Download Scattering Phase-Shift Examples - Howard University Physics and

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quantum Mechanics II
Scattering
Basics;
Scattering Phase-Shift;
Scattering Phase-Shift Examples
Tristan Hübsch
Department of Physics and Astronomy, Howard University, Washington DC
http://physics1.howard.edu/~thubsch/
Q
M
II
Scattering
Basics
So far: quantum object (particle or wave)
subject to (classical) agents represented by a surrounding potential
Turn this around: the (classical) scattering target is localized
the quantum object: (plane) wave or a beam of particles
incoming from away, interacts with the target, scatters
…and is detected away from the
⇥ target
=
⇤
g—General Theory
JS µ J I ds
h̄
M
⇥ ⇤S~rY S
Y
=m
⇤
1)
(
Det.
⇥)
= (2 r
d2 W = sin(q )dq df
solid angle
=
f
q
J
S
⇤
⇥ ⇤
⇤
⇥ ⇤
⇤
z
h̄
h̄
y
~
~
r
J I = M =meY
r
Y
J
=
=
m
Y
r
Y
(1)
oI
I
S YI M
S
S
⇤~
⇥
r
h
lT
YI
a
q
r
diff. (2)
cross-section
m
2
e
n
d WGe= sin(q )dq df h̄ = q
h
i
h
i
f
d
M
1 ds
ds
JS
ds
—
=
q
g
d
)function of !:
: 2
:= 2
=
in Determine J SI /JI as (a
=
q
r
e
2
2
dW
rr dW
d W
W
d
JI
r d W
in
att
s
c
|
{z
}
2W=
:S
d
:= s (q, f)
2
Q
M
II
Scattering
Basics
Linear momentum conservation: the target does move
Calculate in CM (center-of-mass)-frame
Compare with Lab-frame measurements
Lab
CM
~v1
~v
~v 0
T
~v MM
+ MT
q1
~v 00
~v2
Must be able to translate between the two
v1 cos(q1 ) = v0 cos(q ) + V
sin(q )
) tan(q1 ) =
0
cos(q ) + vV0
v1 sin(q1 ) = v sin(q )
MT v 2
1
2 M M + MT
M
+
MT v
M + MT
2 ! 1
1
Mv
= 2M
2 MT M + MT
!
Mv
MT M + MT = 0 =
v
0 2
Mv0
3
+
1
2M
v
MT v00
00 2
|
q
{z
}
⇣
⌘
~
~v M+MMT =: V
— velocity of the
CM-frame in Lab
in elastic collisions
M
are unchanged
) T speeds
⇢ 0
v = MM+TMvT
)
v
v00 = MM
+ MT
Q
M
II
Scattering
) tan(q1 ) =
Basics
sin(q )
cos(q ) +
V
v0
Relating the CM-calculation to the Lab-frame measurement:
Lab
CM
~v1
~v
|
~
V
q1
T
:= ~v MM
+ MT
~v 00
~v2
|
~v 0
{z
q
~v M+MMT
}
in particular, for the “differential cross-section”
s1 (q, f) sin(q1 )dq1 df1 = s(q, f) sin(q )dq df
p
⇣ ∂(q, f) ⌘⌘
(1 + 2b cos(q ) + b2 )3
= s(q, f)
s1 (q, f) = s(q, f)
|1 + b cos(q )|
∂(q1 , f1 )
Lab
b :=
CM
V
v0
There is no transformation in ". In fact, for the most part, the target and
so the scattered wave will be "-independent. To first order at least.
4
Q
M
II
Scattering
Scattering Phase-Shift
Scattering is a 2-body interaction
b
b=
H
~R :=
h̄2 ~
h̄2 ~
r2 + W (~r1
2M1 r1
2Mr
2
M
M1rr~1 + M
M2~rr2
~r := ~r1 ~r2
M1 + M2
CM-position
b=
H
Thus
~r2 )
µ := MM11+MM22
b
relative position
2
2
h̄
~~
r
2( M1 + M2 ) R
h̄
2µ
reduced mass
+ W (~r )
motion as a whole relative dynamics
⇥(free particle) ⇤
~J I :=
Choose:
h̄
µ
⇥ ⇤
⇤ ⇤
⇥
⇥
~ yI (~r ) ⇤ ~JS :=
=m yI (~r )r
r
yI (~r ) = A e
i~k·~r
1
r
h̄2
2µ
⇤
+ W (~r ) y(~r ) = Ey(~r )
y(~r ) = yI (~r ) + yS (~r )
incident scattered
h̄
µ
⇥
⇤
~ yS (~r )
=m yS (~r )r
⇤
~J I = | A|2 h̄~k~k ⇠ | A|2~v uniform plane-wave
µ
yS (~r ) = A f (q, f) e
I
⇥
i |~k||~r |
~JS = | A|2 | f (q, f)|2 h̄|~k| 12 êr
µ rI
5
spherical wave
S2
d2~s · ~JS = const.
Q
M
II
Scattering
Scattering Phase-Shift
Simple example: spherical potential p
2
⇥
~ y(~r ) + k2
r
y(~r ) =
Â
`m
⇥
⇤
⇤
U (r ) y(~r ) = 0
u ` (r )
m
a` m Y` (q, f) r
k :=
u00` (r ) +
⇥
⇥
2µE
h̄
k2
2µ
U (r ) := 2 W (r )
h̄
`(`+1) ⇤
U (r )
u ` (r )
r2
=0
Now: for very large r, ignore U(r) and the centrifugal barrier
u00` (r ) + k2 u` (r ) ⇠ 0
for r ! •
)
u` (r ) ⇠ e±ikr
BTW, the Coulomb potential cannot be ignored for large r!
⇠
)
⇠
!
Restrict to “short-range” potentials
i~k·~r
yI = e = Â(2`+1) i` j` (kr ) P` (cos (q ))
Know:
`
Try:
y = y + y = (2`+1) i` A R (r ) P (cos (q ))
satisfying
I
⇥
1 d2
r dr2 (rR` )
S
⇤
Â
⇥
`
2
+ k
`
U
6
`
`(`+1) ⇤
R`
r2
`
U = 0,
= 0 where
spherical Bessel eq.
Q
M
II
Scattering
⇥
~
⇤
⇥
⇤
y)
= Â(2`+1⇠
) i` A` R` (r ) P`!
(cos (q ))
⇠
Scattering Phase-Shift
⇥
⇤ ⇥
⇤
yI = eik·~r =
`
Â(2`+1) i` j` (kr) P` (cos (q ))
`
As the solution of the spherical Bessel equation,
a`2 + b`2 = 1
R` = a` j` (kr ) + b` n` (kr )
= cos(d` ) j` (kr ) + sin(d` ) n` (kr )
⇠
⇠
sin(kr 21 p `)
cos(d` )
kr
sin(kr
1
2 p`
kr
+ d` )
+ sin(d` )
cos(kr
kr
phase-shift
1
2 p `)
for kr
1
at the detector!
The phase-shifts are not multiples of #/2 and n$(kr) is not ruled out
…because the origin (where the n$(kr) diverge) is excluded by the target
⇠
Equating
y(~r ) = yI (~r ) + yS (~r ) = yI (~r ) + f (q, f)
h
`
(
2
`+
1
)
i
P` (cos (q )) A`
Â
`
sin(kr
1
2
p `+d` )
kr
7
eikr
r
sin(kr 12 p `) i
eikr
= f (q, f) r
kr
Q
M
II
Scattering
Scattering Phase-Shift Â
`
h
h
`
(2`+1)i P (cos (q )) A
`
`
sin(kr
1
2
p `+d` )
kr
i
sin(kr 12 p `)i
ikr
= f (q, f) e r
kr
i
Equating coefficients hof e –ikr (projecting
w/e –ikr):
`
(
2
`+
1
)
i
P` (cos (q )) A` exp(kr
Â
1
2
p `+d` )
exp(kr
1
2
`
Projecting with P$(cos(!)): A` = eid`
Equating coefficients of e +ikr (projecting w/e +ikr):
f (q, f) =
1
2ik
`
(
2
`+
1
)
i
e
Â
`
Â(2`+1) e
id`
Thus: s(q, f) = f (q, f)
2
=
1
k
`
s :=
Z
⇥⇥
p `/2
e2id`
4p
k2
p `) = 0
⇤⇤
1 P` (cos (q ))
sin(d` ) P` (cos (q ))
d2 W s(q, f)) =
=
i
This is indeed
independent of "
2
(
2
`+
1
)
sin
(d` )
Â
`
So, calculating &(!,") and & reduces to calculating '$.
8
Q
M
II
Scattering
u00` (r ) +
Phase-Shift Examples
A spherically limited potential
W (r ) =
nU ( r )
0
⇥
k
2
U (r )
`(`+1) ⇤
u ` (r )
r2
=0
for r < a
for r > a
The inside solution R$(r) = u$(r)/r must be regular at r = 0,
so u$(r) ~ r b, we must have b ≥ 1
@r ⇠ 0
⇥
u00` (r ) +
b 2
b ( b 1)r
`(`+1) ⇤
u ` (r )
r2
b 2
`(`+1)r
⇠0
⇠0
b=
n `+1
`
regular
singular
As long asnr2 U(r) < ∞ for r ~ 0, one solution is regular, one singular
Turns out, if r4 U(r) ~ ∞ for r ~ 0, both solutions are singular @ r ~ 0.
Assume that r2 U(r) < ∞ for r ~ 0, solve the radial equation , compute
(in)
g`
h d ln ru(in) (r ) i
`
and match this to the logarithmic
:=
dr
r ! a derivative computed from the outside
Matching u$(r) itself will match the amplitudes & the normalization
9
Q
M
II
Scattering
Phase-Shift Examples
h
i
⇥
00 n `+1 2
` (r ) + k
bu=
`
b ( b 1)r b
U (r )
2
`(`+1)r b
`(`+1) ⇤
u ` (r )
r2
2
=0
The outside solution is R$(r)!= cos('$) j$(kr) – sin('$) n$(kr)
hhd ln R(out) (r ) ii
h
(in)
(out)
`
h
i
:
d
ln
ru
(
r
)
g`
=
(in)
`
dr
:
r
!
a
g
=
dr
r`! a
⇥
⇤
⇥
dr
r!a
0
hh
0
0
i
k cos(d` ) j` (z) sin
(d` ) n` (z) (out)
!
(in)
⇥
h
i
=
g
=
h
d ln R` (r )
`
(out)
cos(d` ) j` (z)g sin:=
(d` ) n` (z) z!ka
`
dr
r!a
⇥
⇤i
This is the equation that determines hthe
phase-shifts,
'
$
0
0
k cos(in)(d` ) j` (z) sin(d` ) n` (z)
0
k j`=
(ka) g` j` (ka)
cos
(
d
)
j
(
z
)
sin
(
d
)
n
(
z
)
z!ka
tan d` =
`
`
`
`
(in)
k n0` (ka) g` n` (ka)
k j`0 (ka) g`(in) j` (ka)
(in)
Quick example: impenetrable
inside
solution
=
0
tansphere.
d` = The
,
g
!•
(in)
0
`
• )
k n` ``(ka
n2s` (ka) z`
sg
`
(
1
)
(
s
+`)
!
j` (ka)
j` (z) = 2 z  s!(2s+2`+1)! z ⇡ (2`+1)!!
tan d` =
s =0
z⌧1
n` (ka)
•
`+
1
s
( 1)
( 1) (s `)!
(2` 1)!!
n` (z) = 2` z`+1 Â s!(2s 2`)! z2s ⇡
z`+1
so
tan d` ⇡
(2`+1)
2`+1
(
ka
)
[(2`+1)!!]2
s =0
ka ⌧ 1 Lowest-ℓ terms contribute most.
10
Q
M
II
Scattering
tan d` ⇡
Phase-Shift Examples
For very low energies, ka ≪ 1,
s=
⇡
2
Â(2`+1) sin
4p
k2
2
(
2
`+
1
)
tan
(d` )) =
=
Â
=
(d` )) =
`
⇥
2
= 4pa 1 +
4
1
(
ka
)
3
+
tan2 (d` )
(2`+1) 1+tan2 (d )
`
4p
k2
Â
4p
k2
Â(2`+1)
`
1
405 ( ka )
`
8
+...
rapid convergence
⇤
4 × the
⇥ geometric cross-section ⇤
For very high energies,
j` (ka)
⇡
tan(d` ) =
n` (ka)
ka ⌧ 1
4p
k2
`
(2`+1)
2`+1
(
ka
)
2
[(2`+1)!!]
1
ka sin( ka
1
ka cos( ka
⇣
(2`+1)
2`+1
(
ka
)
[(2`+1)!!]2
`p/2)
= tan ka ` p2
`p/2)) must sum over all ℓ
Summation (Sakuri, 1982) produces & = 2$ a2
…still 2 × the geometric cross-section
11
⌘2
Q
M
II
Scattering
⇥
u00` (r ) +
Phase-Shift Examples
k
2
U (r )
`(`+1) ⇤
u ` (r )
r2
=0
Consider a finite-strength spherical potential barrier
U(r) = V0 > 0 for 0 ≤ r ≤ a (inside), U(r) = 0 outside.
K0 : =
Focus on $ = 0
u(in)
0 (r ) =
0r  a
p
2MV0
h̄
k :=
p
p
{ := pK02 k2
2ME
h̄
n A sinh({ r )
u(out)
0 (r ) = sin( kr + d0 )
A0 sin({ r )
r a
Equating at r = a the outside and the inside logarithmic derivative
!
1 k
{ tanh({ a )
!
ka cot(ka + d0 ) = { 0 a cot({ 0 a) E > V0 d0 = tan 1 {k0 tan({ 0 a)
⌧ 0 ka{⌧
⇡ 1 k ⌧ K0 { ⇡ K0
However, for⌧low energies,
⌧
⌧
2`+1
⇠
tan(d` ) ⇠ (ka)
⌧ 1 ka + d0 ⌧ 1 cot(ka+d0 ) ⇡ ka+1 d0
tanh(K0 a)
K0 a
ka
1
) d0 ⇡ ka
K0 a
ka+d0 ⇡ tanh(K0 a)
ka cot(ka + d0 ) = { a coth({ a)
E < V0
12
d0 = tan
s0 ⇡ 4pa2
tanh(K0 a)
K0 a
ka
ka
1
2
Q
M
II
Scattering
u00` (r ) +
Phase-Shift Examples
⇥
k
2
U (r )
Consider a spherical '-function bubble
aZ+e
Focus on $ = 0
00
0
0
`(`+1) ⇤
u ` (r )
2
r
⇥
=0
dr u0 (r ) = u0 ( a+e) u0 (r e) = la u0 ( a)
h h 0
i i
0
au0 ( a+e)
au0 (r e)
a e
lim u (a)
=l
u
(
a
)
0
i
!e!0 h 0
The solution is
n A sin(kr )
for r < a
n
u0 (r ) =
sin(kr +d0 ) for r > a
…for which the boundary condition is
⇥
⇤
k cot(ka+d0 ) cot(ka) = l
and produces:
⇥
⇣
⌘⇤
tan(ka)
1
l
d0 = tan
ka
tan(ka)
1
+
l
ka
while continuity yields: s
tan2 (ka) + 1
A=
tan(ka) 2
2
tan (ka) + 1 + l ka
13
just like a
particle in
a hard box
En ⇡
n2 p 2 h̄2
2µa2
Resonances!
tan(k n a) ⇡ 0
k n ⇡ n pa
Quantum Mechanics II
Now, go forth and
calculate!!
Tristan Hübsch
Department of Physics and Astronomy, Howard University, Washington DC
http://physics1.howard.edu/~thubsch/
Related documents