* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Gates and Circuits
Survey
Document related concepts
Transcript
Chapter 4 Gates and Circuits Nell Dale • John Lewis Chapter Goals • Identify the basic gates and describe the behavior of each • Describe how gates are implemented using transistors • Combine basic gates into circuits • Describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams 4–2 Chapter Goals (cont.) • Compare and contrast a half adder and a full adder • Describe how a multiplexer works • Explain how an S-R latch operates • Describe the characteristics of the four generations of integrated circuits 4–3 Computers and Electricity • A gate is a device that performs a basic operation on electrical signals • Gates are combined into circuits to perform more complicated tasks 4–4 Computers and Electricity • There are three different, but equally powerful, notational methods for describing the behavior of gates and circuits – Boolean expressions – logic diagrams – truth tables 4–5 Computers and Electricity • Boolean algebra: expressions in this algebraic notation are an elegant and powerful way to demonstrate the activity of electrical circuits 4–6 Computers and Electricity • Logic diagram: a graphical representation of a circuit – Each type of gate is represented by a specific graphical symbol • Truth table: defines the function of a gate by listing all possible input combinations that the gate could encounter, and the corresponding output 4–7 Gates • Let’s examine the processing of the following six types of gates – – – – – – NOT AND OR XOR NAND NOR • Typically, logic diagrams are black and white, and the gates are distinguished only by their shape 4–8 NOT Gate • A NOT gate accepts one input value and produces one output value Figure 4.1 Various representations of a NOT gate 4–9 NOT Gate • By definition, if the input value for a NOT gate is 0, the output value is 1, and if the input value is 1, the output is 0 • A NOT gate is sometimes referred to as an inverter because it inverts the input value 4–10 AND Gate • An AND gate accepts two input signals • If the two input values for an AND gate are both 1, the output is 1; otherwise, the output is 0 Figure 4.2 Various representations of an AND gate 4–11 OR Gate • If the two input values are both 0, the output value is 0; otherwise, the output is 1 Figure 4.3 Various representations of a OR gate 4–12 XOR Gate • XOR, or exclusive OR, gate – An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise – Note the difference between the XOR gate and the OR gate; they differ only in one input situation – When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0 4–13 XOR Gate Figure 4.4 Various representations of an XOR gate 4–14 NAND and NOR Gates • The NAND and NOR gates are essentially the opposite of the AND and OR gates, respectively Figure 4.5 Various representations of a NAND gate Figure 4.6 Various representations of a NOR gate Review of Gate Processing • A NOT gate inverts its single input value • An AND gate produces 1 if both input values are 1 • An OR gate produces 1 if one or the other or both input values are 1 4–16 Review of Gate Processing (cont.) • An XOR gate produces 1 if one or the other (but not both) input values are 1 • A NAND gate produces the opposite results of an AND gate • A NOR gate produces the opposite results of an OR gate 4–17 Gates with More Inputs • Gates can be designed to accept three or more input values • A three-input AND gate, for example, produces an output of 1 only if all input values are 1 Figure 4.7 Various representations of a three-input AND gate 4–18 Constructing Gates • A transistor is a device that acts, depending on the voltage level of an input signal, either as a wire that conducts electricity or as a resistor that blocks the flow of electricity – A transistor has no moving parts, yet acts like a switch – It is made of a semiconductor material, which is neither a particularly good conductor of electricity, such as copper, nor a particularly good insulator, such as rubber 4–19 jasonm: Redo 4.8 (crop) Constructing Gates • A transistor has three terminals – A source – A base – An emitter, typically connected to a ground wire Figure 4.8 The connections of a transistor • If the electrical signal is grounded, it is allowed to flow through an alternative route to the ground (literally) where it can do no harm 4–20 Constructing Gates • It turns out that, because the way a transistor works, the easiest gates to create are the NOT, NAND, and NOR gates Figure 4.9 Constructing gates using transistors 4–21 Circuits • Two general categories – In a combinational circuit, the input values explicitly determine the output – In a sequential circuit, the output is a function of the input values as well as the existing state of the circuit • As with gates, we can describe the operations of entire circuits using three notations – Boolean expressions – logic diagrams – truth tables 4–22 Combinational Circuits • Gates are combined into circuits by using the output of one gate as the input for another Page 99 4–23 jasonm: Redo to get white space around table (p100) Combinational Circuits Page 100 • Because there are three inputs to this circuit, eight rows are required to describe all possible input combinations • This same circuit using Boolean algebra: (AB + AC) 4–24 jasonm: Redo table to get white space (p101) Now let’s go the other way; let’s take a Boolean expression and draw • Consider the following Boolean expression: A(B + C) Page 100 Page 101 • Now compare the final result column in this truth table to the truth table for the previous example • They are identical 4–25 Now let’s go the other way; let’s take a Boolean expression and draw • We have therefore just demonstrated circuit equivalence – That is, both circuits produce the exact same output for each input value combination • Boolean algebra allows us to apply provable mathematical principles to help us design logical circuits 4–26 jasonm: Redo table (p101) Properties of Boolean Algebra Page 101 4–27 Adders • At the digital logic level, addition is performed in binary • Addition operations are carried out by special circuits called, appropriately, adders 4–28 jasonm: Redo table (p103) Adders • The result of adding two binary digits could produce a carry value • Recall that 1 + 1 = 10 in base two • A circuit that computes the sum of two bits and produces the correct carry bit is called a half adder Page 103 4–29 Adders • Circuit diagram representing a half adder • Two Boolean expressions: sum = A B carry = AB Page 103 4–30 Adders • A circuit called a full adder takes the carry-in value into account Figure 4.10 A full adder 4–31 Multiplexers • Multiplexer is a general circuit that produces a single output signal – The output is equal to one of several input signals to the circuit – The multiplexer selects which input signal is used as an output signal based on the value represented by a few more input signals, called select signals or select control lines 4–32 Multiplexers Figure 4.11 A block diagram of a multiplexer with three select control lines Page 105 • The control lines S0, S1, and S2 determine which of eight other input lines (D0 through D7) are routed to the output (F) 4–33 Circuits as Memory • Digital circuits can be used to store information • These circuits form a sequential circuit, because the output of the circuit is also used as input to the circuit 4–34 Circuits as Memory • An S-R latch stores a single binary digit (1 or 0) • There are several ways an S-R latch circuit could be designed using various kinds of gates Figure 4.12 An S-R latch 4–35 Circuits as Memory • The design of this circuit guarantees that the two outputs X and Y are always complements of each other • The value of X at any point in time is considered to be the current state of the circuit • Therefore, if X is 1, the circuit is storing a 1; if X is 0, the circuit is storing a 0 Figure 4.12 An S-R latch 4–36 Integrated Circuits • An integrated circuit (also called a chip) is a piece of silicon on which multiple gates have been embedded • These silicon pieces are mounted on a plastic or ceramic package with pins along the edges that can be soldered onto circuit boards or inserted into appropriate sockets 4–37 jasonm: Redo table (p107) Integrated Circuits • Integrated circuits (IC) are classified by the number of gates contained in them Page 107 4–38 Integrated Circuits Figure 4.13 An SSI chip contains independent NAND gates 4–39 CPU Chips • The most important integrated circuit in any computer is the Central Processing Unit, or CPU • Each CPU chip has a large number of pins through which essentially all communication in a computer system occurs 4–40 Ethical Issues: E-mail Privacy • E-mail is a standard means of communication for millions of people • On its path from sender to recipient, e-mail travels from server to server and can be read more easily than a postcard • Supporters of e-mail monitoring state that all correspondence through a company’s server belongs to the company and therefore the company has the right to access it at will 4–41