Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1D Relativistic Plasma Equations (without laser) Consider an electron plasma with density N(x,t), velocity u(x,t), and electric field E(x,t), all depending on one spatial coordinate x and time t. Ions with density N0 are modelled as a uniform, immobile, neutralizing background. This plasma is described by the 1D equations: N ( Nu ) 0 t x 1 p u ( mu ) eE x N x t E 4 e( N 0 N ) x 1/ 1 2 cold plasma 10. Problem: Normalized non-linear 1D plasma equations We now look for full non-linear propagating wave solutions of the form N ( ), u ( ), E ( ), with p (t x / v p ) Using the dimensionless quantities n( ) N / N0 , ( ) u / c, Eˆ ( ) E / E0 , E0 mc p /e show that the the 1D plasma equations reduce to nˆ 1/(1 / p ) d (1 / p ) ( ) Eˆ d dEˆ / d /(1 / p ) 11. Problem: Derive non-linear wave shapes Show that the non-linear velocity ( ) can be obtained analytically in non-relativistic approximation p 1, p 1 p2 / 2, from d (1 / p )d ( ) 2( m ) ( ) (1 / p ) d ( / m ) 1 ( / m )2 with the implicit solution n( ) ( 0 ) arcsin( / m ) (m / p ) 1 ( / m )2 Notice that this reproduces the linear plasma wave for small wave amplitude m. Then discuss the non-linear shapes qualitatively: Verify that the extrema of (), n(), and the zeros of E() do not shift in when increasing m, while the zeros of (), n(), and the extrema of E() are shifted such that velocity and density develop sharp crests, while the E-field acquires a sawtooth shape. E ( ) / 13. Problem: Maximum electron energy gain Wmax Verify energy gain for electron injected at phase Velocity according to drawing: dP / dt Eˆ ( ) p Pmax max t x(t ) / ph 2 d / dt 1 1/ ph 1/ 2 ph 1 (dP / dt )d 2 1 P0 ( ) ph Eˆ ( )d pm 2 0 Pmax P0 (d / dt )dP 1 2 2 ph ( Pmax P0 ) 1 d ( ) ph pm 2 pm 2 m Em2 pm 2 W ( Pmax P0 )c 2 ph Em2 pm ( ) m ph Show that maximum energy for wavebreaking is Emax Pmaxc 4mc2 3ph pm 1 2 acceleration range 1 14. Problem: Verfy the Example Plasma: N0 1019 cm3 , p 2 c / p 10 m, Laser: E0 mc p / e 3 1011 V/m 1 m, Ncrit 1021 cm3 , pulse p / 2c 15 fs ph Ncrit / N0 10, E-field at wave-breaking: Wmax 4mc2 3ph 2 GeV, EWB E0 2( ph 1) 1012 V/m 2 Ld p ph 1 mm Dephasing length: Required laser power: EWB / E0 2( ph 1) a02 / 2 1 a02 / 2 a02 36, I 5 1019 W/cm 2 P I p2 50 TW, WLas P Las 800 mJ Electron Trapping in the Broken-Wave Regime Pukhov, MtV, Appl.Phys. B74, 355 ( 2002) Laser pulse Plasma density: 3.5×1019 /cm3 Laser pulse : 6.6 fs 20 mJ 3 TW a0=1.7 Trapped electrons: colour ~ pz/mc 2000 Bubble regime: Ultra-relativistic laser, I=1020 W/cm2: VLPL A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) trapped e- laser 12J, 33 fs Time evolution of electron spectrum Ne / MeV 1 109 t=750 t=650 20 t=850 t=550 X/ 5 108 -20 t=450 t=350 -50 cavity Z/ 0 0 200 400 E, MeV The Bubble: Details VLPL A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) laser 12J, 33 fs T=500 20 X/ (d) 600 a 2 Nonlinear laser compression down to a one-cycle pulse 400 trapped e- -20 200 (g) 500 0 T=700 0.2 20 (e) n e / n c 650 cavity wall X/ cavity -20 e- beam 0 ( f) eE z /mc 0 0.5 20 accelerating field 0 R/ -50 Z/ 0 Z/ 700 -factor of electrons 0.1 0 1000 650 Z/ 700 The trapping cross-section is str~ 3 m2 Observation of monoenergetic electron beams Nature 431 (2004): Mangles et al, Rutherford: 70 MeV beam Geddes et al, LBNL: 85 MeV beam Faure et al, LOA: 170 MeV beam First observation of bubble acceleration J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004) energy: 170 ± 20 MeV charge: 0.5 nC divergence: 10 mrad 10% laser->electron conv. B=0 He-gas ne= 61018 cm-3 B>0 Laser pulse: 1J, 30 fs ne= 21019 cm-3 The experimental spectrum is peaked in energy in good agreement with 3D-PIC simulation J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004) Electron spectrum peaked in energy Simulation (Pukhov) Experiment Bubble Acceleration (3D-PIC) M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006).(http://www.njp.org/) (a0=5) electron path 180 z (m) 1 -1 210 Ez (TV/m) 0 ne (1020 cm-3) 1 Laser Laser 5fs, 115 mJ 2 2x109 electrons at 70 ± 10 MeV 15 % of laser energy Electrons/MeV plasma: 2 x1019 cm-3 0 40 80 E (MeV) 3D wakefield, transverse electron motion, single bubble formation p = 2c/p electric potential peak at rear bubble vertex void of electrons ions only driving laser pulse electron trajectories seen in frame comoving with bubble) for analytic description see: Kostyukov, Pukhov, Kiselev, Phys. Plasmas 11, 5256 (2004) S. Gordienko, A. Pukhov, Phys. Plasmas 12, 043109 (2005) 3D-PIC movie (5 fs, 115 mJ,a0=5) M. Geissler (2005) M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006). Intensity threshold for electron trapping in bubble M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, NJP submitted (2006). a0 = 3 a0 =5 Number and total energy of 70 MeV electrons extract beam Number of electrons in peak > 60 MeV Laser energy In bubble volume initially Energy in peak Particle trajectories: 5fs, a=5, 60-80MeV e- “Monoenergetic” Energy Spectra from Regular Structures Regular accelerating structure dN dN dE dE dx0 dx0 1 E =E(x0) “Monoenergetic” spikes at stationary points At a first-order maximum dE 0 dx0 E Em ( x0 x0 m ) 2 Universal spectrum for continuous particle trapping dN 2s tr ne Lacc dE 1 Em ( Em E ) “Monoenergetic” Energy Spectra from Stationary Points 1st order maximum E dN ~ dE Em 1 Em E edN/dE 1 109 t=750 t=650 t=850 t=550 5 108 t=450 t=350 N x0m x0 0 200 400 E E, MeV m E The bubble fields Kostyukov, Pukhov, Kiselev, Phys. Plasmas 11, 5256 (2004) spherical bubble: Maxwell potentials nion n0 , ne 0 E 1 n E np B t E E ? B? c 4 e2 n0 plasma m 2 p laboratory frame ( x t , y, z ) ax ax ( x t , y, z ) a 0 choose gauge ax 0 a t B a 3 / 4 solution: harmonic oscillator potential ax ( R 2 2 y 2 z 2 ) 8 normalized quantities: eE / m p c, eB / m p c n / n0 , e / mc 2 , ea / mc 2 , pt , (c / p ), etc. The bubble fields potentials: ax ( R 2 2 y 2 z 2 ) 8 x t E field: E ( / 2, y / 4, z / 4) B field: B (ax ex ) ( 0, z / 4, - y / 4) Force on electron with velocity v cex : F E v B ( Ex , E y Bz , Ez By ) = ( / 2, y / 2, z / 2) Force on electron with velocity F ( / 2, 0, 0) v cex: 12. Problem: Bubble fields (Kostyukov, Pukhov, Kiselev, Phys. Plasmas 11, 5256 (2004)) Consider a spherical bubble (radius R, ne= 0, ni=n0 for r < R) moving in the lab frame in x-direction at velocity c. Show that the electric potential corresponds to a harmonic oscillator ( x, y, z, t ) ( R 2 ( x ct )2 y 2 z 2 ) / 8R 2 Start from Maxwell equations (no current inside bubble: ions static, no electrons!) E 1 n B E / t E a / t B a with normalized quantities (confirm!) eE / m p c, eB / m p c, n / n0 , e / mc 2 , ea / mc2 , pt , (c / p ), etc. Use gauge ax ( x ct , y, z ), a 0 for vector potential (why allowed ?). Derive the electric and the magnetic field inside the bubble. Show that an electron comoving with the bubble at velocity c experiences a force linear in bubble radius, while no transverse force acts on an electron moving in opposite direction (v=-cex). 13. Problem: Ultra-relativistic laser plasma scaling S. Gordienko, A. Pukhov, Phys. Plasmas 12, 043109 (2005) rel. laser plasma equations ( v t r ) e( E v B / c) p f (r , p, t ) 0, p mv , 1 ( p / mc) 2 , cr B t E 4 j , cr E t B, r E 4 e( N0 Ne ), r B 0, Inc.Pulse: A(t 0) a(r 2 / R 2 , x / c )cos(k L x), N e f d 3 p, j e v f d 3 p, 4 parameters: a0 , focus radius kL R, pulse duration L , plasma density Ne /Ncrit , scaled variables: S Ne /(a0 Nc ), 1/ 2 1/ 2 eA eS E eS B 1/ 2 1/ 2 ˆ ˆ ˆt S Lt , rˆ S k L r , pˆ p / mca0 , Aˆ ,E ,B , 2 2 2 mc a0 mc L a0 mc L a0 Show that, in ultra-relativistic limit (a0>>1), scaled. laser plasma equations ( vˆ ) 2 2 ˆ 0, ˆ ˆ ˆ ˆ ˆ ˆ v p / p a e ( E v B / c ) f rˆ pˆ 0 , tˆ ˆ Eˆ 4 (1 nˆ), ˆ Bˆ 0, crˆ Bˆ tˆ Eˆ 4 ˆj, crˆ Eˆ tˆB, r r 3 3 Aˆ (tˆ 0) aˆ (rˆ 2 / Rˆ 2 , xˆ / ˆ)cos( S 1/ 2 xˆ ), max aˆ 1, nˆ fˆ d pˆ , ˆj e vˆ fˆ d pˆ , depend only on three parameters: kL R, L , and S ! Geometric Similarity, S=10-3=const Gordienko, Pukhov, Phys. Plasmas 12, 043109 (2005) 70 (i) 70 0.2 (ii) ne/nc Y/ a0=10 ne= 0.01nc 0.1 a2 200 0 0 680 0 600 70 ne/nc 0 0 680 0 600 0.4 70 (iii) a2 800 a0=20 ne= 0.02nc 0.8 (iv) ne/nc ne/nc a0=40 ne= 0.04nc a0=80 ne= 0.08nc 0 0 600 a2 3200 X/ 0 680 0 a2 12800 0 600 X/ 0 680 bubble regime scales with optimal focus peak electron energy number of acc. electrons laser-to-electron efficiency P0 m2c5 / e2 8.7 GW S ( Rel p L ) ne ancrit 2 k p R a0 Emax 0.65mec P c pulse 2 P0 L 1.8 P N acc P0 k L re Emax Nacc / P 20% re e 2 / mc 2 Conventional accelerators 50 GeV LINAC at Stanford 3 km International Liner Collider: 500 GeV, 31 km, $6.7 bln 30 km The accelerating field is limited to a few 10 MeV/m Present day accelerators are tens of kilometers long and reach their limits in size. The hope is that laser accelerators can be built with much smaller dimensions reaching higher energies Accelerating fields Conventional RF accelerators E < 100 MV/m limit set by electrical breakdown Space charge fields, laser-generated for solid-density plasma Laser ++++++++ E mcp /e < 100 TV/m 1023 W/cm2 -E - 5 GeV protons at 1023 W/cm2 1 kJ , 15 fs laser pulse focussed on 10 m spot of 1022/cm3 plasma 1012 protons 4 - 5 GeV Selected Publications: Recent Survey and Collection of papers on: Laser-driven particle accelerators: new sources of energetic particles and radiation. Ed. K.Burnett, D. Jaroszynski, S. Hooker, Phil. Trans. Royal Soc. A 364, 551 – 778 (2006) Exp. Observation of laser-driven mono-energetic electron beams: Nature 431 (2004) Dream Beam Issue, 1. S.P.Mangles, C.D.Murphy, Z.Najmudin et al., 2. C.G. Geddes, E.Esarey, W.P.Leemans et al. 3. J. Faure, Y. Glinec, A. Pukhov, V. Malka, et al. T. Tajima, J.M. Dawson, Phys.Rev.Lett. 43, 267 (1979) E.Easarey, P.Sprangle, J.Krall, A.Ting, IEEE Trans. Plas.Science 24, 252 (1966). Pukhov & Meyer-ter-Vehn, Appl. Phys. B74, 355 (2002). Kostyukov, Pukhov, Kiselev, Phys. Plasmas 11, 5256 (2004). S. Gordienko, A. Pukhov, Phys. Plasmas 12, 043109 (2005). F.S.Tsung, W. Lu, M.Tsoulas, W.B.Mori, C. Joshi, J.M. Vieira, L.O.Silva, R.A.Fonseca, Phys. Plasmas 13, 056708 (2006). M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006).