Download Strong converse theorem for state redistribution using Rényi

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Strong converse theorem for
state redistribu on using Rényi entropies
arXiv:1506.02635
Felix Leditzkya , Mark M. Wildeb , Nilanjana Da aa
a: University of Cambridge, b: Louisiana State University
ISIT Barcelona, 15 July 2016
Table of Contents
1 Introduc on: Weak vs. strong converse
2 State redistribu on
3 Rényi entropies
4 Main result: Strong converse for state redistribu on
5 Summary and open ques ons
2 / 23
Table of Contents
1 Introduc on: Weak vs. strong converse
2 State redistribu on
3 Rényi entropies
4 Main result: Strong converse for state redistribu on
5 Summary and open ques ons
3 / 23
Introduc on: Weak vs. strong converse
▶ Consider: informa on-theore c task with op mal rate r∗ .
▶ Code with rate r, blocklength n, and error ϵ n .
lim ϵ n
lim ϵ n
n→∞
n→∞
1
1
?
0
r∗
Weak converse
r
0
r∗
r
Strong converse
▶ This talk: Strong converse for state redistribu on.
4 / 23
Table of Contents
1 Introduc on: Weak vs. strong converse
2 State redistribu on
3 Rényi entropies
4 Main result: Strong converse for state redistribu on
5 Summary and open ques ons
5 / 23
State redistribu on
Target state
Ini al state
R
R
ψABCR
ψA′ B′ C′ R
C
A
B
C′
TA
Φk
TB
T′A
A′
Φm
B′
T′B
▶ Consider a tripar te state ρABC shared between Alice (AC) and
Bob (B), with purifica on ψABCR where R is a reference system.
▶ Furthermore, Alice and Bob share a maximally entangled state
ΦkTA TB of Schmidt rank k.
6 / 23
State redistribu on
Target state
Ini al state
R
R
ψABCR
ψA′ B′ C′ R
C
A
B
C′
TA
Φk
TB
T′A
A′
Φm
B′
T′B
▶ State redistribu on: Transfer A-part of ρ from Alice to Bob.
▶ Use shared entanglement, local encoding E (Alice) and decoding
D (Bob), and quantum communica on Q from Alice to Bob.
6 / 23
State redistribu on
R
C’
C
A
TA
B
Ω
E
T’A
Q
T’B
D
TB
ω
A’
B’
σ
▶ Use shared entanglement, local encoding E (Alice) and decoding
D (Bob), and quantum communica on Q from Alice to Bob.
7 / 23
State redistribu on
R
C’
C
A
TA
B
Ω
E
T’A
Q
T’B
D
TB
ω
A’
B’
σ
▶ State redistribu on generalizes many quantum
informa on-processing tasks like Schumacher compression,
coherent state merging, and quantum state spli ng.
7 / 23
State redistribu on
▶ Consider now n i.i.d. copies of ini al state ρ, and a shared
maximally entangled state Φkn of Schmidt rank kn .
▶ Target state: n i.i.d. copies of ρ, and some maximally entangled
state Φmn of Schmidt rank mn .
▶ State redistribu on protocol outputs state σ n .
▶ Figure of merit: Fidelity
(
)
Fn := F σ n , Φmn ⊗ ψ⊗n ,
where F(ω, τ) := ∥ω1/2 τ 1/2 ∥1 .
8 / 23
State redistribu on
▶ Opera onal quan
es:
▷ Quantum communica on cost qn :=
1
n
log |Qn |
▷ Entanglement cost
en := n1 (log kn − log mn ) = n1 (log |TnA | − log |T′n
A |)
▶ Note that en can be nega ve, in which case entanglement is
gained in the protocol rather than consumed.
Defini on (Achievable rates)
A rate pair (e, q) is achievable if there exists a sequence of state
redistribu on protocols such that
lim sup en = e,
n→∞
lim sup qn = q,
n→∞
lim Fn = 1.
n→∞
9 / 23
State redistribu on: Op mal rates
Theorem (Op mal rates)
Luo and Devetak (2009) and Yard and Devetak (2009)
The rate pair (e, q) is achievable if and only if
q + e ≥ S(A|B) ρ
and
q≥
1
I(A; C|B) ρ ,
2
where S(A|B) ρ = S(AB) ρ − S(B) ρ is the condi onal entropy and
I(A; C|B) ρ = S(A|B) ρ − S(A|BC) ρ is the condi onal mutual
informa on.
10 / 23
State redistribu on: Op mal rates
▶ Preceding theorem proves a weak converse:
lim sup(qn + en ) < S(A|B) ρ
∨
lim sup qn <
1
I(A; C|B) ρ
2
=⇒ lim Fn < 1
▶ Our goal is to prove strong converse, that is,
Fn ≤ exp(−Kn)
for some suitable constant K > 0, yielding lim Fn = 0.
▶ Note: A strong converse theorem has also been obtained by
Berta et al. (2016) using smooth entropies.
▶ We use the so-called Rényi entropy method (cf. Arimoto (1973)
and Ogawa and Nagaoka (1999)).
11 / 23
Table of Contents
1 Introduc on: Weak vs. strong converse
2 State redistribu on
3 Rényi entropies
4 Main result: Strong converse for state redistribu on
5 Summary and open ques ons
12 / 23
Rényi entropies
Defini on (Sandwiched Rényi divergence)
Müller-Lennert et al. (2013) and Wilde et al. (2014)
Let ρ be a quantum state and σ be posi ve semidefinite with
supp ρ ⊆ supp σ. For α ∈ (0, 1) ∪ (1, ∞), we set γ = (1 − α)/2α
and define the α-sandwiched Rényi divergence as
e α (ρ∥σ) :=
D
1
log Tr (σ γ ρσ γ )α .
α−1
Quantum generaliza on of the classical Rényi divergence
∑
1
P(x)α Q(x)1−α .
log
x
α−1
⊕
⊕
e α (ρX ∥σ X ) = Dα (P∥Q) for ρX = x P(x), σ X = x Q(x).
That is, D
Dα (P∥Q) =
13 / 23
Rényi entropies
Proper es of the sandwiched Rényi divergence:
▶ Recovers the quantum rela ve entropy:
e α (ρ∥σ) = D(ρ∥σ),
lim D
α→1
where D(ρ∥σ) = Tr(ρ(log ρ − log σ)).
▶ Addi vity:
e α (ρ1 ⊗ ρ2 ∥σ 1 ⊗ σ 2 ) = D
e α (ρ1 ∥σ 1 ) + D
e α (ρ2 ∥σ 2 )
D
▶ Data processing inequality: Frank and Lieb (2013)
For every quantum opera on Λ and α ≥ 1/2,
e α (ρ∥σ) ≥ D
e α (Λ(ρ)∥Λ(σ)).
D
14 / 23
Rényi entropies
Defini on (Derived entropies)
Let ρAB be a bipar te quantum state with marginal ρA . Then we
define the following quan
es:
e α (ρA ∥1A );
▶ Rényi entropy: Sα (A) ρ := −D
▶ Rényi condi onal entropy:
e
e α (ρAB ∥1A ⊗ σ B );
Sα (A|B) ρ := − minσB D
▶ Reyni mutual informa on:
eIα (A; B) ρ := minσB D
e α (ρAB ∥ρA ⊗ σ B ).
These recover the von Neumann quan
es in the limit α → 1, and
sa sfy addi vity and data processing inequality as well.
15 / 23
Table of Contents
1 Introduc on: Weak vs. strong converse
2 State redistribu on
3 Rényi entropies
4 Main result: Strong converse for state redistribu on
5 Summary and open ques ons
16 / 23
Main result: Strong converse theorem
Theorem
Let α ∈ (1/2, 1) and ϐ be such that 1/α + 1/ϐ = 2. Then for all
(
)
n ∈ N we have the following bounds on Fn = F σ n , Φmn ⊗ ψ⊗n :
Fn ≤ exp {−nκ(α) [Sϐ (AB) ρ − Sα (B) ρ − (qn + en )]}
{
[
]}
Fn ≤ exp −nκ(α) e
Sϐ (R|B) ρ − e
Sα (R|AB) ρ − 2qn
{
[
]}
Fn ≤ exp −nκ(α) eIα (R; AB) ρ − eIϐ (R; B) ρ − 2qn
where κ(α) = (1 − α)/2α, and qn and en are the quantum
communica on cost and entanglement cost, respec vely.
17 / 23
Main result: Strong converse theorem
Fn ≤ exp {−nκ(α) [Sϐ (AB) ρ − Sα (B) ρ − (qn + en )]}
{
[
]}
Fn ≤ exp −nκ(α) e
Sϐ (R|B) ρ − e
Sα (R|AB) ρ − 2qn
{
[
]}
Fn ≤ exp −nκ(α) eIα (R; AB) ρ − eIϐ (R; B) ρ − 2qn
▶ Recall that state redistribu on is possible iff q + e ≥ S(A|B) ρ .
α→1
▶ We have Sϐ (AB) ρ − Sα (B) ρ −−−→ S(A|B) ρ .
▶ Hence, if qn + en < S(A|B) ρ , there is α0 < 1 such that
K(α0 ) := κ(α0 )[Sϐ(α0 ) (AB) ρ − Sα0 (B) ρ − (qn + en )] > 0,
and Fn ≤ exp(−nK(α0 )).
18 / 23
Main result: Strong converse theorem
Fn ≤ exp {−nκ(α) [Sϐ (AB) ρ − Sα (B) ρ − (qn + en )]}
{
[
]}
Fn ≤ exp −nκ(α) e
Sϐ (R|B) ρ − e
Sα (R|AB) ρ − 2qn
]}
{
[
Fn ≤ exp −nκ(α) eIα (R; AB) ρ − eIϐ (R; B) ρ − 2qn
▶ Recall that state redistribu on is possible iff 2q ≥ I(A; C|B) ρ .
α→1
▶ e
Sϐ (R|B) ρ − e
Sα (R|AB) ρ −−−→ I(A; C|B) ρ and
α→1
eIα (R; AB) ρ − eIϐ (R; B) ρ −
−−→ I(A; C|B) ρ .
▶ Hence, if 2q < I(A; C|B) ρ , there is α0 < 1 and K(α0 ) > 0 such
that Fn ≤ exp(−nK(α0 )).
18 / 23
Key ingredient in the proof of the main result
Theorem (Fidelity bound)
Let ρAB and σ AB be bipar te quantum states, and for α ∈ (1/2, 1) let
ϐ be such that 1/α + 1/ϐ = 2, then
(i) Sα (A) ρ − Sϐ (A)σ ≥ κ(α)−1 log F(ρA , σ A )
(ii) e
Sα (A|B) ρ − e
Sϐ (A|B)σ ≥ κ(α)−1 log F(ρAB , σ AB ).
If ρA = σ A , then also:
(iii) eIϐ (A; B) ρ − eIα (A; B)σ ≥ κ(α)−1 log F(ρAB , σ AB ).
Here, κ(α) = (1 − α)/2α as before.
▶ Generalizes van Dam and Hayden (2002), who proved (i).
▶ Our proof method: Hölder inequality for Scha en p-norms.
19 / 23
Table of Contents
1 Introduc on: Weak vs. strong converse
2 State redistribu on
3 Rényi entropies
4 Main result: Strong converse for state redistribu on
5 Summary and open ques ons
20 / 23
Summary
▶ We established a full strong converse theorem for state
redistribu on.
▶ Employed “Rényi entropy method” based on entropic quan
es
derived from sandwiched Rényi divergence, together with
fidelity bounds.
▶ Same method yields strong converse for:
▷ measurement compression with quantum side informa on
▷ randomness extrac on
▷ data compression with quantum side informa on
(see full paper at arXiv:1506.02635)
21 / 23
Open ques ons
▶ Are these bounds op mal?
−→ Rényi quan
es as strong converse exponents?
▶ Can we use the fidelity bounds for proving strong converse
theorems for other tasks?
22 / 23
Thank you very much!
Arimoto, S. (1973). IEEE Trans. Inf. Th. 19.3, pp. 357–359.
Berta, M. et al. (2016). IEEE Trans. Inf. Th. 62.3, pp. 1425–1439. arXiv: 1409.4338
[quant-ph].
Frank, R. L. and E. H. Lieb (2013). Journal of Mathema cal Physics 54.12, p. 122201. arXiv:
1306.5358 [math-ph].
Luo, Z. and I. Devetak (2009). IEEE Trans. Inf. Th. 55.3, pp. 1331–1342. arXiv:
quant-ph/0611008.
Müller-Lennert, M. et al. (2013). Journal of Mathema cal Physics 54.12, p. 122203. arXiv:
1306.3142 [quant-ph].
Ogawa, T. and H. Nagaoka (1999). IEEE Trans. Inf. Th. 45.7, pp. 2486–2489. arXiv:
quant-ph/9808063.
Wilde, M. M. et al. (2014). Comm. Math. Phys. 331.2, pp. 593–622. arXiv: 1306.1586
[quant-ph].
Yard, J. T. and I. Devetak (2009). IEEE Trans. Inf. Th. 55.11, pp. 5339–5351. arXiv: 0706.2907
[quant-ph].
van Dam, W. and P. Hayden (2002). arXiv preprint. arXiv: quant-ph/0204093.
23 / 23
Related documents