x A...n X A
A+B
Completed
modular element
Moduleroofslab(CLT)
Surfacestructure(wall)
• notelocalbuildingregulations
Non-load-bearingpartitionwalls
MAXIMAL REPETITION
MINIMAL VARIATION OF ELEMENTS
SIMPLICITY
OPTIMAL VARIATIO
MODULES
- BENEFITS I
- MORE QUALITY IN
Load-bearingwallpanels(CLT)
• highload-bearingcapacity
Surfacestructure(floor)
HVACinstallations,cover
Fixedfurniture
TYPICAL EXAMPLES:
-HOTELS
-SMALL APARTMENT HOUSING
-STUDENT HOUSING
TYPI
-NOR
Doors,windows
Insulation
Façade
• installedinfactory/onsite
• freechoiceofmaterials(notelocalbuildingregulations)
SE
8
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
2.3 Elementsystemsinthefield
ofconstructiontechnologies
BUILDING ON SITE
ELEMENT
MODULAR ELEMENT
Buildingcomponents
Prefabrication
Dimensions
Complexity
Construction
Buildingproducts
Lowgradeofprefabrication
Nolimitationsinsize
Demandingandunique
shapes
Longconstructionphase
Factoryfinished2dsurfaces
Highgradeofprefabrication
Widerangeofpossible
dimensions
Repetitionofpanelsand
slabs
Shorter construction phase
Factoryfinished3delements
Extremelyhighgradeof
prefabrication
Limited dimensions
Repetitionofmodularunits
Shortest construction phase
Goodload-bearingcapacity
• Even8to10storeys
possible
Stabile and clear structure
• Easyliftingtechnology
• Easyandsecure
connections
Tightandmassive
• Hightechnical
performance
Benefitsofmassivewoodstructure
9
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Cross-layerstructure
• Easytomake
openings
3 Architectural
design guidelines
10
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
MODULAR SYSTEM
POSSIBILITIES AND BENEFITS OF THE SYSTEM
RELATED TO REPETITION AND VARIATION
Modularsystem
Possibilitiesandbenefitsofthesystemrelatedtorepetitionandvariation
AA
MODULE
VARIATION:
MODULE
VARIATION: A
A
Modulevariation:A
REPETITION:
1
REPETITION:
1 xx A...n
A...n X
XA
A
Repetition:1×A…n×A
+ BB
AA +
AA+B+C
+B+C
A + BA+B+C+D+E+F+G
+C+D+E+F +G
ABCDEFGHIJKLMNOP…
ABCDEFGHIJKLMNOP...
MODULE
VARIATION:
MODULE Modulevariation:
VARIATION: A-B-C-D-E-F-G...
A-B-C-D-E-F-G...
REPETITION:
-A–B–C–D–E–F–G…
REPETITION:
Repetition:–
MAXIMAL
REPETITION
MAXIMAL
REPETITION
Maximalrepetitionwith
MINIMAL
VARIATION
minimalvariationof
MINIMAL
VARIATION OF
OF ELEMENTS
ELEMENTS
SIMPLICITY
modular elements
SIMPLICITY
Typicalexamples:
• hotels
• smallapartmenthousing
• studenthousing
TYPICAL
EXAMPLES:
TYPICAL
EXAMPLES:
•
elderlyhomes
-HOTELS
-HOTELS
-SMALL
-SMALL APARTMENT
APARTMENT HOUSING
HOUSING
-STUDENT
-STUDENT HOUSING
HOUSING
11
OPTIMAL
OF
ELEMENTS
OPTIMAL VARIATION
VARIATION
OFvariation
ELEMENTS
AND REPETITION
REPETITION OF
OF
Optimal
and AND
MODULES
DEFINED
repetitionofmodular
MODULES
DEFINED BY
BY PROJECT
PROJECT DESIGN
DESIGN
elementsdefinedby
-- BENEFITS
IN
BENEFITSprojectdesign
IN BETTER
BETTER PROJECT
PROJECT ECONOMICS
ECONOMICS
-- MORE
MORE QUALITY
QUALITY IN
IN ARCHITECTURE
ARCHITECTURE // APARTMENT
APARTMENT LAYOUT
LAYOUT
Benefitsinprojecteconomics
andarchitecturalquality
TYPICAL
TYPICAL EXAMPLES:
EXAMPLES:
Typicalexamples:
-NORMAL
MULTI
-NORMAL
MULTI STOREY
STOREY HOUSING
HOUSING
• normalmulti-storeyhousing
B U I L D I N G S Y S T E M S B Y S T O R A E N S O | 3 – 8 S T O R E Y M O D U L A R E L E M E N T B U I LSE
D I NDESIGN
GS
MANUAL
UNLIMITED
VARIATION
UNLIMITED
VARIATION OF
OF ELEMENTS
ELEMENTS
Unlimitedvariationof
MINIMAL
REPETITION
modularelementswith
MINIMAL
REPETITION
COMPLEXITY
minimal repetition
COMPLEXITY
Typicalexamples:
• exclusivehousing
• specialprojects
TYPICAL
TYPICAL EXAMPLES:
EXAMPLES:
-EXCLUSIVE
-EXCLUSIVE HOUSING
HOUSING
-SPECIAL
-SPECIAL PROJECTS
PROJECTS
ARCH DESIGN GUIDELINE / SKETCH
18.1.2016
ThefollowingguidelinesaremeanttohelparchitectsapplytheStoraEnso
systemtotheparticularneedsofvarioustypesofmulti-storeyhousing.These
basicprinciplesmaybeappliedinanyorderaccordingtotheparticularneeds
oftheproject.However,distributionofmodularroomandtechnicalelements
shouldbeconsideredandappliedinearlystageofdesign.
Definetheurbanscale
Definethebuildingtypology
Footprint,UnitDistributionandVerticalCirculation
Thefootprintofthebuildingaswellasthedistributionoflivingunits,shapeand
positionoftheverticalaccesscoreformthebasicparametersofthebuilding
structure.Asymmetricallayoutwithacentralcorewilloptimizetheload-bearing
structuresandshearwalls,improvingtheeconomicsoftheproject.
MassingStrategyandBuildingVolume
Inthepreliminarydesignphases,theurbanscaleandmassoftheprojectare
defined.Thesizeofthevolumesmayvaryfromlargeurbanblockstosmaller
apartmenthouses.Dependingontheparticularsiteandsurroundings,the
architectcanconsiderandproposevaryingtypologiesforthewholeprojector
forspecificbuildings.
Variationsinbuildingfootprintandlocation
oftheverticalaccesscore
Variationsinunittypesandmoduledistribution
Casestudyexample:
Centralcorridorblockwithsixunitsperfloor
Casestudyexample:
8-storeycentralcorridorblock
12
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Structuralprinciplesandbearingelements
Modularelements(factorymade)
ModularElements,ShearWallsandLoad-bearingWalls
StoraEnso’sstructuralwallpanelsandfloorslabsformtheload-bearingstructureofeach
modularelement.Theelementsarebuiltincontrolledfactoryconditionsanddeliveredto
thesitewithallfinishingmaterialsandcomponentsinstalled.
Modularelementsformthebaseofload-bearingandshearingstructuralsystem.Corewalls
andwallsbetweenapartmentsareusuallythemostsuitableforuseasshearandloadbearingstructures.However,evenlongshearwallpanelsmaystillhaveopeningsordoors
dependingondetailedstructuralcalculations.
Load-bearingouterwallsandslabsofthemodulesaredesignedtoachieveoptimalspans
andusuallyeliminatetheneedforload-bearingelementsinsidethemodularunits.The
directionofthemodularelementsdefineswhichfaçadeswillhaveincreasedflexibilityfor
largerandmorefrequentopenings.
Non-load-bearingpartitionwallsinsidemodulesmaybepositionedfreelyaccordingtothe
architecturallayoutoftheunits.Otherelementssuchaswindows(framed,glazingsystems),
door(hinged,sliding),balconies(recessed,cantilevered)andfixedfurnitureelementsareall
possibleaccordingtothearchitecturalneedsanddesign.
Surfacesandfinishesforinteriorandexteriorstructuresofthemodulescanbedefined
individuallyforeachprojectinaccordancewitharchitecturaldesign,technicalneedsand
local requirements.
Seechapter4forfurtherinformation.
A
C
A’
A
C
A’
D
F
D’
D
F
D’
D’
E
D
D’
E
D
A’
B
A
A’
B
A
Shearwalls
Load-bearingwalls
Exactboundaryrulesformodularelementsarenotpossibleasrulesarebothfactoryand
countryspecific.Elementdimensionsarelimitedbythesizeoftheproductionlineand
transport,whereasweightislimitedbytheliftingcapacityinthefactoryandonthebuilding
site.
Seechapter4and5forfurtherinformation.
Room module
Technical module
Wetzonesandtechnicalshafts
Baths,Toilets,KitchensandTechnicalInstallations
Inoptimallayouts,technicalinstallationshaftsarelocatedaroundtheverticalcoreforeasy
maintenanceandmanagement.Wetzonesandtechnicalmodulesshouldalsobesituated
nexttoinstallationshafts.Prefabricatedsanitaryortechnicalunitsinsidemodulesareall
possible.Specificlocationsforbaths,toiletsandkitchensmayvaryinsidethesetechnical
modules.Longhorizontaldrainlinesandverticallinesorshaftsthroughelementsshouldbe
avoided.
Variableandadditionalelements(onsite)
Corridorsandstairways,Elevatorshafts,RoofsandBalconies
Thebuildingsystemconsistsoffactorymademodularelementsandadditionalelements
assembledonsite.Prefabricatedadditionalelementssuchascorridors(slabs,beams,
columns,stairways),androofareinstalledsimultaneouslywithmoduleerectionphase.For
example,awidevarietyofbalconiesispossibleaccordingtothearchitecturalneedsand
structuraldesign.
Seechapter4and5forfurtherinformation.
Seechapter4forfurtherinformation.
Fullyequippedfloorplan
VERTICAL
SHAFTS / INSTALLATIONS
Verticalshafts/installations
WET
AREA ZONE /module
POSSIBILITIES
Technical
BATHROOM
/ TOILET
Bathroom/toilet
KITCHEN
Kitchen
VERTICAL SHAFTS / INSTALLATIONS
13
WET AREA ZONE / POSSIBILITIES
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
BATHROOM / TOILET
KITCHEN
Modularsystemvariations
Apartmentlayout
Modular element variations
Apartmentsconsistofoneormultiplemodules,dependingonhousing
typology.Insingle-moduleapartmentssanitaryunitandtechnicalsystemsare
allinone,socalledtechnicalor“wet”module.Indoubleormulti-module
apartments“dry”roommodulesareaddedandconnectedtothetechnical
moduletoachievelargerunits.
• Modularelementscanbevariedwithinabuilding
• Notethatcantileveredelementsmayrequirecolumns,
dependingontheopeningsandthecantileverlength.
Single-moduleapartment
Sanitaryunit
Standard
modules
Cantilevered/
recessed modules
Cantilevered
balconies
Double-moduleapartment
Balconies
Room module
• Differentbalconytypesandotheradditionalelementsare
possibleaccordingtothearchitecturaldesign.
Technical
module
Multi-moduleapartment
Balcony
zone
Suspended
balconies
Recessed
balconies
Freestanding
balconytowers
Upperfloor/Roofstructures
• Upperfloorapartmentsandroofstructurecanbevaried
accordingtothearchitecturaldesign.
Flatroof
14
Pitchedroof
Shedroof
Rooftop
terrace
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Casestudyexample:
Centralstairwaywithsixunitsperfloor
B
D
D
C
C
Generalfloorplan(3.-8.)
15
A
B
A
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Room module
Technical module
Rendered elevations
Cross-sectiona-a
Cross-sectionb-b
16
Cross-sectionc-c
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Cross-sectiond-d
4 Building System
by Stora Enso
17
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
4.1 Structuralcomponentsofthe
modularsystem
ThecoreoftheStoraEnsomodularelementconsistsofmassive
woodpanels,whichoperatesimultaneouslyasthebearingstructureandthesolidenvelopeoftheapartment.Inmostcasesitisalso
possiblethatsomeofthemassivewoodpanelsfunctionasvisible
interiorsurfaces.
Thereareseveralfactorsthatdeterminethemaximumsizeofthe
modularelement.Thedimensionsofthemodularelementsare
limitedby:
• maximumproductionsizesofmassivewoodpanels
• eachcountry’ssizelimitsforroadtransportation
• spatiallimitationsofthemanufacturingenvironment
• maximumweightofthemodularelement.
Themodularelementmustbelightenoughtobehandledandlifted
bothinthefactoryandonthesite.Themaximumweightofthe
modularelementdependsonthecapacityoftheavailablelifting
equipment.Noticethatmodularelementswithsanitaryfacilitiesare
heavier in relation to the volume.
Massive wood slabs
Max.width:
note the production
dimensionsof
panels
Ma x.w
idth*
60–100 mm
Max.height:
note the
production
dimensions
ofpanels
Aprefabricatedsanitary
unitorin-situconstructed
sanitaryfacilities
Max.width:
note the production
dimensionsofpanels
Max.width:
note the
production
dimensions
ofpanels
Ma
x.le
ngt
h*
Massivewoodslabs
or rib slabs
100–180 mm
Open modular element requires
supportsduetoliftingandassembly
Ma x.w
idth*
Massive wood walls
18
0
–16
10 0
mm
Theapartmentusuallyconsistsofoneortwomodularelements.Thetechnical
module(ontheleft)includesthesanitaryfacilitiesandmostofthebuildingservices
equipmentoftheapartment.Toformbiggerapartmentswithmorebedroomsand
livingspace,theapartmentcanbeenlargedwitharoommodule(ontheright).
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
* Maximumdimensionsaccordingto
transportation,manufacturingandlifting
requirements. Also note the production
dimensionsofmassivewoodpanels.
4.2 Manufacturingprocessofthemodularelements
Slab elements
Wall elements
Massivewoodpanelsareorderedwith
readycut-outsandedgeformings.
Thepanelsareequippedwithinsulation,
sheetings,framestructuresetc.
Theslabandwallelementsareready
to be connected to each other.
Modular elements
Thewallandslabelementsare
connectedtoformamodularelement.
19
Buildingservicesequipment,interiorsurfaces
andfixturesareinstalledintothemodule.
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Readymodularelementiswrapped
and transported to the site.
4.3 Principlesofbuildingacoustics
Inordertocontrolunwantednoiseandvibrations,acoustic
designcoversawiderangeoffactorsfromthevibrationofthe
buildingframetoconnectiondetailsthataffectflankingtransmissionbetweenroomsandapartments.
Plumbing noise
4)
1),3)
4)
Apartment
2)
Corridor
Theexamplebuildingisdesignedtoaddressfourmainacoustic
challenges:airbornesound,impactsound,flankingtransmissionandplumbingnoise.Formoreinformationseeadditional
literatureandcontactlocalauthoritiestodeterminespecific
requirementsforyourproject.Acousticvaluesgiveninthis
manualarecalculatedonthebasisofstructuraltypesand
typicalmaterialvalues.
Mainplumbinglinesatthecorridor
• reduces noise to the apartment
Plumbingisisolatedfromthe
framewithinsulatedhangers
• reduces sound transmission
to the apartment
Acousticaldesignofstructures
accordingtolocalrequirements
Airborne sound
1)
Flanking
3)
Separatedlayerstructures
• floorstructuresseparatedfrom
theload-bearingframe
• separatedwallstructuresfor
differentapartments
• reducesflankingtransmission
to other apartments
Direct sound path
Impact noise insulation
Direct sound path
Theenergyofairbornesound
wavesisreducedbythelayered
structureoftheconstruction.
Sound flanking path
When direct contact to the
load-bearingframe
Vibrationpad
Sound insulation in connections
2)
• improves sound insulation
andreducesflanking
Sound flanking path
When indirect contact to
theload-bearingframe
Floatingsurfacestructure
• reduces impact sound
Insulation
• sound absorption
Separatedload-bearingstructures
• reducesflanking
20
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Allconnectionsbetweenseparate
apartments require vibration pads
• improves sound insulation and
reducesflankingtransmission
4.4 Principlesoffiredesign
Firesafetyoftheloadbearingstructures
Requirementsforfiresafetyvarydependingonlocation,buildingtype
anduse.Checkspecificrequirementsforyourprojecttoconfirm
compliancewithlocalandnationalregulations.Somebasicprinciples
forfiresafetyrequirementsarecommonacrossEurope:
• Occupantsshallbeabletoleavethebuildingsorberescued
• Thesafetyofrescueteamsshallbetakenintoaccount
• Load-bearingstructuresshallresistfireforthe
requiredminimumdurationoftime
• Thegenerationandspreadoffireandsmokeshallbelimited
• Thespreadoffireto neighbouringbuildingsshallbelimited
Followingtheseprinciples,buildingcomponentsmustmeetthe
followingrequirements:
• Reactiontofire
• Describesthecontributionofbuildingmaterialstofire
• VerificationwithclassificationaccordingtoEN13501-1
• Fire resistance
• Describestheresistanceofbuildingcomponentsincaseoffire
• VerificationwithclassificationaccordingtoEN13501-2
orcalculationaccordingtoEN1995-1-2
Principlesconcerninghowtoprovidefireresistancewithlayups
basedonmassivewood:
• Principle1:“Exposedmassivewood”
• noadditionalprotectionlayersonmassivewood;fullfire
resistanceprovidedbymassivewood
• Principle2:“Limitedencapsulation”
• massivewoodwithfire-protectivelayersonit;massivewood
isallowedtochar
• Principle3:“Completeencapsulation”
• massivewoodwithfire-protectivelayersonit;massivewood
isnotallowedtochar
• Seeliteratureandlocalauthoritiesformoreinformation
• www.clt.info
3)
1)
1)
Exampleoffiresafetydetailing
Note national rules
Solid wall protected
with surface layers
2)
Solid wall protected
with surface layers
3)
Surfacematerial
• A2-s1,d0
• ProtectioncoverK 230
Surfacematerial
• A2-s1,d0
• Protection
coverK 230
Fire resistance
REI60–120
Fire resistance REI60–90
• Protectivelayers
• Fireresistanceofthe
residualcross-section
1)
Solid wall
• Protectivelayers
• Fireresistanceofthe
residualcross-section
2)
Solid wall
Surfacematerial
Surfacematerial
• D-s2
Surfacematerial
• D-s2
Fire resistance
REI60–120
• Fireresistanceofthe
residualcross-section
Fire resistance REI60–90
• Fireresistanceofthe
residualcross-section
Extinguishingandrescue
4)
Sprinkler
4)
Smoke detector
5)
2)
6)
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Fire resistance
REI60–90
• Fireresistanceof
the residual
cross-section
4)
21
Floor structure
Sprinklerin
Smokedetectorin
intermediatefloor
ceiling
• A2-s1,d0
• ProtectioncoverK 230
• residualcross-section
Examplesoffiresafetydetailing
Checkcompliancewithnationalregulations
Fire resistance of load-bearing walls
Referencewallscalculatedinthismanual
• 4 or 7 timber stories above the concrete structures
(loadfrom4or7storiesandroof)
• Spanoffloor4.4m
Note:Thesearesamplecalculationsandmustbeconfirmedinacompletefiresafetydesign.
Eave
(incaseofpitchedroof)
5)
7 timber
stories
4 timber
stories
1. Definethefiredesignloads(accordingEN1990,EN1991,EN1995).
Firesealing
4 stories
Alljointsneedtobesealed
Wallmark
Totalfiredesignload(kN/m)
7 stories
A
B
C
D
46.7
43.7
78.5
73.2
Fire protection board
2. Definethefireresistanceofprotectivelayers.
Horizontalfirebarrier
inventilatingslot
• Firebarrierpreventsfire
fromverticalfirespread
inandonfaçades
Concrete
3. Definecharringdepth:Requireddurationoffireresistance
-tch-tf(protectivelayers).
Residualcross-section
60/90min
Snowload
Live load
6)
Dead load
Horizontalfirebarrier
inventilatingslot
• Firebarrierpreventsfire
fromverticalfirespread
inandonfaçades
Protectivelayer
Charredlayer
4. Load-bearingcapacityoftheresidualcross-sectionwithloads
definedin(1)shallbecalculated.
22
4400 mm
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
A
B
C
D
4400 mm
4.5 Principlesofcontrollingdeformationsandcracking
1. Deformations
Deformationsderivefromthematerialpropertiesof
timberandpropertiesofthestructuralsystem.Dimensionalchangesarecausedbymoisturedeformation,
creepingandcompression.
LVL
• Paralleltothegrain
10,000-13,800MPa
• Perpendiculartothegrain
130-2400MPa
Servicelimitstateloadfromthetwoabove
modularelementsandtheroof
Vibration pad
F=30kN/m
E~0.5–10MPa
Modulusofelasticity
Creep and fatigue
F=30kN/m
Swelling and shrinkage of wood
CLT
• Inthepanellayer:0.02%changeinlengthfor
each1%changeintimbermoisturecontent
• Perpendiculartothepanellayer:
0.24%changeinlengthforeach1%
changeintimbermoisturecontent
Moisture content
• ManufacturemoistureofCLTis10–14%
• ManufacturemoistureofLVLis8–10%
• Airhumiditychangesbetween~RH20–60%
• Timbermoisturecontentchangesbetween7–13%
12 mm
10–15%
Creepoftimberandvibrationpad
increasessettling.
u = 1.6 mm
Elasticdeformation
withcreep
Structural system challenges
Thevibrationpadlocatesbetweenthe
wallpanelsandasignificantpartof
settlingoccursinthislayer.Ifthe
ceilingpanelalsolocatesbetween
thewallpanels,thedeformation
isevenbigger.
CLT wall panel
5%changein
moisture content
Modulus of elasticity
E=12,500MPa
Modulusofelasticity
paralleltothegrain
F=30kN/m
CLT
• Paralleltothegrain12,500MPa
• Perpendicular to the
grain370MPa
5×0.02%
2950 mm
CLT ceiling panel
(ifsituatedbetweenthewallpanels)
F=30kN/m
5%changtein
moisture content
E = 370 MPa
Modulusofelasticity
perpendicular
tothegrain
u = 3.0 mm
u = 0.2 mm
Elasticdeformation
withcreep
F=30kN/m
5×0.024%
u = 1.0 mm
23
2950 mm
u = 0.2 mm
Elasticdeformation
withcreep
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Totalsettling4.8mmforonestorey
2. Connections
Cracking
Deformationshavetobeconsideredwhendesigningtheconnections.Deformations
causeforexampleslottedholestosteelparts.Verticaldeformationisthelargestproblemforupliftconnections.Whensettlingoccurs,thetensionrodloosens.Ithastobe
retightenedortherehastobeasystemwhichreducestheeffectsofthedeformations.
Woodcrackswhenitexceedsthelimitofthe
tensionstressperpendiculartothegrain.
Normalcracksareincludedindesignprinciples.
Slotted holes in the steel part
Tensionrodcanbetightened
whensettlingoccurs
Mainreasonsforpropagationofcracks
• exceedingtensionstressesdueto
uncontrolleddryingforexampleon-site
• moisturedeformationsofwoodfor
examplefromsummertowinter
3. HVAC
Settlinghastobeconsideredinverticalpiping.
Rapiddryingmaycausevisual
cracksonCLTsurfaces
Pipingconnectionwhichallowssettling
24
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
4.6 PrinciplesofHVACdesign
A
ThegoaloftheHVACdesignistoprovidethermalcomfort
andoptimalindoorairquality.Thissectiondescribesthemain
plumbingroutesforacentralizedventilationsystem.
Themainroutesofventilationductsgothroughsuspendedceilingsinthehorizontaldirectionandthroughplumbingcavitiesinthe
vertical direction. These cavities are located in the corridors in ordertoreduceplumbingnoise.Thegoalistoachievesimple,short
routeswithoutneedfordifficultholesthroughbuildingstructures.
Centralizedventilation
A
Fresh air
Exhaustair
Sewage
Options for pipe locations:
A) Pipesinsuspendedceiling,fire
compartmentborderinceiling
B) Pipesbetweenmodularelements,
firecompartmentborderinceiling
Fireproofsealing
Note:penetrationthroughbeamsrequirescarefuldesign
A–A
25
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
C) Pipesbetweenmodularelements,
firecompartmentborderinfloor
Fireproofsealing
4.7 Bracingsystemsofmodular
buildings
• Based on modular elements
• Localloadings,conditionsandregulationsmustbeconsidered
Guidelinesformultistorybuildings
• Consultlocalloadingconditionsandbuildingregulations
• Considerthelayoutanddesignofshearwalls:
• Symmetricalfloorlayoutsreducetorsionalvibrations
• Sufficientnumbersofwallsinsuresoverallstiffness
• Openingsinshearwallsmustbecarefullyplanned(size,
location,number)
Calculationsmustconsider
• Designloads
• accordingtoactualEN-standard
• particularlyaccidents(fireandprogressivecollapse)and
seismic
• Ultimate limit state
• particularlylossofequilibrium
• fractureconsiderations
• Service limits
• particularlydeformationsandvibrationsofthewhole
structure
• Structural members and connections
• load-bearingcapacityandstiffness
Moduleceilingsfastenedtoeach
other and anchored to the core
Slipcastingor
anchored concrete
elements
Bracing with shear walls
Sheartransfer
A–A
A
Wind load and load
duetogeometric
imperfections
Horizontalconnection,
tension and compression
Sheardiaphragm
Verticalconnection
sheartransfer
Horizontalconnection,
sheartransfer
Shearwall
Wind load and load
duetogeometric
imperfections
Shearwall
Shear connection
to concrete
Upliftconnection
Upliftconnectiontoconcrete
26
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
A
Pinallows
settlement
Wind load
Bracing with concrete core
4.8 Principlesofseismicsafety
Conditionsvary,butallbuildingsinseismicareamustbedesignedtoresist
seismicforcesasrequiredfortheirlocationandnationalregulations.The
examplebuildingherecanbebuilttoresistseismicforcesinaccordancewith
Eurocode 8.
Inearthquakeproneareaswoodhasseveraladvantages:
• Low-density(reduceddeadloadsforstructures)
• Highstrengthtoweightratio
• Dampingisbetterthaninconcretebuildingsduetothematerial
propertiesandjointsusedinwoodconstruction.
• Moderndesigncodes(suchasEurocode8)offercleardesignprinciples.
Notes for details
a) Connectionsmustbedesignedforseismicforces
b) Nobrittlejoints(connectorsshouldhaveenoughslenderness)
Principlesofseismicbehaviorofmodularelements
• Modulesremainasmodules–nobrittlefractureininternal
connections
• Sufficientyieldingcapacityinconnectionsbetweenmodules
• Forcesaredirectedtostiffeningstructureswith
enoughcapacitytoresistseismicforces
• Forcesaredirectedtofoundations–sufficientanchorage
Plasticdeformation
What should be considered in timber
houseseismicdesign?
Seismic Design
• Conceptualdesign
• Seismic action
• Details
Horizontalconnection,
tension and compression
Horizontalconnection,
sheartransfer
StoraEnsoCLTmodularsystemcanbedesignedtobeusedinseismicareas.
Thissystemincludessolutionsforallthreestepsinseismicdesign.
Sheardiaphragm
Plasticdeformation
Verticalconnection,
sheartransfer
Seismicactionanddesign
Shearwall
Seismic actions depend on
• Constructionsite->seismichazardmaps,NationalAnnexEC8
• Soilquality
• Buildingtypeandclass(residential,classII)*
• Structuralsystem**
Shear connection
to concrete
Upliftconnection
Upliftconnection
to concrete
* TheductilityclassforamultistoreytimberbuildingwouldbeDCMandDCH.
(CheckEN1998-1Table8.1)
Intheseclassesbehaviourfactorqwouldbeabout2–3.
**NotethatStoraEnsoCLTmodularsystemhasalightdeadloadand
connectionssubjecttoplasticdeformations.
Plasticdeformation
Highstiffness
(notbrittle)
27
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
4.9 Erection procedure sequence
Theerectionproceduresequencehasmanyeffectson
structural,architectural,HVACandelectricalwiringdesign.It
hastobeconsideredinthefloorplanlayout,pipeandcable
routingsaswellasinthedetails.
Theroommoduleisplacednext
to the technical module.
The staircase
floorslabis
placedbetween
the modules
(seeVD09)
The technical
module is placed
ontopofthe
modular element
ofpreviousstorey
Thelayoutbelowillustratestheerectionproceduresequence
ofthecasestudyhouse.Theerectionadvancesoneapartmentatatime,startingfromthetechnicalmodule.The
technicalmodulesaresituatednexttothecorridortoenable
easyconnectionsthroughthecorridorshafts.Whenmostof
thebuildingservicesequipmentareincludedinthetechnicalmodules,thesystemscaneasilybeconnectedwithshort
pipe and cable lines. When the technical installations are
centralizedinthecorridorarea,theirmaintenanceisalso
easierandcomplicatedverticalshaftsandconnectionscan
be avoided inside the apartments.
The erection procedure sequence has to be considered
especiallywhendesigningconnections.Connectionhardwareinthegapbetweentwoneighbouringmodularunitscan
befastenedonlytotheunitwhichisinstalledfirst,because
theinstallationoftheneighbouringmodularunitblocksthe
accesstothegap.Hencetheerectionproceduresequence
affectswheretheconnectionhardwarecanbeplacedand
whichwallscanfunctionasshearwalls.
The element is
fastenedwith
vertical connection
plates(seeVD05)
The modular elements are connected
withhorizontalplatesbetween
theceilingpanels(seeVD07)
Italsohastobeensuredthatoverhangingcomponentsare
notinthewaywhenpositioningthemodularunits.Ithastobe
considered,whichcomponentsareplacedontopofandin
themiddleoftheothers.Forexampleinthiscasethetechnicalmodulemustbeinstalledfirst,becausethefloorslabof
theroommoduleislaiduponthesupportonthesideofthe
technical module.
28
13
11
9
12
10
8
6
4
7
5
3
1
2
Erection procedure
sequenceofmodular
elements(1–13).
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Thejointsare
sealed(seeVD15)
Thedrains,pipesandcablesare
connectedthroughthestaircase
shaftandtheshaftisclosedwith
lightweightwalls(seeVD08)
Theseamisfinished
afterfasteningthe
modularelementwith
vertical connection
plates(seeVD01)
Thesystemsare
connected inside
the apartment
5 Structural
design
29
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
5.1. Structuraltypes
OrientationChart
YP1
YP2
US1
VSK1
VSK2
VP5
VP41
E-VP42
VSK4
VSK3
E-VSK12
VSK5
VP11
E-VP12
30
VP2
VP3
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VS1
VS2
ListofDrawings
Structural
type
No.
US
1
VSK
Description
LOAD-BEARINGEXTERNALWALL
Openboarding,visibleCLT
B
Tilecladding,insulation,gypsumboard
B
Openboarding,suspendedceiling
C
Render,glasswool,visualCLT
D
Render,woodfibre,visualCLT
A
CLTstairs,load-bearingCLT/gluelam
E
Woodcladding,insulation,visibleCLT
B
CLTstairs,CLTslab
LOAD-BEARINGPARTITIONWALL
C
CLTsteps,gluelambeams,insulation
Doublegypsumboards
D
Plywoodsteps,nailplateconnectedbeams,insulation
VisibleCLT
E
Concretestairs
11
2
LOAD-BEARINGPARTITIONWALL,BATHROOM
VSK
VP
VP
VP
31
VP
YP
5
STAIRS
1
ROOFSTRUCTURE
A
Gypsumboards,waterproofing
A
Timbertrussroof
B
Sanitaryboxelements
B
Flatroof
3
LOAD-BEARINGPARTITIONWALL,ELEVATORSHAFT
A
VSK
CLTSLABINTERMEDIATEFLOOR,BALCONY
A
B
VSK
41
Woodcladding,insulation,gypsumboard
A
VSK
VP
A
2
CLT
C
Concrete
LOAD-BEARINGPARTITIONWALL,CORRIDOR
PITCHEDROOF;TIMBERTRUSS,CORRIDOR
A
CLT,gypsumboards
B
4
YP
AP
1
BASEFLOOR,CANTILEVERAPARTMENT
A
VS
Timbertrussroof,LVLbottomchord
1
Floatingfloorslab,CLT
NON-LOAD-BEARINGPARTITIONWALL,INSIDEAPARTMENT
A
Lightweightinnerpartitiononeside,doublegypsumboards
A
Timberorsteelframe
B
Lightweightinnerpartitiononeside,gypsumboards
B
CLT
C
Lightweightinnerpartitiononeside,gypsumboards
D
Lightweightinnerpartitiononeside,serviceshaft
5
VS
2
LOAD-BEARINGPARTITIONWALL,INSIDEAPARTMENT
A
DoubleCLT,gypsumboards
B
CLT,gypsumboards
C
Doublecolumn,gypsumboards
D
Column,gypsumboards
11
CLTSLABINTERMEDIATEFLOOR,APARTMENT
A
Floatingfloorslab,gypsumboards
B
Floatingfloorslab,visibleCLT
2
E-VP
NON-LOAD-BEARINGPARTITIONWALL,INSIDEAPARTMENT,
BATHROOM
A
Timberorsteelframe,bathroom
B
CLT,bathroom
A
Floatingfloorslab,ribslab,CLT
B
Floatingfloorslab,timberjoists,CLT,suspendedceiling
12
E-VP
42
E-VSK
12
INTERMEDIATEFLOOR,APARTMENT
CLTSLABINTERMEDIATEFLOOR,RECESSEDBALCONY,
APARTMENT
A
LOAD-BEARINGPARTITIONWALL,RECESSEDBALCONY,
APARTMENT
CLTSLABINTERMEDIATEFLOOR,BATHROOM
A
Concreteslab,CLT,suspendedceiling
B
Sanitaryboxelement,CLT,sanitaryboxelement
C
Sanitaryboxelement,CLT
3
CLTSLABINTERMEDIATEFLOOR,CORRIDOR
A
Chipboard,CLT,suspendedceiling
B
CLT,suspendedceiling
C
CLT
D
Floatingfloorslab,CLT,suspendedceiling
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Floatingfloorslab,visualCLT
A
Woodcladding,doubleCLT,gypsumboards
US 1
Variables
Load-bearingexternalwall
A. Wood cladding, insulation, gypsum board
Façade
requirements
Structure
• Façadematerial
• Ventilation32mm
• Insulation*
• CLT(120mm)**
• Gypsumboard*18mm
Solidwood
requirements
• Visual
• Weather
• Fire
B. Tile cladding, insulation, gypsum board
• Load-bearing
• Fire resistance
Structure
• Façadematerial
• Ventilation50mm
• Insulation*
• CLT(120mm)**
• Gypsumboard*18mm
Surfacelayer
requirements
Insulation
requirement
• Acoustics
• Fire
C. Render glass, wool, visible CLT
• U value
D. Render, wood fibre, visible CLT
Structure
• Render 10–30 mm
• Timberframe+woodfibre
insulation 150 mm
• CLT(120mm)**
Structure
• Render 10–30 mm
• Mineralwoolinsulation*
• CLT(120mm)**
E. Wood cladding, insulation, visible CLT
Structure
• Façadematerial*
• Ventilation32mm
• Insulation 180 mm
• CLT(120mm)**
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
MinimumCLTcross-section
(CLT120)
R60
U
Surfacereactiontofire
[W/m2K]
R90
4floors
7floors
4floors
7floors
Rw(C;Ctr)
[dB]
Inner
Outer
A.0
180 mm
Gypsumboard18mm
373 mm
120C3s
120C3s
140C5s
140C5s
0,153
A2-s1,d0
D-s2,d0
A.1
120 mm
Gypsumboard18mm
313 mm
120C3s
120C3s
140C5s
140C5s
0,211
A2-s1,d0
D-s2,d0
44(0;−2)
44(0;−2)
A.2
180 mm
Wood based panel
369 mm
—
—
—
—
0,152
—
D-s2,d0
44(0;−3)
B.0
180 mm
Gypsumboard18mm
453 mm
120C3s
120C3s
140C5s
140C5s
0,153
A2-s1,d0
—
54(−1;−3)
B.1
120 mm
Gypsumboard18mm
393 mm
120C3s
120C3s
140C5s
140C5s
0,211
A2-s1,d0
—
54(−1;−3)
B.2
180 mm
Wood based panel
449 mm
—
—
—
—
0,152
—
—
54(−1;−3)
B.3
180 mm
VisibleCLT
393 mm
140C5s
140C5s
140C5s
140C5s
0,154
D-s2,d0
—
54(−2;−4)
C.0
150 mm
VisibleCLT
298 mm
140C5s
140C5s
140C5s
140C5s
0,196
D-s2,d0
—
44(0;−3)
C.1
180 mm
VisibleCLT
328 mm
140C5s
140C5s
140C5s
140C5s
0,169
D-s2,d0
—
44(0;−3)
D.0
150 mm
VisibleCLT
300 mm
140C5s
140C5s
140C5s
140C5s
0,232
D-s2,d0
—
39(0;−3)
E.0
180 mm
VisibleCLT
355 mm
140C5s
140C5s
140C5s
140C5s
0,154
D-s2,d0
D-s2,d0
42(0;−3)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
32
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VSK 1
Variables
Load-bearingpartitionwall
A. Double gypsum boards
B. Visible CLT
Structure
• 2×gypsumboards13mm
• CLT(120mm)**
• Airgap50mm+insulation30mm
• CLT(120mm)**
• 2×gypsumboard13mm
Solidwood
requirements
• Load-bearing
• Fire resistance
Structure
• CLT(120mm)**
• Airgap50mm+insulation30mm
• CLT(120mm)**
Surfacelayer
requirements
Insulation
requirement
• Acoustics
• Fire
• Acoustics
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Materials
Thickness
MinimumCLTcross-section
(CLT120)
R60
Surfacereactiontofire
Rw(C;Ctr)
[dB]
R90
4floors
7floors
4floors
7floors
A.0
30 mm
Gypsumboards2×13mm
342 mm
140C5s
140C5s
140C5s
140C5s
A2-s1,d0
56(−1;−5)
A.1
30 mm
Wood based panel
344 mm
—
—
—
—
D-s2,d0
—
B.0
30 mm
CLT
290 mm
140C5s
140C5s
140C5s
140C5s
D-s2,d0
—
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
33
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VSK 2
Variables
Load-bearingpartitionwall,bathroom
B. Sanitary box elements
A . Gypsum boards, waterproofing
• Load-bearing
• Fire resistance
Surfacelayer
requirements
Insulation
requirements
Structure
• Sanitaryboxelement
• Airgap
• Gypsumboard15mm
• CLT(100mm)**
• Airgap50mm+insulation30mm
• CLT(100mm)**
• Gypsumboard15mm
• Airgap
• Sanitaryboxelement
Structure
• Tiles
• Tile adhesive
• Certifiedwaterproofingsystem
• Wet area board 13 mm
• Battens32mm+airgap
• Gypsumboard15mm
• CLT(120mm)**
• Airgap50mm+insulation30mm
• CLT(120mm)**
• Gypsumboard15mm
• Battens32mm+airgap
• Wet area board 13 mm
• Certifiedwaterproofingsystem
• Tile adhesive
• Tiles
Solidwood
requirements
• Acoustics
• Fire
• Acoustics
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Materials
Thickness
MinimumCLTcross-section
(CLT120)
R60
Surfacereactiontofire
Rw(C;Ctr)
[dB]
R90
4floors
7floors
4floors
7floors
A.0
30 mm
Tiles
434
120C3s
120C3s
140C5s
140C5s
—
60(−3;−9)
B.0
30 mm
Sanitaryboxelement
444
120C3s
120C3s
140C5s
140C5s
—
54(−2;−5)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
34
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VSK 3
Variables
Load-bearingpartitionwall,elevatorshaft
A. CLT, gypsum boards
B. CLT
Structure
• Gypsumboard*15mm
• CLT(120mm)**
• Gypsumboard*15mm
Solidwood
requirements
• Load-bearing
• Fire
Structure
• CLT**140mm
Surfacelayer
requirements
• Fire
C. Concrete
Structure
• Reinforcedconcrete**200mm
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
(CLT120/140)
Charring
R60
Rw(C;Ctr)
R90
[dB]
A.0
—
Gypsumboard15mm
150 mm
R30
A2-s1,d0
—
37(−1;−4)
A.1
—
Wood based panel
148 mm
—
—
—
36(0;−3)
B.0
—
CLT
140 mm
—
D-s2,d0
—
36(−1;4)
C.0
—
Concrete
200 mm
—
—
—
59(−2;−5)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
35
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VSK 4
Variables
Load-bearingpartitionwall,corridor
A. Lightweight inner partition one side,
double gypsum boards
D.CLT,
SERVICEVOID
A.CLT
B. Lightweight inner partition one side,
gypsum boards
Structure
• Gypsumboard*15mm
• CLT(120mm)**
• Airgap20mm+punctualfastening
• Timberframewall98mm+insulation100mm
• 2×gypsumboard13mm
Solidwood
requirements
• Load-bearing
• Fire resistance
Surfacelayer
requirements
C. Lightweight inner partition one side,
plasterboards
• Fire
• Acoustics
Structure
• Gypsumboard*18mm
• CLT(120mm)**
• Battens 48 mm + insulation 50 mm
• Gypsumboard18mm
D. Lightweight inner partition one side,
service saft
Structure
• Plasterboard 13 mm
• CLT(120mm)**
• Battens 48 mm + insulation 50 mm
• Plasterboard 13 mm
Structure
• Gypsumboard*18mm
• CLT(120mm)**
• Gypsumboard18mm
• Airgap
• Steelframe+insulation50mm
• 2×gypsumboard15mm
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Materials
Thickness
MinimumCLTcross-section
(CLT120)
R60
Surfacereactiontofire
Rw(C;Ctr)
[dB]
R90
4floors
7floors
4floors
7floors
A.0
100 mm
Gypsumboard15mm/13mm
279 mm
140C5s
140C5s
140C5s
140C5s
A2-s1,d0
A.1
100 mm
Woodbasedpanel/gypsumboard13mm
278 mm
—
—
—
—
D-s2,d0/A2-s1,d0
—
A.2
100 mm
VisibleCLT/gypsumboard13mm
264 mm
140C5s
140C5s
140C5s
140C5s
D-s2,d0/A2-s1,d0
—
61(−1;−5)
B.0
50 mm
Gypsumboard18mm
204 mm
120C3s
120C3s
140C5s
140C5s
A2-s1,d0
—
B.1
50 mm
Woodbasedpanel/gypsumboard18mm
200 mm
—
—
—
—
D-s2,d0/A2-s1,d0
—
B.2
50mm
VisibleCLT/gypsumboard18mm
186 mm
140C5s
140C5s
140C5s
140C5s
D-s2,d0/A2-s1,d0
—
C.0
50 mm
Plasterboards 13 mm
194 mm
140C5s
140C5s
140C5s
140C5s
A2-s1,d0
—
D.0
50 mm
Gypsumboard18mm/2×15mm
385 mm
120C3s
120C3s
140C5s
140C5s
A2-s1,d0
—
D.1
50 mm
Woodbasedpanel/gypsumboards2×15mm
381 mm
—
—
—
—
D-s2,d0/A2-s1,d0
—
D.2
50 mm
VisibleCLT/gypsumboards2×15mm
377 mm
140C5s
140C5s
140C5s
140C5s
D-s2,d0/A2-s1,d0
—
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
36
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VSK5
Variables
Load-bearingpartitionwall,
inside apartment
A. Double CLT, gypsum boards
C.BEAM
AND POST
A.CLT
B. CLT, gypsum boards
Structure
• Gypsumboard*15mm
• CLT(120mm)**
• Airgap35mm+insulation
• CLT(120mm)**
• Gypsumboard*15mm
Solidwood
requirements
Structure
• Gypsumboard*15mm
• CLT(140mm)**
• Gypsumboard*15mm
• Load-bearing
• Fire resistance
Surfacelayer
requirements
C. Double column, gypsum boards
• Fire
D. Column, gypsum boards
Structure
• Gypsumboard15mm
• Gluelamcolumn(115mm)**
• Airgap35mm+insulation
• Gluelamcolumn(115mm)**
• Gypsumboard15mm
Structure
• Gypsumboard15mm
• Gluelamcolumn(190mm)**
• Gypsumboard15mm
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Materials
Thickness
MinimumCLTcross-section
R60
A.0
B.0
20 mm
Gypsumboard15mm
305 mm
Surfacereactiontofire
Rw(C;Ctr)
[dB]
R90
4floors
7floors
4floors
7floors
120C3s
120C3s
140C5s
140C5s
A2-s1,d0
54(−2;−6)
20 mm
Wood based panel
303 mm
—
—
—
—
D-s2,d0
53(−1;−5)
20 mm
VisibleCLT
275 mm
140C5s
140C5s
140C5s
140C5s
D-s2,d0
52(−1;−6)
—
Gypsumboard15mm
170 mm
160C5s
160C5s
—
—
A2-s1,d0
38(−1;−4)
Wood based panel
168 mm
—
—
—
—
D-s2,d0
38(−1;−5)
VisibleCLT
140 mm
—
—
—
—
D-s2,d0
36(−1;4)
C.0
20 mm
Gypsumboard15mm
295 mm
—
—
—
—
A2-s1,d0
51(−2;−7)
D.0
—
Gypsumboard15mm
220 mm
—
—
—
—
A2-s1,d0
40(−3;−10)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
37
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VP 11
Variables
CLTslabintermediatefloor,apartment
A . Floating floor slab, gypsum board
Surfacelayer
requirements
Solidwood
requirements
• Acoustics
• Load-bearing
• Fire
B. Floating floor slab, visible CLT
Structure
• Surfacelayer
• Floatingfloorslab40mm
• Impact sound isolation 30 mm
• CLT(140mm)**
• Airgap135mm+insulation50mm
• CLT(80mm)**
• Gypsumboard18mm
Structure
• Surfacelayer
• Floatingfloorslab40mm
• Impact sound isolation 30 mm
• CLT(140mm)**
• Airgap135mm+insulation50mm
• CLT(80mm)**
Surfacelayer
requirements
• Acoustics
• Fire
• Visual
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Floor
Ceiling
Charring
R60
R90
Rw(C;Ctr)
Ln,w(Ci)
[dB]
[dB]
A.0
50 mm
Floorslab40mm/gypsumboard18mm
458 mm
REI60
—
A2-s1,d0
16 mm
36 mm
62(-1;-5)
74(-10)
B.0
50 mm
Floorslab40mm/CLT
440 mm
—
—
D-s2,d0
25 mm
45 mm
61(-1;-5)
75(-10)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
38
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VP 2
Variables
CLTslabintermediatefloor,bathroom
A. Concrete slab, CLT, suspended ceiling
Surfacelayer
requirements
Solidwood
requirements
• Acoustics
• Load-bearing
• Fire
Suspendedceiling
requirements
• Visual
B. Sanitary box element, CLT, sanitary box element
Structure
• Tiles
• Tile adhesive
• Certifiedwaterproofingsystem
• Concreteslab70mm
• CLT(140mm)**
• Airgap135mm
• CLT(80mm)**
• Dropceilingandpanelling
Structure
• Tiles
• Tile adhesive
• Certifiedwaterproofingsystem
• Concreteslab100mm
• Airgap245mm
• CLT(80mm)**
• Dropceilingandpanelling
C. Sanitary box element, CLT
Surfacelayer
requirements
Structure
• Tiles
• Tile adhesive
• Certifiedwaterproofingsystem
• Concreteslab100mm
• Airgap245mm
• CLT(80mm)**
• Acoustics
• Fire
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Floor
Charring
Ceiling
R60
R90
Rw(C;Ctr)
Ln,w(Ci)
[dB]
[dB]
A.0
100 mm
Tiles/CLT
637 mm
REI60
—
D-s2,d0
25 mm
45 mm
66(−2;−6)
71(−10)
B.0
30 mm
Tiles/CLT
637 mm
REI60
—
D-s2,d0
—
—
71(−2;−6)
67(−10)
C.0
30 mm
Tiles/CLT
437 mm
REI60
—
D-s2,d0
—
—
53(−2;−7)
75(−9)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
39
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VP 3
Variables
CLTslabintermediatefloor,corridor
A. Chipboard, CLT, suspended ceiling
Surfacelayer
requirements
Solidwood
requirements
• Acoustics
• Load-bearing
• Fire
Suspendedceiling
requirements
Surfacelayer
requirements
• Visual
• Acoustics
• Fire
B. CLT, suspended ceiling
Structure
• Surfacelayer
• Chipboard25mm
• CLT(120mm)**
• Gypsumboard18mm
• Supportinggluelambeams
• Gypsumboard18mm
• Suspendedceilingand
gypsumboard13mm
C. CLT
Structure
• Surfacelayer
• CLT(120mm)**
• Gypsumboard15mm
• Suspendedceilingand
gypsumboard18mm
D. Floating floor slab, CLT, suspended ceiling
Structure
• Surfacelayer
• Floatingfloorslab40mm
• Impact sound isolation 30 mm
• CLT(120mm)**
• Gypsumboard15mm
• Suspendedceiling
• Resilient channel 25 mm
• Gypsumboard2×15mm
Structure
• Surfacelayer
• CLT(200mm)**
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Floor
Ceiling
Charring
R60
R90
Rw(C;Ctr)
Ln,w(Ci)
[dB]
[dB]
A.0
—
Chipboard/gypsumboard13mm
544 mm
REI60
—
A2-s1,d0
0 mm
30 mm
59(−2;−8)
55(1)
B.0
—
CLT/gypsumboard18mm
403 mm
—
—
A2-s1,d0
8 mm
39 mm
43(0;−3)
72(−8)
C.0
—
CLT
215 mm
—
—
D-s2,d0
46 mm
65 mm
41(−2;−6)
84(−8)
D.0
30 mm
Floorslab40mm/gypsumboard15mm
485 mm
REI60
—
A2-s1,d0
0 mm
24 mm
61(−2;−8)
70(−6)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
40
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VP 41
Variables
CLTslabintermediatefloor,balcony
A. Open boarding, visible CLT
Surfacelayer
requirements
Solidwood
requirements
• Visual
• Load-bearing
• Fire
B. Open boarding, suspended ceiling
Structure
• Openboarding28mm
• Firringpiece
• Waterproofing
• CLT(100mm)**
• Fire retardant treatment
Structure
• Openboarding28mm
• Firringpiece
• Waterproofing
• CLT(100mm)**
• Fire retardant treatment
• Suspendedceiling
• Boarding28mm
Surfacelayer
requirements
• Fire
• Visual
CharringvaluesusedforCLTcross-sectioncalculationarecalculated
accordingtozerostrengthlayertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Charring
Floor
Ceiling
R60
R90
A.0
—
Boarding/fireretardandtreatment
170 mm
REI30
—
B-s2.d0
30 mm
45 mm
B.0
—
Boarding/fireretardandtreatment
317 mm
REI30
—
B-s2.d0
30 mm
45 mm
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
41
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Rw(C;Ctr)
Ln,w(Ci)
[dB]
[dB]
*
**
variable
accordingtostructuralcalculations
VP 5
Variables
Stairs
B. CLT stairs, CLT slab
A. CLT stairs, load-bearing CLT / gluelam
A.CLTSTAIRS
Structure
• CLTsteps
• Load-bearingCLThandrailsor
gluelambeams
Structure
• CLTsteps
• CLTslab**
• CLT(handrail)
C. CLT steps, gluelam beams, insulation
D. Plywood steps, nail plate
connected beams, insulation
Structure
• CLTsteps
• SupportingbeamsforCLTsteps
andload-bearingCLThandrails**
• Insulation 100 mm
• 2×gypsumboard13mm
B.NAILPLATESTRUCTUREDSTAIRS
Surfacelayer
requirements
Structure
• Plywood21mm
• Nail plate
connected beams**
• Insulation 100 mm
• 2×gypsumboard13mm
• Visual
E. Concrete stairs
Surfacelayer
requirements
• Visual
• Fire
Beams
requirements
Structure
• Concretesteps
• Concretebeams**
• Load-bearing
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Floor
Ceiling
Rw(C;C tr)
Ln,w(Ci)
[dB]
[dB]
A.0
0 mm
CLT
—
—
—
D-s2,d0
—
—
B.0
0 mm
CLT
160 mm
—
—
D-s2,d0
44(−1;−5)
82(−7)
C.0
100 mm
CLT/gypsumboard2×13mm
226 mm
REI30
DFL-s1
A2-s1,d0
41(−1;−4)
73(−8)
D.0
100 mm
Plywood/gypsumboard2×13mm
198 mm
REI30
DFL-s1
A2-s1,d0
44(−4;−12)
75(−4)
E.0
0 mm
Concrete
110 mm
—
—
—
50(−1;−3)
50(−1;−3)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
42
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
***
variable
accordingtostructuralcalculations
airgapduetoacoustics
YP 1
Variables
Roofstructure
A. TIMBER TRUSS ROOF
A. Timber truss roof
Rooftruss
requirements
B. Flat roof
Structure
• Roofmaterial
• Roofbatten+ventilationbatten
• Roofunderlayment
• Rooftruss+ventilation
• Insulation 450 mm
• CLT80mm
• Gypsumboard18mm
• Load-bearing
• Fire resistance
Solidwood
requirements
Structure
• Bitumen sheet
• Plywoodboard
• Rockwoolwithventilationchannel
• Polyurethaneinsulationboard
• Moisture barrier
• CLT(180mm)**
• Battens
• Gypsumboard13mm
• Load-bearing
• Fire resistance
Insulation
requirements
Surfacelayer
requirements
• U value
• Fire
• Visual
• Acoustics
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
U
[W/m2K]
Surfacereactiontofire
Roof
Ceiling
Rw(C;Ctr)
[dB]
A.0
450 mm
Gypsumboard18mm
—
REI60
0.076
BROOF
A2-s1,d0
42(0;−2)
B.0
270 mm
Gypsumboard13mm
—
—
—
—
A2-s1,d0
60(−1;−5)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
43
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
VS 1
Variables
Non-load-bearingpartitionwall,
inside apartment
A. Timber or steel frame
B. CLT
Structure
• Gypsumboard*13mm
• Timber(orsteel)framewall
66 mm + insulation 50 mm
• Gypsumboard*13mm
Surfacelayer
requirements
• Fire
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Rw(C;Ctr)
[dB]
A.0
50 mm
Gypsumboard13mm/tiles
104 mm
EI30
A2-s1,d0/–
46(−1;−5)
A.1
50 mm
Woodbasedpanel/tiles
106 mm
—
D-s2,d2/–
46(−1;−5)
B.0
—
VisibleCLT/tiles
105 mm
EI 60
D-s2,d0/–
37(−1;−3)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
44
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
Structure
• CLT80mm
VS 2
Variables
Non-load-bearingpartitionwall,
insideapartment,bathroom
A. Timber or steel frame, bathroom
B. CLT, bathroom
Structure
• Gypsumboard*13mm
• Timber(orsteel)framewall66mm
+ insulation 50 mm
• Wet area board 13 mm
• Certifiedwaterproofingsystem
• Plaster
• Tiles
Surfacelayer
requirements
Structure
• CLT80mm
• Moisture resistant board 13 mm
• Certifiedwaterproofingsystem
• Tile adhesive
• Tiles
• Fire
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Rw(C;Ctr)[dB]
A.0
50 mm
Gypsumboard13mm
92 mm
EI 30
A2-s1,d0
40(−2;−8)
A.1
50 mm
Wooden panel
96 mm
—
D-s2,d0
40(−2;−8)
B.0
—
VisibleCLT
80 mm
EI 60
D-s2,d0
32(−1;−3)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
45
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
YP 2
Variables
Pitchedroof,timbertruss,
corridor
A. Timber truss roof, LVL bottom chord
Structure
• Roofmaterial
• Roofbatten+ventilationbatten
• Roofunderlayment
• Rooftruss**+ventilation~100mm
• Sheathingboard9mm
• Insulation450mm(rockwool)
• Vapourbarrier
• Battens 32 mm
• 2×gypsumboard15mm
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
U
[W/m2K]
A.0
450 mm
Gypsumboards2×15mm
—
REI60
0.076
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
46
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Surfacereactiontofire
Roof
Ceiling
—
A2-s1,d0
Rw(C;Ctr)
[dB]
58(−1;−5)
E-VP 12
Variables
Intermediatefloor,apartment
A . Floating floor slab, rib slab, CLT
Surfacelayer
requirements
Rib slab
requirements
• Acoustics
• Load-bearing
• Fire
Surfacelayer
requirements
• Acoustics
• Fire
• Visual
B. Floor slab, timber joists, CLT, suspended ceiling
Structure
• Floatingfloorslab40mm
• Impact sound isolation 30 mm
• LVLribslab+insulation50mm
• Plankorboard
• Airgap
• CLT(80mm)**
• Gypsumboard18mm
Solidwood
requirements
• Load-bearing
• Fire
Charringcalculatedaccordingtozerostrength
layertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
Surfacereactiontofire
Floor
Ceiling
Rw(C;Ctr)
Ln,w(Ci)
[dB]
[dB]
A.0
50 mm
Floorslab40mm/gypsumboard18mm
456 mm
REI60
—
A2-s1,d0
58(−1;−4)
78(−11)
B.0
50 mm
Floorslab40mm/gypsumboard15mm
457 mm
—
—
A2-s1,d0
62(−1;−4)
78(−9)
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
47
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
*
**
variable
accordingtostructuralcalculations
Structure
• Floor slab
• Chipboard
• Timberjoists+insulation100mm
• Airgap
• CLT(80mm)**
• Gypsumboard15mm
AP 1
Variables
Basefloor,cantileverapartment
A . Floating floor slab, CLT
Surfacelayer
requirements
Solidwood
requirements
• Acoustics
• Load-bearing
• Fire
Structure
• Floatingfloorslab40mm
• Impact sound isolation 30 mm
• CLT(140mm)**
• Insulation180mm(rockwool)
• Battens+airgap50mm
• Fiber cement board 8 mm
Surfacelayer
requirements
• Acoustics
• Fire
• Visual
Charringcalculatedaccordingtozerostrength
layertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
U
[W/m2K]
A.0
180 mm
Gypsumboards2×15mm
463 mm
REI60
0.13
Surfacereactiontofire
Rw(C;Ctr)
Outer
R60
R90
—
—
16 mm
36 mm
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
48
Charring
Inner
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
[dB]
—
E-VP 42
Variables
CLTslabintermediatefloor,
recessedbalcony,apartment
A . Floating floor slab, visual CLT
Surfacelayer
requirements
Solidwood
requirements
• Acoustics
• Load-bearing
• Fire
Structure
• Floatingfloorslab40mm
• Impact sound isolation 30 mm
• CLT(140mm)**
• Insulation 100 mm
• Airgap
• CLT(80mm)**
Surfacelayer
requirements
• Acoustics
• Fire
• Visual
Charringcalculatedaccordingtozerostrength
layertheorypresentedinEN1995-1-2.
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
Fire resistance
U
[W/m2K]
A.0
100 mm
Floorslab40mm/CLT
432 mm
REI60
Surfacereactiontofire
Floor
0.17
R60
R90
A2-s1,d0
25 mm
45 mm
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
49
Charring
Ceiling
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Rw(C;Ctr)
Ln,w(Ci)
[dB]
[dB]
61(−1:−5)
75(−10)
E-VSK 12
Variables
Load-bearingpartitionwall,
recessedbalcony,apartment
A. Wood cladding, double CLT, gypsum boards
Structure
• Cladding
• Airgap32mm
• Gypsumboard15mm
• CLT(120mm)**
• Airgap50mm+insulation30mm
• CLT(120mm)**
• Gypsumboard15mm
Solidwood
requirements
Façade
requirements
• Load-bearing
• Fire resistance
• Visual
• Weather
• Fire
Surfacelayer
requirements
Insulation
requirements
• Acoustics
• Fire
• Acoustics
• U value
Variablesoftheconstructionmaterials,listedfromtheoutside
totheinside.Yellowcolorindicateschangedvariable.
Type
Insulation
Surfacematerial
Thickness
MinimumCLTcross-section
(CLT120mm)
A.0
30 mm
Gypsumboard15mm
375 mm
R60
U
4floors
7floors
4floors
7floors
120C3s
120C3s
140C5s
140C5s
Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).
50
Surfacereactiontofire
[W/m2K]
R90
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
0,29
Rw(C;Ctr)
[dB]
Inner
Outer
A2-s1,d0
D-s2,d0
52(−4;−9)
5.2. Structural details
OrientationChart
VD13
VD12
VD01
VD02–VD07
VD09A/B
VD03B
VD14
VD10
VD08
VD15A/B
VD02B
VD02C
VD02D
FD06
FD01–FD03
FD04
FD05
HD02
VD11
48m²
HD01
51
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
ListofDrawings
Detail name No.
Description
VD
1
Intermediatefloortoload-bearingexternalwall,apartment
VD
2
VD
3
VD
4
VD
5
A
Intermediatefloortopartitionwall,apartment
B
Intermediatefloortopartitionwall,apartment,beamandpost
Extension
C
Intermediatefloortopartitionwall,apartment,beamfloor
Extension
D
Intermediatefloortopartitionwall,apartment,ribslabfloor
Extension
A
Intermediatefloortoload-bearingpartitionwall,bathroom
B
Intermediatefloortoload-bearingpartitionwall,sanitaryboxelement
A
Connectionforuplift,continuoustensionbar,doubleshearwalls
B
Connectionforuplift,continuoustensionbar,oneshearwall
A
Connectionforshear,wood/woodconnection
B
Connectionforshear,steelconnection
VD
6
Connectionbetweenintermediatefloors
VD
7
Connectionfortensionandcompressionbetweenintermediatefloors
VD
8
VD
9
Intermediatefloortopartitionwall,corridor
B
Intermediatefloortopartitionwall,corridor
10
VD
11
Stairstointermediatefloor,corridor
VD
12
Rooftoexternalwall
VD
13
Rooftoload-bearingpartitionwall
VD
14
VD
15
16
Balconyfloortoload-bearingexternalwall
Intermediatefloortonon-load-bearingpartitionwall,apartment
A
Twomodulesformingoneroom
Extension
B
Twomodulesformingoneroom
Extension
A
Intermediatefloortoconcretewall,apartment
Extension
B
Intermediatefloortoconcretewall,apartment
Extension
Extension
VD
17
Intermediatefloortoexternalwall,cantileverapartment
FD
1
Externalwalltofoundations,apartment
FD
2
Externalwalltofoundations,uplifttie
FD
3
Externalwalltofoundations,sheartransfer
FD
4
Partitionwalltofoundations,upliftconnection
FD
5
Partitionwalltofoundations,shearconnection
FD
6
Partitionwalltofoundations,insideapartment
HD
1
Salient corner
HD
2
T-connection
HD
3
Re-entrantcorner
52
Extension
Intermediatefloortopartitionwall,corridor,serviceshaft
A
VD
VD
Note
Extension
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 1
Intermediatefloortoexternalwall,apartment
Airtighttape
Separationstripformoisture
and sound isolation
Screwsinelement
Mineralwool
EPDMrubbersealant(soft)
Vibrationisolationpad12mm
Fire barrier
2)
3)
1)
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
53
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 2 A
Intermediatefloortopartitionwall,apartment
Mineralwool30mm,
onlyatmoduleedges,
attached to module
Mineralwool30mm,
attached to module
Separationstripformoisture
and sound isolation
Screwsinelements
Screwsinelements
Vibrationisolationpad12mm
4)
3)
Mineralwool30mm
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
2)
54
1)
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 2 B
Gluelam column
Gluelam column
Gluelam column
Gluelam beam
Gluelam column
Intermediatefloortopartitionwall,apartment,
beam and post
Gluelam beam
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
55
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 2 C
Intermediatefloortopartitionwall,apartment,
beamfloor
Screwsinelements
Vibrationisolationpad12mm
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
56
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 2 D
Intermediatefloortopartitionwall,apartment,
ribslabfloor
Nails in elements
Screwsinelements
Vibrationisolationpad12mm
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
57
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 3 A
Intermediatefloortoload-bearingpartitionwall,
bathroom
Mineralwool,30mm,
attached to module
Mineralwool,30mm
CLTload-bearingpartitionwall
onlyatmoduleedges,
attached to module
Separationstripformoisture
and sound isolation
Forimprovedimpactnoiseisolation,
impactnoiseisolationlayerunderthe
tiles can be used
CLTintermediatefloor,
apartment
Vibrationisolationpad12mm
4)
3)
Note!Compensationairandairflowinhorizontaldirectionneedtobearranged.
2)
58
1)
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 3 B
Intermediatefloortoload-bearingpartitionwall,
bathroom,sanitaryboxelement
EPDM rubber sealant
Screwsinelement
Screwsinelement
Vibrationisolationpad12mm
59
4)
3)
2)
1)
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 4 A
Connectionforuplift,continuoustensionbar,
doubleshearwalls
Tension rod
Scarfingoftensionrod
Steelplate+elastometer(only
forstabilityduringassembly)
NotchinCLTforscarfing
4)
3)
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
2)
60
1)
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 4 B
Connectionforuplift,continuoustensionbar,
oneshearwall
Mineralwool,30mm
attached to module
Mineralwool,30mm
onlyatmoduleedges,
attached to module
Tensionrodwithsoft
plastic cover around
Scarfingoftensionrod
Steel plate + elastometer
(onlyforstabilityduring
assembly)
CLTnotched
4)
3)
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
2)
61
1)
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 5 A
Connectionforshear,wood/woodconnection
Mineralwool30mm,attachedtomodule
Separationstripformoisture
Mineralwool,30mm
and sound isolation
onlyatmoduleedges,
attached to module
NotchedCLTwood/
woodconnection
Sound insulation
elastomer 12 mm
Shearconnectionofoverlappingmodules,numberand
sizeofconnectionsaccordingtostructuralengineer
Upper modular unit
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
Sound insulation
Lowermodularunit
elastomer 12 mm
62
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 5 B
Connectionforshear,steelconnection
Mineralwool30mm,attachedtomodule
Separationstripformoisture
Mineralwool30mm,
and sound isolation
Sound insulation elastomer
onlyatmoduleedges,
belowandonthesteelplate
attached to module
Screws
Sound insulation
elastomer 12 mm
Steelplateforshear
Screws
4)
3)
2)
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
3)
63
1)
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 6
Connectionforshearbetweenintermediatefloors
Mineralwool30mm,
attached to module
Mineralwool30mm,
onlyatmoduleedges,
Separationstripformoisture
attached to module
and sound isolation
Gapbetweentimber
and steel part
Steelplateandself-tapping
screws(long-termdurability
needstobeconsidered)
Notchforsteelpart
Sound insulation elastomer
CLTceiling
CLTceiling
belowandonthesteelplate
Forimprovedsoundisolation,avoidplacingsteelconnectionsinlivingroomsorbedrooms.
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
64
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 7
Connectionfortensionandcompression
betweenintermediatefloors
Mineralwool30mm,
attached to module
Mineralwool30mm,
onlyatmoduleedges,
attached to module
Separationstripformoisture
and sound isolation
Steelplateandself-tapping
screws(long-termdurability
needstobeconsidered)
Notchforsteelpart
Sound insulation elastomer
belowandonthesteelplate
CLTceiling
CLTceiling
Forimprovedsoundisolation,compression/tensionforcesandshearforces
aremanagedwithdifferentsteelconnections.Itisnotrecommendedtoinstall
multiplesteelpartstosamelocationfordecreasedsoundisolation.
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
65
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 8
Intermediatefloortopartitionwall,corridor
Apartment
Corridor
Fire sealant
Screwsinelement
Screwsinelement
Ducts
Vibrationisolationpad12mm
Screwsinelement
3)
4)
Serviceshaftandcorridorstructuresarebuiltonsite.
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
1)
66
2)
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 9 A
Intermediatefloortopartitionwall,corridor
Screwsandrubberwasher
Vibrationisolationpad6mm
Corridor
Apartment
Screwsinelement
Screwsinelement
Vibrationisolationpad12mm
Screwsinelement
Screws
4)
3)
2)
4)
1)
Corridorstructuresarebuiltonsite.
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
67
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 9 B
Option B.
Improvedacousticperformance
Intermediatefloortopartitionwall,corridor
Screwsandrubberwasher
Vibrationisolationpad6mm
Corridor
Apartment
Elastic sealant
Screwsinelement
Screwsinelement
Vibrationisolationpad12mm
Screwsinelement
Screws
4)
3)
2)
Corridorstructuresarebuiltonsite.
4)
1)
Itisrecommendedtouseimpactsoundisolationlayerincorridor
iftheroomunderislivingroomorbedroom.
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
68
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 10
Balconyfloortoload-bearingexternalwall
Balconyrailandglass
Waterproofing
Steelangle
Screws
Mineralwool
Fire barrier
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
69
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 11
Stairstointermediatefloor,corridor
A
Screws
Anglebracket
Gluelam beam
CLTstairs
A–A
A
Screws
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
70
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 12
Rooftoexternalwall
Ventilatedtoopenair
Roofstructurebuiltonsite
CLTneedstobeedgegluedor
moisture barrier needs to be used
Screwsinelement
Sealedjoint
Fire barrier
2)
1)
71
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 13
Rooftoload-bearingpartitionwall
Ventilatedtoopenair
Roofstructurebuiltonsite
Plank
Airtighttape
CLTneedstobeedgegluedor
moisture barrier needs to be user
Sealedjoint
Screwsinelements
EPDMrubbersealantandmineralwool
Ifrooftrussconnectsmodulesthatarepartofdifferentflats,vibrationisolationpadshouldbeusedunderthetruss.
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
72
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 14
Intermediatefloortonon-load-bearing
partitionwall,apartment
Support plate
Separationstripformoisture
and sound isolation
Screws
Elastic sealant
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
73
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 15 A
Twomodulesformingoneroom
Wall
Screwsfromwalltofloor
Elastic sealant
Installationgap
EPDM rubber sealant
Screwsinelement
Screwsinelement
Vibrationisolationpad12mm
Screwsinelement
EPDM rubber sealant
Gluelambeamnote:beam’s
lengthissameasmodule’s
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
74
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 15 B
Twomodulesformingoneroom
Wall
Screwsfromwalltofloor
Elastic sealant
Installationgap
EPDM rubber sealant
Screwsinelement
Screwsinelement
Vibrationisolationpad12mm
Screwsinelement
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
75
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
VD 16 A
Intermediatefloortoconcretewall,
apartment
Cast-inchannel
e.g.HALFENHTA-CE
1
1–1
Steel plate and
self-tappingscrews
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
76
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
1
VD 16 A
Intermediatefloortoconcretewall,
apartment
Steelplateandself-tappingscrews
Connectionhardwareforconcrete
1
1–1
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
77
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
1
VD 17
Intermediatefloortoexternalwall,
cantilever apartment
Screwsinelement
Airtighttape
Vibrationisolationpad12mm
Screwsinelement
Load-bearing
EDPMrubbersealant(soft)
cantileverwall
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
78
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
FD 1
Externalwalltogroundfloor,apartment
Epoxycoveringrecommended
Screwsinelement
Screwsinelement
Bitumenfeltbetween
woodandconcrete
Moistureunderthemodulefromsite
operations need to be ventilated
Infillcasting0–50mm
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
79
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
FD 2
Externalwalltogroundfloor,uplifttie
Notchininsulationforsteelpart,filledonsite
Tension rod
Blockoutforjoint
Steel part
Anchoragebolt
Moistureunderthemodulefromsite
operations need to be ventilated
Bitumenfeltbetweenwoodandconcrete
Infillcasting0–50mm
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
80
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
FD 3
Externalwalltogroundfloor,
sheartransfer
Notchininsulationfor
steelpart,filledonsite
Bitumenfeltbetween
woodandconcrete
Screws
Bitumenfeltbetween
woodandconcrete
Moistureundermodulefromsite
Steelangleforshear
load(doubleanglefor
easyinstallation),longtermdurabilityneeds
to be considered
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
81
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
operations need to be ventilated
Infillcasting0–50mm
Anchor bolt
FD 4
Partitionwalltogroundfloor,
upliftconnection
Epoxycoveringrecommended
Tension rod
NotchinCLTforsteelpart
Blockoutforjoint
Steel part
Anchoragebolt
Infillcast+bitumenfelt
Moistureundermodulefromsite
operations needs to be ventilated
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
82
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
FD 5
Partitionwalltogroundfloor,shearconnection
(mayalsobecalculatedtotakeuplift)
EPDMrubbersealant(soft)
Screws
Blockoutforjoint
Steelangle
Anchoragebolt
Epoxycovering
recommended
Infillcast+bitumenfelt
Moistureundermodulefromsite
operations needs to be ventilated
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
83
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
FD 6
Partitionwalltofoundations,insideapartment
Elastic sealant
EPDM rubber sealant
Screwsinelements
Screwsinelements
Epoxycoveringrecommended
Bitumenfeltbetweenwoodandconcrete
Moistureundermodulefromsite
operations needs to be ventilated
Infillcasting0–50mm
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
84
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
HD 1–3
Horizontaldetails
HD01Salientcorner
HD02T-connection
Jointsealingtape
CLTload-bearing
partitionwall
Tensionrodforuplift
Tensionrodforuplift
Screwsinelement
CLTload-bearing
externalwall
Screwsinelement
CLTload-bearing
externalwall
EPDM rubber sealant
Jointsealingtape
HD03Re-entrantcorner
HD02
CLTload-bearing
partitionwall
Screwsinelement
CLTload-bearing
externalwall
80m²
59m²
80m²
48m²
EPDM rubber sealant
80m²
Tensionrodforuplift
Jointsealingtape
HD01
Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.
85
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
54m²
80m²
6 Transportation and instructions
for on-site assembly
86
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
6.1 Transportationofmodularelements
• Finishedmodularelementsareprotectedinfactorywith
plasticoutercoverandthenliftedtotruck.
• Modularelementsarefastenedtothetrailerduringtransport
inordertopreventmovementanddamage.
• Elementsaretransportedfromthefactorytoabuildingsiteinorderof
installation.Beforetransportationitmustbecheckedthatthetransportation
routeissuitable(checkingforlowbridgesortightcornersontheroute).
• Localtrafficlegislationmaylimitthesizeofmodularunitsaccording
tomaximumwidthandheightoftransportationloads.
6.2 Principlesoferection
6.2.1 General
• Anerectionschememustbemadeandapprovedaccordingto
thelocalbuildingregulationsbeforestartingerection.
• Beforebeginning,ensurethatliftingequipment,spaceandweather
conditionsonsitearesufficientfortheerectionperiod.
• Theerectionschemeshouldspecifywhichliftingequipmentis
neededonsite.Dependingontheprojectthiswillincludeforinstance
amobilecraneortowercrane,liftingslingsorchainsetc.
• Modularelementsmaybeliftedfrom4,6or8liftingpointsdependingontheelement.
• Liftingpointsmustbeplannedsothattheycancarrytheweightofthemodularelement.
• Liftingpointsmustbeplannedtokeepthemodulebalancedwhileitislifted.
• Moduleswithlargeopeningsneedtobereinforcedbefore
liftingtopreventdeformationanddamage.
• Safetyprecautionsmustbeconsideredforliftingandworkingatheight.
• Duringconstructiontheplatformmustnotbeoverloadedwith
constructionmaterialsbeyonditsliveloadcapacity.
• Typicallytheerectionspeedofmodularunitsis6units/shift
6.2.2 Installationofmodularelements
• Theerectionsurfacemustbecheckedbeforestartingerection
–straightness,tolerancesetc.shouldbeconfirmed
• Modularelementsshouldbeunloadedinorderof
assemblyorinstalleddirectlyfromthetruck.
• Modularelementsarepreparedforlifting(plasticcoversareremoved
fromtheareawheretheyarenotneeded).Beforeinstallationavisual
87
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
checkshouldbedonetoverifyqualityoftheelements.
• Eachmodularelementisliftedonitsspot.Guidingsteelpartsshouldbeusedtoget
themodularelementtotherightspotandtostaywithininstallationtolerances.
• Onceitisensuredthattheplaceandpositionofthemodularelement
iswithintolerance,itcanbepermanentlyfastened.Fasteningof
concealedsteelpartsshouldbedocumentedduringinstallation.
• Aftertheinstallationofadjacentmodularelements,jointsmustbesealed.
• Onceallmodularelementsofonefloorareerected,otherstructuralelementssuchas
beams,postsandCLTslabsthatarenotincludedinmodularelementscanbeinstalled.
• Visualcheckofthewholefloorshouldbecarriedout
beforemovingonwiththeinstallation.
• Thestructuremustbestabilizedbeforestartinginstallationofthenextfloor.
6.3 Protectionon-site
6.3.1 Moisture control
• Moisturecontroltakespartineveryphaseoftheprojectfrombeginning
toendinordertoproduceahealthyandsafebuilding.
6.3.2 Personsinchargeofthemoisturecontrol
• Anexpertandotherpersonsinchargeofthemoisturecontrolwillbeassignedtothe
project.Theirtaskistomonitorandcontrolmoisturethrougheveryphaseoftheproject.
6.3.3 Moisturecontrolplanandemployeeengagement
• Amoisturecontrolplanshouldincludeanestimationofpossiblerisks
causedbymoisture,plansformeasuringandmonitoringmoisture
levelsandaschemeforcontrollingmoistureon-siteasneeded.
• Thewholestaffon-siteshouldbetrainedtotakeintoaccountthebasic
demandsofthemoisturecontrolintheirworkandcommittofollowingthe
requirementsformoisturecontrolfrombeginningtoendoftheproject.
• Thedemandsofthemoisturecontrolplanwillbetakenintoaccountin
requestsforestimates,quotes,contractsandsitemeetingsifrequired.
6.3.4 Assuranceofmoisturetechnicalqualityincaseof
moisturedamage
• Allmoisturedamagewillbedocumentedandthenecessaryactions
requiredtodryoutanymoistenedstructureswillbedefined.
• Dryingoutanymoistenedstructuresmustbemonitoredwith
moisture measurements and results must be documented.
6.4 Protectionofstructuresand
materialon-site
• Allmodulesshouldbeentirelyprotectedduringthetransportationand
installedastheyarriveonsiteorstoredwithoutdirectcontacttotheground.
• Allmoduleswillbeinspectedfromoutsidebeforeerection.Any
damagesincurredwillbedocumentedandrepairedimmediately.
• Theerectionsequenceofmoduleswillbeplannedsothat
modulescanbeprotectedaftererection.Allmodulesunderone
roofmoduleshouldbeerectedatonetime(figure1).
• Sidesoftheroofmodulesareprotectedwithboardsorplasticcovers
sothatrainwaterwillnotleakintothemodulestructures.
• Theroofmodulescanbeequippedwithchannelsforcontrollingdrainage.
• Cantilevermodularelementsthatarenotprotectedbyroofmodules
needtobeprotectedwithatarpaulinorotherprotectivematerial.
Jointsbetweenroofmodules
need to be sealed
Temporaryroofmodulesfor
covering.Liftedonmodulesto
concludetheerectionday.
Jointsbetweenmodules
need to be sealed
Coverplate
or tarpaulin
Channelsinroofmodules
forcontrolleddewatering
6.4.1 Protectionofwallsinmodularelements
• Atthefactory,modularelementsarecoveredwithaplastic
coatingwhichispartlyremovedon-sitebeforeerection.
• Theconnectionsbetweenmodulesonexternalwallsofthebuildingareprotected
bytapingthejointswithapplicabletapeandinstallingadividerplankonfaçade
boarding.
• Externalwallsofthemodularelementsthatarenotapartofthebuildingfaçade
havetobeprotecteduntiladjacentmodularelementsareinstalled.
6.4.2 Protectionofroofsinmodularelements
• Modularelementsareprotectedontopwithtemporaryroofmodules
(figure1),whichcancoveroneormultipleapartments.
• Theroofmodulesareequippedwithabeamforlifting.
• Theroofelementsareoftenmadeofgangnailedtimber
trusses,chipboardandabitumenlayer.
• Jointsoftheroofmodulesareprotectedbyoverlapping
thebitumenwiththeadjacentroofmodule.
88
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Figure1.Protectionofmodular
elementsduringerection
Jointsealing
tape+dividerplank
6.4.3 Managementoftheindoorconditions
• Themanagementofindoorconditionswillbeginwhenload-bearingstructures
areerectedandopeningsinexternalenvelopehavebeencovered.
• Theheatingsystemissettoeveryspaceenclosedbyloadbearingwalls,inordertodrystructures.
• Itisrecommendedtousetworecordingconditionloggers(tomeasurerelative
humidityandtemperatureoftheair).Thisistoensuredryingofthestructuresin
everyseparatespace.Datacollectedfromconditionloggersshouldbeunloaded
everyweekandmanagementofindoorconditionswillbeproceedbasedon
theinformationfromthisdata.Duringsiteassembly,itisrecommendedthat
therelativehumidityoftheairiskeptunder75%.Afterinstallationofthermal
insulation,therelativehumidityoftheindoorairshouldbeunder45–55%,with
atemperaturehigherthan+10°Cinorderforstructurestodryeffectively.
6.4.4 Inspectionstobemadebeforeinstallationoffinishes
Theseprinciplesareappliedtoareasthatarenotprefabricatedmodularelements.
• Themoisturecontentofallinternalstructuresshouldbeinspected
beforeinstallationofinternalcoatingsbegins.
• Theconditionallinternalwoodsurfacesshouldbe
checkedwithappropriateinstruments.
• Themoisturecontentofallinternalwoodsurfacesshouldbemeasuredandcharted.
• Usingdatafromthesemoisturemeasurements,estimatesforcoatingcan
takeintoaccountthequalityrequiredforthespecificconditions.
• Criteriaforcoatingswillbedeterminedbythetypesof
structures and the moisture control plan.
• Damagedmaterialsmustbereplacedbeforeinstallationofinternalmaterialscanbegin.
• Confirmationofmoisturemeasurements,ifnecessary,canbe
madebydrying/weighingmeasurementsandmeasurements
oftherelativehumidityofthepore-airofthetimber.
89
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
7 Sustainability
90
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
7.1 StoraEnsobuildingsolutionsforsustainable
homes
Sustainablehomesaimatbalancingtheneedsoftodayandthoseoffuturegenerations;
theyarebuiltwithoutdepletingnaturalresourcesandwithoutotherharmfulenvironmentalandsocialimpacts.Today,sustainablehomesmostlyaimatreducingcarbon
emissions,andatprovidinghealthyandcomfortablelivingconditionsforoccupants,
consideringthewholebuildinglifecycleincludingtheproductionofconstructionmaterials.Theseaspectsofsustainabilityareincreasinglysubjecttotighteninglegislative
requirementsandvoluntarythirdpartyverification.Inrelationtothelatter,manybuilding
ratingsystemsexistandprovideviabletoolsforthecommunicationofabuilding´s
sustainabilitycredentials.
StoraEnsobuildingsolutionshelpdesigners,contractors,ownersandtenantsachieve
complianceandaddresstheirsustainabilityambitions.
7.1.1 Responsiblysourcedrenewablewoodforlowcarbon
buildingsolutions
StoraEnso’sconstructionmaterialsandbuildingsolutionsarebasedonlowenvironmentalimpact,renewablewoodfromsustainablymanagedforests.WoodforStora
Enso’swoodproductsandbuildingsolutionsoriginatesfromsemi-natural,sustainably
managedEuropeanforests,whichgrowbyareaandbyvolume.TheEuropeanforests
contributetothesocialwelfareandlivelihoodoflocalcommunitiesandregionswith16
millionforestowners.Parallelmultipleusesoftheseforestsforrecreationandnature
conservationareintegralpartsofsustainableforestrypractices.
StoraEnsopromotesthird-partycertificationofforestmanagement,withdemandsthat
gobeyondlegalrequirements.In2015,already80%ofallwoodthatwasusedbyStora
Enso’smillsoriginatedfromPEFC™orFSC®(C125195)certifiedforests.Forverification
oftheresponsibleandlegalwoodorigin,StoraEnsoappliesPEFCandFSCChainof
Custodycertifiedwoodtraceabilitysystems.
Intheproductionofwoodbasedbuildingsolutions,StoraEnso’smillsapplyISOand
OHSASbasedmanagementsystemstoensureresponsible,efficient,clean,andsafe
workingenvironments.
91
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Energyismostlyproducedusingbiomassgeneratedfromsawmillresidues,avoiding
fossilcarbonemissions.Highyieldsandefficienciesintheuseofwoodensurethatno
woodgoeswasted.
Woodconstructionplaysanincreasingroleinglobalwarmingmitigationandadaptation
strategiesasithelpstoreducethefossilcarbonemissions.Sustainable,growingforestsstorecarbondioxidefromtheatmosphere.Woodconstructionmaterialsstorean
amountofcarbonequaltoapproximatelyhalfoftheirdryweightandwoodenbuildings
arecarbonstoragesduringtheirlifetime.Atendoftheirusefullife,woodproductscan
bere-used,recycledorusedasnonefossilfuelsforenergyproduction.
7.1.2 Energyefficientandlowcarbonhomes
Buildingsuseapproximately40%oftotalEUenergyconsumption1.Reductionofenergy
useinbuildingsisoneofthemosteconomicalwaystomitigatecarbonemissions.The
EnergyPerformanceoftheBuildingsDirective(EPBD)2isthemainpolicytoolbythe
EuropeanUniontoreduceenergyuseinbuildingswithintheEUmemberstates.
Furthermore,theRenewableEnergyDirective(RES)3aimsatincreasingtheshareof
renewableenergyinsupplytobuildings,herewithfurtherdrivingdowncarbonemission
fromtheuseofbuildings.
TheEPBDisdrivingtheconstantimprovementofenergyperformanceofbuildings,
buildingelementsandtechnicalsystems.Theperformanceisdefinedandupdatedin
nationalbuildingregulations.AccordingtotheEPBD,asofthebeginningofthe2020
allnewbuildingswillneedtobenearlyzeroenergybuildings(nZEB)intheEUmemberstates.nZEBsarebuildingswithveryhighenergyperformanceandtheirenergy
requirementsarecoveredbyrenewableenergysourcestoasignificantextent.Ineach
EUmemberstateenergyperformancelevelsandnZEBaredefineddifferentlyusinga
methodologyconsideringassociatedlifecyclecosts.
StoraEnsowoodbasedbuildingsolutionsofferawiderangeofpropertiesthatfitthe
nZEBdefinitionwellintheCentralandNorthernEuropeancountries.CLTstructuresfor
useintheNordicclimateshavebeenanalysedfortheirbuildingphysicalandenergy
performance.InsulatedCLTandotherwoodenstructurescanhaveU-valuesdownto
0,1W/m2Kandevenbelowwithoutanymoisturerisksandassociatedriskstotheindoor
climate.
WithenergyuseinbuildingsheavilyregulatedandquicklyapproachingnZEB,efforts
tolowertheenvironmentalimpactofbuildingsarenowfocusingmoreandmoreon
loweringenergyconsumptionandcarbonemissionsassociatedwiththeproductionof
buildingmaterialsandtheconstructionofbuildings.TheuseofStoraEnsolowcarbon
buildingsolutionshelplowerenvironmentalimpactsrelativetoexistinghomesand
construction practices4,5.
92
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
7.2 Occupanthealthandwellbeing–Indoor
climateandthermalcomfort
Thermal‘sensation’isaparameterthatreflectsthethermalcomfortinabuilding.Cold
surfacescancausethefeelingofdraughteventhoughthebuildingenvelopeisairtight,
asthehumanbodyradiatesheattowardscoldersurfacesofaroom.Optimisedthermal
insulationguaranteessuitablesurfacetemperaturesofwallsandtheroofofabuildingto
mitigateuncomfortingindoorconditions.
Moisturedamagesinbuildingstructuresareoneofthecriticalcausesofpoorqualityof
indoorairandassociatedhealthproblemssuchasasthmaandrespiratorydisorder6.
Thereareseveralclassificationsthathelpdefinegoodindoorairquality,e.g.theFinnish
ClassificationofIndoorEnvironment2008.Itisavoluntarysystemforsettingtarget
valuesfortheindoorenvironmentinnewbuildings.HighlyinsulatedCLTbased
structurescontributetoindoorclimateinvaryingmeansforexample:
• Good thermal insulation enables even temperatures in a room7
• Naturalwoodenmaterialshavelowemissionsduringtheuseofabuilding
• Useofwoodasaninteriordesignelementcancontribute
topleasantlivingandworkingenvironment8
Comfortandindoorairqualityarebecomingincreasinglyimportantcriteriato
customerswhenrentingorbuyingtheirhome.StoraEnsobuildingsolutionspromote
goodandhealthyindoorclimate.
1
2
3
4
5
6
7
8
http://ec.europa.eu/research/press/2013/pdf/ppp/eeb_factsheet.pdf
Directive2010/31/EUoftheEuropeanParliamentandoftheCouncilof19May2010ontheenergyperformanceofbuildings.
Directive2009/28/EConthepromotionoftheuseofenergyfromrenewablesources.
EnvironmentalImprovementPotentialsofResidentialBuildings(IMPRO-Building)2008
WoodinCarbonEfficientConstruction–ECO2.http://www.eco2wood.com/
EuropeanRespiratoryJournal.2007March,29(3):509-15
Holopainen,R.Ahumanthermalmodelforimprovedthermalcomfort.Dissertation.Espoo2012.VTTScience23.141p.
NyrudA,BringslimarkT,BysheimK,HealthbenefitsfromwoodinteriorsinHospitals.NorwegianInstituteof
WoodTechnology.
7.3 ElementsoflifecycledesigninCLTandLVL9
basedbuildings
Lifecycledesignreferstoastructuredco-operationbetweendesigners,contractors,materialsuppliers,andpossiblyotherprojectstakeholders.Lifecycledesignaimstoachieve
buildingsolutionsthatconsiderlifecyclecostsandcontributetohigherconstructionquality,
longerservicetimes,goodindoorenvironment,lowenergydemandaswellascarbonemissionsandhencelifecycledesignhelpsthedeliveryofsustainablehomes.
Newbuildingsaretypicallydesignedforaservicelifeof50–100years.Longerservicelife
usingwoodconstructionhasbeenproventhroughouthistory.Componentssuchasfans,
pumps,piping,surfacecoatings,waterproofing,facades,windowframes,however,havea
typicalservicelifeof25–50years.Therefore,alongserviceliferequiresalifecycleapproach
thataddresses:
• shorterlifetimecomponentsaredesignedforreplacement;
• long-termmaintenance;
• maintenance,periodicconditionsurveysandtimelyrepairs
• loadbearingCLTstructureslocateontheinsideofthethermalinsulation
layersandthusprotectedfromoutdoorclimateimpacts;
• highqualityconstructionofthebuilding,buildingelementsandcomponents
StoraEnsobuildingsolutionsareprefabricatedbuildingelementsproducedintightlycontrolledfactoryconditionsthatimprovethequalityandeaseofconstruction.
Highqualityconstructionandalongservicelifeofabuilding,drivesareduceddemandfor
renovationandrefurbishment,andherewithreducesmaterialuse,wastegeneration,and
energyuseintheproductionofmaterials,transportandconstruction,furtherenhancinga
building´ssustainabilityperformance
7.4 Certificationofsustainableandlowcarbon
homes
Dependentonthemarketconditionsandcustomerawareness,theuseofcertification
systemsmayprovidegoodmarketingandcommunicationtoolstowardscustomers,
authoritiesand/orinvestorsandmayinsomemarketshelpincreasemarketvalue.Therearea
numberofdifferentcertificationsystemsthatprovidethird-partyvalidationofbuildingperformanceforsustainablehomes,suchas(butnotlimitedto)BREEAM,LEED,DGNB,HQE,
9 CommercialproductionofLVLwillstartendofquarter2,2016
93
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Miljöbyggnad,andMinergie.Thesesystemstypicallystresstheenergyefficiencyandlow
carbonemissions,indoorclimateandthermalcomfort,lowmaterialemissions,lifecycledesignandassessment,andconstructionprocessproceduresetc.ingradingforcertification.
SustainabilityInformationonverificationandcertification:
• ChainofCustodycertificates(PEFCandFSC)forresponsiblysourcedwoodfrom
sustainableandlegalsourcesavailableat
http://www.storaenso.com > Sustainability > Certificates
• Woodfromsustainablymanagedcertifiedforests
• AskforourPEFC™orFSC®(C125195)certifiedproducts
• Certificatesforresponsible,efficientandsafemanufacturingprocessesavailableat
http://www.storaenso.com > Sustainability > Certificates
• ISO9001qualitycertificate
• ISO14001environmentalcertificate
• ISO50001energyefficiencycertificate
• OSHASsafetycertificate
• CarbonfootprintandLifeCycleAssessment
• Casespecificcarbonfootprintcalculationsavailableuponrequest
• ProductenvironmentalinformationandLifeCycleAssessment
• ProductspecificEnvironmentalProductDeclarations(EPD)soonavailableat
http://buildingandliving.storaenso.com > Sustainability
• Productspecificindoorairemissiondeclarationsavailableuponrequest
• Productspecificchemicalsdeclarations,etc.availableuponrequest
8 Stora Enso
94
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Stora Enso
StoraEnsoisaleadingproviderofrenewablesolutionsinpackaging,biomaterials,
woodenconstructionsandpaperonglobalmarkets.Ourcustomersincludepublishers,retailers,brandowners,printandboardproducers,printinghouses,merchants,
convertersandjoineriesandconstructioncompanies.
Ouraimistoreplacefossilbasedmaterialsbyinnovatinganddevelopingnewproducts
andservicesbasedonwoodandotherrenewablematerials.Webelievethateverything
that’smadewithfossilfuelstodaycanbemadefromatreetomorrow.Ourfocusison
fibre-basedpackaging,plantation-basedpulp,innovationinbiomaterials,andsustainablebuildingsolutions.
Thegrouphassome26,000employeesinmorethan35countries,andispubliclylisted
ontheHelsinkiandStockholmstockexchanges.Oursalesin2015wereEUR10billion,
withanoperationalEBITofEUR915million.
Weuseanddevelopourexpertiseinrenewablematerialstomeettheneedsofour
customersandmanyoftoday’sglobalrawmaterialchallenges.Ourproductsprovidea
climate-friendlyalternativetomanyproductsmadefromnon-renewablematerials,and
haveasmallercarbonfootprint.
Beingresponsible–doinggoodforthepeopleandtheplanet–underpinsourthinking
andourapproachineveryaspectofbusiness.
95
BUILDING SYSTEMS BY STOR A ENSO | 3 – 8 STORE Y MODUL AR ELEMENT BUILDINGS
Stora Enso
Division Wood Products
BuildingSolutions
Email:[email protected]
www.storaenso.com
www.clt.info
Published 15.06.2016
Version0.1
Subjecttotypographical
orprintingerrors