Download Solution - Career Launcher

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mathematics
Session
Matrices and Determinants-1
Session Objectives
•
Matrix
•
Types of Matrices
•
Operations on Matrices
•
Transpose of a Matrix
•
Symmetric and Skew-symmetric Matrix
•
Class Exercise
Matrix
A matrix is a rectangular array of
numbers, real or complex.
Row
 a11

 a 21
 ..

..

A
 a i1

 ..
a
 m1

a12
a 22
..
..
..
..
..
..
..
a1 j
a2j
..
..
..
..
..
..
..
..
ai2
..
..
..
..
..
a ij
..
..
..
..
..
..
..
..
..
..
a mj
..
..
..
..
a m2





.. 
a in 

.. 
a mn 


a1n
a 2n
..
Element of mth row and jth column
Column
Order of a Matrix
A matrix with m rows and n columns
has an order m x n.
Examples:
4
A=
7
5
-8
1
6

 , B = 3
2
5

Order of A is 2 × 3
Order of B is 3 × 2
Order of C is 3 × 3
2
-4
6

2


,
C
=

5

1


3
4
6
1

2  etc.
3 
Example - 1
A matrix has 16 elements, what is the
possible number of columns it can have.
Solution :
The possible orders for the matrix are
(1 x 16), (2 x 8), (4 x 4), (8 x 2),(16 x 1)
So, the number of possible columns are 16, 8, 4, 2 and 1.
Example-2
Write the matrix given by the rule aij 
1
1

.
3i 4 j
Solution :
Here i can take the values 1 and 2 and j can take the
values 1, 2 and 3. Hence, the order of the matrix is (2 x 3).
Now,
1
1
5

 ;
3 1 4 1 6
1
1
4
a21 

 ;
3  2 4 1 3
a11 
5
6
Hence, the matrix is 
4
 3
1
1

 1;
3 1 4  2
1
1
3


 ;
32 42 2
1
1
3


3 1 4  3 2
1
1


2
32 43
a12 
a13 
a22
a23
1
3
2
3
2

2

Types of Matrices
3


2
5
-4
Row matrix: 

2


5
 
2

Column matrix:  
3
 
 7 
 1
Types of Matrices
0 0 0
Zero matrix : 

0 0 0
 1 2 3
Square matrix:  -4 -7 0 


 1 6 0


Diagonal matrix: A = aij  , where aij = 0for i  j
3 0 0


0
-4
0


0 0 4


Types of Matrices
, if i= j
Scalar matrix: A = aij  , where aij = 
0, if i  j
6
0

0
0
6
0
0
0
6 
1, if i= j


Identity matrix: A = aij  , where aij = 
0, if i  j
1

I3 =  0
0

0
1
0
0

0
1

Equality of Matrices
Two matrices A = [aij] and B = [bij] are
equal, if they have the same order and
aij = bij for all i and j.
Example:
a
If 
c
b  1
=
d   -3
 2
 , then
4 
a = 1, b = -2, c = -3 and d = 4
Addition of Matrices
If A= [aij] and B= [bij] are two matrices of the
same order, then their sum A + B is a matrix
whose (i, j)th element is ai j  bi j .
Example:
1 3 4
2 3 1 




If A =  2 3 4  and B =  5 4 2  , then
 -3 4 -5 
 1 -4 3 




 1 3 4  2 3 1   3 6 5 

 
 

A + B = 2 3 4  + 5 4 2  7 7 6 
 -3 4 -5  1 -4 3   -2 0 -2 

 
 

Multiplication of a Matrix by a Scalar
If A = aij 
m×n
kA = kaij 
m×n
is a matrix and k is a scalar, then
.
Example:
 1 3 4
If A = 1 2 3  , then
 -1 1 1 


 1 3 4  2 6 8
2A = 2 1 2 3  =  2 4 6 
 -1 1 1   -2 2 2 

 

Properties of Addition
If the order of the matrices A, B and C is same, then
(i) A + B = B + A
(Commutativity)
(ii) (A + B) + C = A + (B + C)
(Associativity)
(iii) If m and n are scalars, then
(a) m(A + B) = mA + mB
(b) (m + n)A = mA + nA
Example - 3
 -1 0 
3 2 
Find X, if Y= 
and
2X+Y
=

.

 -3 2 
1 4 
Solution :
3 2 
Y= 
 and
1
4


3 2 
2X +  1 4  =


 -1 0 
2X+Y = 

 -3 2 
 -1 0 


 -3 2 
 -1 0   3 2 
 2X = 
-

-3
2

 1 4
 -1- 3 0 - 2 
1  -4 -2   X =  -2 -1


 2X = 
  X= 

-2 -1

-3
-1
2
4
-4
-2
2




Example - 4
Find a matrix C such that A+B+C is a zero matrix,
 2 1 -1
2 0 1 
where A= 
 and B =  0 2 1  .


 3 -1 0 
Solution :
A+B+C=0
 2 0 1   2 1 -1
 0 0 0

+
+C
=
 



 3 -1 0   0 2 1 
 0 0 0
 4 1 0
 0 0 0

 +C= 

3
1
1


0 0 0
 0 0 0  4 1 0
 -4 -1 0 
 C= 
-
  C=

0 0 0  3 1 1
 -3 -1 -1
Multiplication of Matrices
Let A= [aij]m x n be a m x n matrix and B = [bij]n x p
be a n x p matrix , i.e. , the number of columns of A
is equal to the number of rows of B. Then their
product AB is of order m x p and is given as
n
 AB =  aijb jk = Sum of the product
of elements of ith row of A with
j=1
the corresponding elements of k th column of B
Example
3
1 2 2 
 
If A= 
 and B =  1  , then AB is given as
 2 -1 4 
 4
 
3
1
2
2

  
AB  
  1
2
-1
4

  4
 
1  3 + 2  1 + 2  4 


 2  3 + (-1  1)  4  4 
3  2  8 
=

6

1

16


 13 
= 
 21
Properties of Multiplication of Matrices
If both sides are defined, then
(i)
A(BC) = (AB)C
(Associativity)
(ii) A ( B + C ) = AB + AC and (A + B) C = AC + BC
( Multiplication is distributive over addition)
Example - 5
 1 2 0  0 

 
Find x , if 1 2 1  2 0 1  2  = 0.
 1 0 2  x 

 
Solution :
 1 2 0  0 

2
1 2 1  2 0 1 
  = 0
 1 0 2  x 

 
 0
 
 1+4+1 2+0+0 0+2+2  2   0
 x
 
 0
 
 (6 2 4)  2  = 0  0+4+4x   0
 x
 
 4x =- 4
 x =-1
Example - 6
 cos sin 
 cos2 sin2 
2
If A= 
,
then
show
that
A
=


.
-sin

cos



 -sin2 cos2 
Solution :
 cos sin   cos sin 
A =

 
 -sin cos   -sin cos 
2

cos2 - sin2

 -sin cos -cos sin
 cos2 sin2 
=

 -sin2 cos2 
cos sin +sin cos 

cos2 -sin2

Example - 7
1 0
 3 -2 
2
If A = 
 and I=  0 1  , then find k if A =k A-2I.


 4 -2 
Solution :
 3 -2   3 -2 
A2 = 


 4 -2   4 -2 
 9-8
=
 12 - 8
-6+ 4   1 -2 
=
-8+ 4   4 -4 
 3 -2   3k -2k 
kA =k 
=

4
-2
4k
-2k

 

Solution Contd.
A2 =k A-2I
 1 2   3k -2k   1 0 

=
 -2 

4

4
4k
-2k

 
  0 1
-2k 
 1 -2   3k -2

=

4
-4
4k
-2k
-2

 

Comparing the corresponding elements of the two matrices ,
we get 3k-2 = 1, -2k = -2 , 4 = 4k , -4 = -2k –2
Taking any of the four equations, we get k=1
Example - 8
6
Show that A = 
7
A2 – 12A + I = O.
5
 satisfies the equation
6
Solution :
 6 5  6 5   36+35 30+30   71 60 
6 5
2
,
then
A
=



=
=

7
6
7
6
7
6
42+
42
35+36




 
  84 71 
A=
 71 60 
 6 5 1 0
 A2 - 12A + I = 
-12


+

84
71
7
6



 0 1
 71 60   72 60   1 0 
=
-
+

84
71
84
72

 
 0 1
 -1 0   1 0  =  0 0 

 
 0 0

 0 -1  0 1  
Hence , A2 – 12A + I=O
Transpose of a Matrix
A matrix obtained by changing rows into columns
or columns into rows is called transpose of the
matrix ( say A ). If the matrix is A, then its
transpose is denoted as AT or A’ .
a b

c
d


For Example: Consider the matrix 
a c
The transpose of the above matrix is 

b
d


Example - 9
 5 -1 
2 1 
If A = 
and
B
=


,
6 7 
3 4
then verify that (A+B)T=AT+BT
Solution:
7 9 
 5 -1   2 1   7 0 
T
A +B = 
+ 
=
  (A  B)  

6
7
3
4
9
11
0
11

 
 



 5 6
T 2 3 
AT = 
and
B
=


-1
7
1
4




Hence, (A+B)T=AT+BT
7 9 
 A T + BT = 

0
11


Example - 10
3
4
 2 4 -1 
T


If A = 
 and B =  -1 2  , find (AB) .
 -1 0 2 
 2 1


Solution :
 3 4
2
4
-1



AB= 
-1
2


 -1 0 2   2 1 


8+8-1 
 6- 4-2


 -3+0+4 -4+0+2 
 0 15 
=

 1 -2 
0 1
(AB)T = 

15 -2 
Example - 11
 0 2y z 
Find the values of x , y, z if the matrix  x y -z 




’
obeys the law AA = I.
 x -y z 
Solution :
 0 x x


A '   2y y y 
 z z z 


 0 2y z  0 x x 



AA' =  x y -z  2y y -y 
 x -y z  z -z z 



 4y2 +z2

=  2y2 - z2
 -2y2 +z2

AA' = I
2y2 - z2
x2 + y2 +z2
x2 - y2 - z2
-2y2 +z2 

x2 - y2 - z2 
x2 + y2 +z2 

Solution (Cont.)
 4y2 + z2

  2y2 - z2
 -2y2 + z2

2y2 - z2
x2 + y2 + z2
x2 - y2 - z2
-2y2 + z2   1 0 0 
 

x2 - y2 - z2  =  0 1 0 
x2 + y2 + z2   0 0 1 
Equating the elements of column 2 , we get
2y2 – z2 = 0
…(i)
x2 +y2 +z2 =1
...(ii)
x2 - y2 - z2 = 0
...(iii)
Adding (ii) and (iii), we get
2x
2
 1 x
2
1
1
 x  
2
2
Form (i), z2 = 2y2
Solution (Cont.)
Putting the value of x2 and z3 in (ii), we get
1
+ y2 +2y2 =1
2
1
 3y2 =
2
1
1
 y2 = Þ y = ±
6
6
Putting the value of y2 in (i), we get
1
1
1
z2 = 2×  z2 =  z =
6
3
3
Example - 12
 2 1 -1
T


Find x, if  x 4 -1  1 0 0   x 4 -1 = 0.
2 2 4 


Solution :
 2 1 -1
 x 4 -1  1 0 0  = 2x+4 -2 x -2 -x - 4 
2 2 4 


2x + 4 - 2
x - 2 -x - 4  x
4 -1 = 0
x
 
 2x +2 x - 2 -x - 4   4  = 0
 -1
 
 (2x2 +2x+4x-8+x+4)=0
T
2x2 +7x - 4 = 0
 2x -1 x + 4  = 0
 x=
1
or x = -4
2
Symmetric and Skew – Symmetric Matrix
A square matrix A is called a symmetric matrix, if
AT = A.
A square matrix A is called a skew- symmetric
matrix, if AT = - A.
Any square matrix can be expressed as the sum of
a symmetric and a skew- symmetric matrix.
A + AT
A - AT
A=
+
,
2
2



where A + A T is symmetric matrix and A - A T
 is skew - symmetric matrix.
Example - 13
0 5 3


Show that A=  -5 0 -8  is a skew-symmetric matrix.
 -3 8 0 


Solution :
 0 -5 -3 
0 5 3




A T =  5 0 8  = -  -5 0 -8  = -A
 3 -8 0 
 -3 8 0 




As AT = - A, A is a skew – symmetric matrix
Example - 14
1 -5 
6
Express the matrix A =  -2 -5 4  as the sum of a
 -3 3 -1 


symmetric and a skew- symmetric matrix.
Solution :
6

A =  -2
 -3

1
-5
3
-5 

4
-1 
 6 -2 -3 


 A T =  1 -5 3 
 -5 4 -1 


 6
1
1 
Let P = (A + A T )=  -2
2
2 
 -3
12 -1 -8 
1

 P =  -1 -10 7 
2

 -8 7 -2 
1
-5
3
-5   6
 
4 + 1
-1   -5
-2
-5
4
-3  

3 
-1  
Solution Cont.
-1/2 -4 
 6


 P =  -1/2
5
7/2 
 -4
7/2 -1 

-1/2 -4 
 6


 P T =  -1/2
5
7/2  = P
 -4
7/2 -1 

 6 1 -5   6 -2 -3  
1
1 
 

Let Q =  A - A T  =  -2 -5 4  -  1 -5 3  
2
2 
 -3 3 -1   -5 4 -1  
 0 3 -2 
1

 Q =  -3 0 -1 
2

 2 -1 0 
Solution Cont.
3/2 -1 
 0


 Q =  -3/2
0
1/2 
 1
-1/2 0 

3/2 -1 
 0


 QT = -  -3/2
0
1/2  = -Q
 1
-1/2 0 

PT = P and QT = -Qa
Therefore, P is symmetric and Q is skewsymmetric . Further, P+Q = A
Hence, A can be expressed as the sum of a
symmetric and a skew -symmetric matrix.
THANK YOU
Related documents