Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mathematics Session Matrices and Determinants-1 Session Objectives • Matrix • Types of Matrices • Operations on Matrices • Transpose of a Matrix • Symmetric and Skew-symmetric Matrix • Class Exercise Matrix A matrix is a rectangular array of numbers, real or complex. Row a11 a 21 .. .. A a i1 .. a m1 a12 a 22 .. .. .. .. .. .. .. a1 j a2j .. .. .. .. .. .. .. .. ai2 .. .. .. .. .. a ij .. .. .. .. .. .. .. .. .. .. a mj .. .. .. .. a m2 .. a in .. a mn a1n a 2n .. Element of mth row and jth column Column Order of a Matrix A matrix with m rows and n columns has an order m x n. Examples: 4 A= 7 5 -8 1 6 , B = 3 2 5 Order of A is 2 × 3 Order of B is 3 × 2 Order of C is 3 × 3 2 -4 6 2 , C = 5 1 3 4 6 1 2 etc. 3 Example - 1 A matrix has 16 elements, what is the possible number of columns it can have. Solution : The possible orders for the matrix are (1 x 16), (2 x 8), (4 x 4), (8 x 2),(16 x 1) So, the number of possible columns are 16, 8, 4, 2 and 1. Example-2 Write the matrix given by the rule aij 1 1 . 3i 4 j Solution : Here i can take the values 1 and 2 and j can take the values 1, 2 and 3. Hence, the order of the matrix is (2 x 3). Now, 1 1 5 ; 3 1 4 1 6 1 1 4 a21 ; 3 2 4 1 3 a11 5 6 Hence, the matrix is 4 3 1 1 1; 3 1 4 2 1 1 3 ; 32 42 2 1 1 3 3 1 4 3 2 1 1 2 32 43 a12 a13 a22 a23 1 3 2 3 2 2 Types of Matrices 3 2 5 -4 Row matrix: 2 5 2 Column matrix: 3 7 1 Types of Matrices 0 0 0 Zero matrix : 0 0 0 1 2 3 Square matrix: -4 -7 0 1 6 0 Diagonal matrix: A = aij , where aij = 0for i j 3 0 0 0 -4 0 0 0 4 Types of Matrices , if i= j Scalar matrix: A = aij , where aij = 0, if i j 6 0 0 0 6 0 0 0 6 1, if i= j Identity matrix: A = aij , where aij = 0, if i j 1 I3 = 0 0 0 1 0 0 0 1 Equality of Matrices Two matrices A = [aij] and B = [bij] are equal, if they have the same order and aij = bij for all i and j. Example: a If c b 1 = d -3 2 , then 4 a = 1, b = -2, c = -3 and d = 4 Addition of Matrices If A= [aij] and B= [bij] are two matrices of the same order, then their sum A + B is a matrix whose (i, j)th element is ai j bi j . Example: 1 3 4 2 3 1 If A = 2 3 4 and B = 5 4 2 , then -3 4 -5 1 -4 3 1 3 4 2 3 1 3 6 5 A + B = 2 3 4 + 5 4 2 7 7 6 -3 4 -5 1 -4 3 -2 0 -2 Multiplication of a Matrix by a Scalar If A = aij m×n kA = kaij m×n is a matrix and k is a scalar, then . Example: 1 3 4 If A = 1 2 3 , then -1 1 1 1 3 4 2 6 8 2A = 2 1 2 3 = 2 4 6 -1 1 1 -2 2 2 Properties of Addition If the order of the matrices A, B and C is same, then (i) A + B = B + A (Commutativity) (ii) (A + B) + C = A + (B + C) (Associativity) (iii) If m and n are scalars, then (a) m(A + B) = mA + mB (b) (m + n)A = mA + nA Example - 3 -1 0 3 2 Find X, if Y= and 2X+Y = . -3 2 1 4 Solution : 3 2 Y= and 1 4 3 2 2X + 1 4 = -1 0 2X+Y = -3 2 -1 0 -3 2 -1 0 3 2 2X = - -3 2 1 4 -1- 3 0 - 2 1 -4 -2 X = -2 -1 2X = X= -2 -1 -3 -1 2 4 -4 -2 2 Example - 4 Find a matrix C such that A+B+C is a zero matrix, 2 1 -1 2 0 1 where A= and B = 0 2 1 . 3 -1 0 Solution : A+B+C=0 2 0 1 2 1 -1 0 0 0 + +C = 3 -1 0 0 2 1 0 0 0 4 1 0 0 0 0 +C= 3 1 1 0 0 0 0 0 0 4 1 0 -4 -1 0 C= - C= 0 0 0 3 1 1 -3 -1 -1 Multiplication of Matrices Let A= [aij]m x n be a m x n matrix and B = [bij]n x p be a n x p matrix , i.e. , the number of columns of A is equal to the number of rows of B. Then their product AB is of order m x p and is given as n AB = aijb jk = Sum of the product of elements of ith row of A with j=1 the corresponding elements of k th column of B Example 3 1 2 2 If A= and B = 1 , then AB is given as 2 -1 4 4 3 1 2 2 AB 1 2 -1 4 4 1 3 + 2 1 + 2 4 2 3 + (-1 1) 4 4 3 2 8 = 6 1 16 13 = 21 Properties of Multiplication of Matrices If both sides are defined, then (i) A(BC) = (AB)C (Associativity) (ii) A ( B + C ) = AB + AC and (A + B) C = AC + BC ( Multiplication is distributive over addition) Example - 5 1 2 0 0 Find x , if 1 2 1 2 0 1 2 = 0. 1 0 2 x Solution : 1 2 0 0 2 1 2 1 2 0 1 = 0 1 0 2 x 0 1+4+1 2+0+0 0+2+2 2 0 x 0 (6 2 4) 2 = 0 0+4+4x 0 x 4x =- 4 x =-1 Example - 6 cos sin cos2 sin2 2 If A= , then show that A = . -sin cos -sin2 cos2 Solution : cos sin cos sin A = -sin cos -sin cos 2 cos2 - sin2 -sin cos -cos sin cos2 sin2 = -sin2 cos2 cos sin +sin cos cos2 -sin2 Example - 7 1 0 3 -2 2 If A = and I= 0 1 , then find k if A =k A-2I. 4 -2 Solution : 3 -2 3 -2 A2 = 4 -2 4 -2 9-8 = 12 - 8 -6+ 4 1 -2 = -8+ 4 4 -4 3 -2 3k -2k kA =k = 4 -2 4k -2k Solution Contd. A2 =k A-2I 1 2 3k -2k 1 0 = -2 4 4 4k -2k 0 1 -2k 1 -2 3k -2 = 4 -4 4k -2k -2 Comparing the corresponding elements of the two matrices , we get 3k-2 = 1, -2k = -2 , 4 = 4k , -4 = -2k –2 Taking any of the four equations, we get k=1 Example - 8 6 Show that A = 7 A2 – 12A + I = O. 5 satisfies the equation 6 Solution : 6 5 6 5 36+35 30+30 71 60 6 5 2 , then A = = = 7 6 7 6 7 6 42+ 42 35+36 84 71 A= 71 60 6 5 1 0 A2 - 12A + I = -12 + 84 71 7 6 0 1 71 60 72 60 1 0 = - + 84 71 84 72 0 1 -1 0 1 0 = 0 0 0 0 0 -1 0 1 Hence , A2 – 12A + I=O Transpose of a Matrix A matrix obtained by changing rows into columns or columns into rows is called transpose of the matrix ( say A ). If the matrix is A, then its transpose is denoted as AT or A’ . a b c d For Example: Consider the matrix a c The transpose of the above matrix is b d Example - 9 5 -1 2 1 If A = and B = , 6 7 3 4 then verify that (A+B)T=AT+BT Solution: 7 9 5 -1 2 1 7 0 T A +B = + = (A B) 6 7 3 4 9 11 0 11 5 6 T 2 3 AT = and B = -1 7 1 4 Hence, (A+B)T=AT+BT 7 9 A T + BT = 0 11 Example - 10 3 4 2 4 -1 T If A = and B = -1 2 , find (AB) . -1 0 2 2 1 Solution : 3 4 2 4 -1 AB= -1 2 -1 0 2 2 1 8+8-1 6- 4-2 -3+0+4 -4+0+2 0 15 = 1 -2 0 1 (AB)T = 15 -2 Example - 11 0 2y z Find the values of x , y, z if the matrix x y -z ’ obeys the law AA = I. x -y z Solution : 0 x x A ' 2y y y z z z 0 2y z 0 x x AA' = x y -z 2y y -y x -y z z -z z 4y2 +z2 = 2y2 - z2 -2y2 +z2 AA' = I 2y2 - z2 x2 + y2 +z2 x2 - y2 - z2 -2y2 +z2 x2 - y2 - z2 x2 + y2 +z2 Solution (Cont.) 4y2 + z2 2y2 - z2 -2y2 + z2 2y2 - z2 x2 + y2 + z2 x2 - y2 - z2 -2y2 + z2 1 0 0 x2 - y2 - z2 = 0 1 0 x2 + y2 + z2 0 0 1 Equating the elements of column 2 , we get 2y2 – z2 = 0 …(i) x2 +y2 +z2 =1 ...(ii) x2 - y2 - z2 = 0 ...(iii) Adding (ii) and (iii), we get 2x 2 1 x 2 1 1 x 2 2 Form (i), z2 = 2y2 Solution (Cont.) Putting the value of x2 and z3 in (ii), we get 1 + y2 +2y2 =1 2 1 3y2 = 2 1 1 y2 = Þ y = ± 6 6 Putting the value of y2 in (i), we get 1 1 1 z2 = 2× z2 = z = 6 3 3 Example - 12 2 1 -1 T Find x, if x 4 -1 1 0 0 x 4 -1 = 0. 2 2 4 Solution : 2 1 -1 x 4 -1 1 0 0 = 2x+4 -2 x -2 -x - 4 2 2 4 2x + 4 - 2 x - 2 -x - 4 x 4 -1 = 0 x 2x +2 x - 2 -x - 4 4 = 0 -1 (2x2 +2x+4x-8+x+4)=0 T 2x2 +7x - 4 = 0 2x -1 x + 4 = 0 x= 1 or x = -4 2 Symmetric and Skew – Symmetric Matrix A square matrix A is called a symmetric matrix, if AT = A. A square matrix A is called a skew- symmetric matrix, if AT = - A. Any square matrix can be expressed as the sum of a symmetric and a skew- symmetric matrix. A + AT A - AT A= + , 2 2 where A + A T is symmetric matrix and A - A T is skew - symmetric matrix. Example - 13 0 5 3 Show that A= -5 0 -8 is a skew-symmetric matrix. -3 8 0 Solution : 0 -5 -3 0 5 3 A T = 5 0 8 = - -5 0 -8 = -A 3 -8 0 -3 8 0 As AT = - A, A is a skew – symmetric matrix Example - 14 1 -5 6 Express the matrix A = -2 -5 4 as the sum of a -3 3 -1 symmetric and a skew- symmetric matrix. Solution : 6 A = -2 -3 1 -5 3 -5 4 -1 6 -2 -3 A T = 1 -5 3 -5 4 -1 6 1 1 Let P = (A + A T )= -2 2 2 -3 12 -1 -8 1 P = -1 -10 7 2 -8 7 -2 1 -5 3 -5 6 4 + 1 -1 -5 -2 -5 4 -3 3 -1 Solution Cont. -1/2 -4 6 P = -1/2 5 7/2 -4 7/2 -1 -1/2 -4 6 P T = -1/2 5 7/2 = P -4 7/2 -1 6 1 -5 6 -2 -3 1 1 Let Q = A - A T = -2 -5 4 - 1 -5 3 2 2 -3 3 -1 -5 4 -1 0 3 -2 1 Q = -3 0 -1 2 2 -1 0 Solution Cont. 3/2 -1 0 Q = -3/2 0 1/2 1 -1/2 0 3/2 -1 0 QT = - -3/2 0 1/2 = -Q 1 -1/2 0 PT = P and QT = -Qa Therefore, P is symmetric and Q is skewsymmetric . Further, P+Q = A Hence, A can be expressed as the sum of a symmetric and a skew -symmetric matrix. THANK YOU