Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Line (geometry) wikipedia, lookup

Technical drawing wikipedia, lookup

Multilateration wikipedia, lookup

Penrose tiling wikipedia, lookup

History of geometry wikipedia, lookup

Euler angles wikipedia, lookup

Rational trigonometry wikipedia, lookup

Apollonian network wikipedia, lookup

Reuleaux triangle wikipedia, lookup

Trigonometric functions wikipedia, lookup

History of trigonometry wikipedia, lookup

Pythagorean theorem wikipedia, lookup

Euclidean geometry wikipedia, lookup

Integer triangle wikipedia, lookup

Transcript
```24
7. 5 Congruent Triangles
to the Rescue
Part1
ZacandSioneareexploringisoscelestriangles—trianglesinwhichtwosidesarecongruent:
Zac:Ithinkeveryisoscelestrianglehasalineofsymmetrythatpassesthroughthevertex
Zac:ButI’vefoldedlotsofisoscelestrianglesinhalf,anditalwaysseemstowork.
Sione:Lotsofisoscelestrianglesarenotallisoscelestriangles,soI’mstillnotsure.
hisstatement?
3. SionethinksZac’s“creaseline”(thelineformedbyfoldingtheisoscelestriangleinhalf)
createstwocongruenttrianglesinsidetheisoscelestriangle.Whichcriteria—ASA,SASor
SSS—couldheusetosupportthisclaim?Describethesidesand/oranglesyouthinkare
congruent,andexplainhowyouknowtheyarecongruent.
4. Ifthetwotrianglescreatedbyfoldinganisoscelestriangleinhalfarecongruent,whatdoes
formedbythetwocongruentsides)?
Mathematics Vision Project
mathematicsvisionproject.org
https://flic.kr/p/3GZScG
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
CC BY Anders Sandberg
SECONDARY MATH I // MODULE 7
25
SECONDARY MATH I // MODULE 7
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
5. Ifthetwotrianglescreatedbyfoldinganisoscelestriangleinhalfarecongruent,whatdoes
line—oneclaimcomesfromfocusingonthelinewhereitmeetsthethird,non-congruent
sideofthetriangle;asecondclaimcomesfromfocusingonwherethelineintersectsthe
vertexangleformedbythetwocongruentsides.)
Part2
LikeZac,youhavedonesomeexperimentingwithlinesofsymmetry,aswellasrotational
furtherjustifiedbasedonlookingforcongruenttrianglesandtheircorrespondingparts,justasZac
andSionedidintheirworkwithisoscelestriangles.
•
•
•
Asquareisbotharectangleandarhombus,thatis,itcontainsfourrightanglesand
allsidesarecongruent
symmetry,listasmanypairsofcongruenttrianglesasyoucanfind.
determinethatthetwotrianglesarecongruent,andexplainhowyouknowthattheangles
and/orsidesrequiredbythecriteriaarecongruent(seethefollowingchart).
Mathematics Vision Project
mathematicsvisionproject.org
26
SECONDARY MATH I // MODULE 7
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
Congruent
Triangles
CriteriaUsed
(ASA,SAS,SSS)
IfIsayΔRST≅ΔXYZ
basedonSSS
HowIknowthesidesand/orangles
requiredbythecriteriaarecongruent
thenIneedtoexplain:
• howIknowthat RS ≅ XY ,and
• howIknowthat ST ≅ YZ ,and
• howIknowthat TR ≅ ZX soIcanuseSSScriteriatosayΔRST≅ΔXYZ
4. Nowthatyouhaveidentifiedsomecongruenttrianglesinyourdiagram,canyouusethe
• thediagonalsbisecteachother
•
thediagonalsarecongruent
•
thediagonalsareperpendiculartoeachother
•
writeanargumentthatwouldconvinceZacandSionethatthestatementistrue.
Mathematics Vision Project
mathematicsvisionproject.org
SECONDARY MATH I // MODULE 7
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
7. 5 Congruent Triangles to the Rescue – Teacher Notes
thegeometricfiguresbasedontheconceptthatcorrespondingpartsofcongruenttrianglesare
meanstomakeanargumentbasedonthedefinitionsoftransformations,aswellasbasedon
propertiesofcongruenttriangles.Thefocusshouldbeonusingcongruenttrianglesand
CoreStandardsFocus:
G.CO.7Usethedefinitionofcongruenceintermsofrigidmotionstoshowthattwotrianglesare
congruentifandonlyifcorrespondingpairsofsidesandcorrespondingpairsofanglesare
congruent.
G.CO.8Explainhowthecriteriafortrianglecongruence(ASA,SAS,andSSS)followfromthe
definitionofcongruenceintermsofrigidmotions.
SeealsoMathematicsInoteforG.CO.6,G.CO.7,G.CO.8:Rigidmotionsareatthefoundationofthe
definitionofcongruence.Studentsreasonfromthebasicpropertiesofrigidmotions(thatthey
preservedistanceandangle),whichareassumedwithoutproof.Rigidmotionsandtheirassumed
propertiescanbeusedtoestablishtheusualtrianglecongruencecriteria,whichcanthenbeusedto
proveothertheorems.
Mathematics Vision Project
mathematicsvisionproject.org
SECONDARY MATH I // MODULE 7
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
RelatedStandards:G.CO.10
SMP3–Constructviableargumentsandcritiquethereasoningofothers
SMP7–Lookforandmakeuseofstructure
TheTeachingCycle:
Launch(WholeClass):
Makesurethatstudentsknowthedefinitionofanisoscelestriangleandgivethemseveralisosceles
trianglestofold—essentiallyrecreatingZac’spaper-foldingexperimentasdescribedinpart1ofthe
theycouldusetoconvincethemselvesthattheseinteriortrianglesarecongruent.Workthroughthe
individuallyorwithapartner.
HelpstudentsseethedifferencebetweenverifyingZac’sclaim(“everyisoscelestrianglehasalineof
themidpointofthethirdside”)throughexperimentation—paperfolding—andajustificationbased
ontransformationsandcongruenttrianglecriteria.Itappearsfromfoldingonesideoftheisosceles
triangleontotheotherthattwocongruenttrianglesareformed.ThiscanbejustifiedusingtheSSS
trianglecongruencecriterion:thelinethroughthevertexandthemidpointoftheoppositesideis
commontobothinteriortriangles(S1);themidpointoftheoppositesideformstwocorresponding
congruentsegmentsintheinteriortriangles(S2);andbydefinitionofanisoscelestriangletheother
pairofsidesintheinteriortrianglesarecongruent(S3).Sincetheinteriortrianglesarecongruent
Mathematics Vision Project
mathematicsvisionproject.org
SECONDARY MATH I // MODULE 7
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
bisectedbythelinethroughthevertexandmidpointoftheoppositeside;andthelinethroughthe
vertexandmidpointoftheoppositesideisperpendiculartothebasesincetheanglesformedare
congruentandtogetherformastraightangle.Collectively,thesestatementsjustifyZac’sclaimthat
everyisoscelestrianglehasalineofsymmetry.
Explore(SmallGroup):
congruenttriangles,andlistingthecriteriathatwasusedtoclaimthatthetrianglesarecongruent.
correspondingpartsofcongruenttriangles.
Discuss(WholeClass):
Thefocusofthediscussionshouldbeonpart2,question2—identifyingcongruenttrianglesformed
Mathematics Vision Project
mathematicsvisionproject.org
SECONDARY MATH I // MODULE 7
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
Mathematics Vision Project
mathematicsvisionproject.org
27
SECONDARY MATH I // MODULE 7
7.5
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
Name
PeriodDate
Topic:Transformationsoflines,connectinggeometryandalgebra.
Foreachsetoflinesusethepointsonthelinetodeterminewhichlineistheimageandwhichis
thepre-image,writeimagebytheimagelineandpreimagebytheoriginalline.Thendefinethe
transformationthatwasusedtocreatetheimage.Finallyfindtheequationforeachline.
1.
2.
N'
M'
N
M
a.DescriptionofTransformation: b.Equationforpre-image:
c.Equationforimage:
Useforproblems3thorugh5.
a.DescriptionofTransformation:
b.Equationforpre-image:
c.Equationforimage:
3.a.DescriptionofTransformation:
b.Equationforpre-image:
c.Equationforimage:
4.Writeanequationforalinewiththesameslope
thatgoesthroughtheorigin.
5.Writetheequationofalineperpendicularto
theseandthoughthepointO’.
Mathematics Vision Project
mathematicsvisionproject.org
28
SECONDARY MATH I // MODULE 7
7.5
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
Afterworkingwiththeseequationsandseeingthetransformationsonthecoordinategraphitisgood
timingtoconsidersimilarworkwithtables.
6.Matchthetableofvaluesbelowwiththeproperfunctionrule.
I
II
x
-1
0
1
2
f(x)
16
14
12
10
III
x
-1
0
1
2
A.! ! = −! ! − ! + !
B.! ! = −! ! − ! + !"
C.! ! = −! ! − ! + !
f(x)
14
12
10
8
IV
x
-1
0
1
2
f(x)
12
10
8
6
V
x
-1
0
1
2
D.! ! = −! ! + ! + !
E.! ! = −! ! + ! + !"
f(x)
10
8
6
4
x
-1
0
1
2
SET
Topic:UseTriangleCongruenceCriteriatojustifyconjectures.
Ineachproblembelowtherearesometruestatementslisted.Fromthesestatementsa
conjecturestatementcreateanargumentthatjustifiestheconjecture.
7.Truestatements: Conjecture: ∠A ≅ ∠C PointMisthemidpointof!"
∠!"# ≅ ∠!"#
a.Istheconjecturecorrect?
!" ≅ !"
b.Argumenttoproveyouareright:
Mathematics Vision Project
mathematicsvisionproject.org
f(x)
8
6
4
2
29
SECONDARY MATH I // MODULE 7
7.5
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
8.Truestatements
∠ !"# ≅ ∠ !"#
!" ≅ !"
9.Truestatements
∆ !"#isa180°
rotationof∆ !"#
Conjecture:!"bisects∠ !"#
a.Istheconjecturecorrect?
b.Argumenttoproveyouareright:
Conjecture:∆ !"# ≅ ∆!"#
a.Istheconjecturecorrect?
b.Argumenttoproveyouareright:
GO
Topic:Constructionswithcompassandstraightedge.
10.Whydoweuseageometriccompasswhendoingconstructionsingeometry?
Mathematics Vision Project
mathematicsvisionproject.org
30
SECONDARY MATH I // MODULE 7
CONGRUENCE, CONSTRUCTION AND PROOF- 7.5
Performtheindicatedconstructionsusingacompassandstraightedge.
11.Constructarhombus,usesegmentABasonesideandangleAasoneoftheangles.
12.ConstructalineparalleltolinePR
andthroughthepointN.
13.ConstructanequilateraltrianglewithsegmentRSasoneside.
14.Constructaregularhexagoninscribed
inthecircleprovided.
15.ConstructaparallelogramusingCDasoneside
andCEastheotherside.
16.BisectthelinesegmentLM.
17.BisecttheangelRST. Mathematics Vision Project