Download Arctic Species Trend Index - Conservation of Arctic Flora and Fauna

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Climate change in the Arctic wikipedia , lookup

Transcript
2010
Arctic Species Trend Index
Tracking Trends in Arctic Wildlife
CAFF CBMP Report No. 20
ARCTIC COUNCIL
discover the arctic species trend index: www.asti.is
Acknowledgements
CAFF Designated Agencies:
DirectorateforNatureManagement,Trondheim,Norway
EnvironmentCanada,Ottawa,Canada
FaroeseMuseumof NaturalHistory,Tórshavn,FaroeIslands(Kingdomof Denmark)
FinnishMinistryoftheEnvironment,Helsinki,Finland
IcelandicInstituteof NaturalHistory,Reykjavik,Iceland
TheMinistryofInfrastructureandEnvironment,theEnvironmentalAgency,theGovernmentof Greenland
• RussianFederationMinistryofNaturalResources,Moscow,Russia
• SwedishEnvironmentalProtectionAgency,Stockholm,Sweden
• UnitedStatesDepartmentof theInterior,FishandWildlifeService,Anchorage,Alaska
Arctic Species Trend Index
•
•
•
•
•
•
CAFF Permanent Participant Organisations:
•
•
•
•
•
•
AleutInternationalAssociation(AIA)
ArcticAthabaskanCouncil(AAC)
Gwich’inCouncilInternational(GCI)
InuitCircumpolarConference(ICC)Greenland,AlaskaandCanada
RussianIndigenousPeoplesof theNorth(RAIPON)
TheSaamiCouncil
Thispublicationshouldbecitedas:LouiseMcRae,ChristophZöckler,MichaelGill,JonathanLoh,
JuliaLatham,NicolaHarrison,JennyMartinandBenCollen.2010. Arctic Species Trend Index 2010:
Tracking Trends in Arctic Wildlife. CAFFCBMPReportNo.20,CAFFInternationalSecretariat,
Akureyri,Iceland.
Formoreinformationpleasecontact:
CAFFInternationalSecretariat
Borgir,Nordurslod
600Akureyri,Iceland
Phone:+354462-3350
Fax:+354462-3390
Email:[email protected]
Website:www.caff.is
Design&Layout:LilyGontard
Coverphotocourtesyof JoelleTaillon.
March2010
___ CAFFDesignatedArea
Report Authors:
LouiseMcRae,ChristophZöckler,MichaelGill,JonathanLoh,JuliaLatham,NicolaHarrison,Jenny
MartinandBenCollen
ThisreportwascommissionedbytheCircumpolarBiodiversityMonitoringProgram(CBMP)with
fundingprovidedbytheGovernmentof Canada.The2010BiodiversityIndicatorsPartnershipprovidedfundingtoassistintheprintingof thereport.
3
Content
5 Foreword
6 Summary
7 Introduction
7 Monitoring Arctic biodiversity
8 Figure 1: Arctic boundaries
9 Data Coverage
9 Figure 2: Data Coverage by Taxonomic Class
9 Trends in sample populations of selected species
10 Figure 3: Sample Populations
15 Arctic Species Trend Index (ASTI)
15 Figure 4: Arctic Species Trend Index for all species
16 Regional results: Arctic boundaries
16 F
igure 5: Arctic Species Trend Index for all Arctic species disaggregated
into High Arctic species, Low Arctic species and Sub Arctic species
17 Figure 6: Trends in Arctic summer sea-ice extent
18 Box 1: Sea-ice-associated species
18 Figure 7: Trends in the Western Hudson Bay Polar Bear populations
19 System Results
19 Overview
19 Figure 8: Index of terrestrial species disaggregated by Arctic boundary
20 F
igure 9: Overall index of marine species and index of north Pacific Ocean
species
20 Trophic Level
21 F
igure 10: Indices of all herbivore species and all herbivores excluding
the waterbird species
21 Box 2: Caribou/reindeer
22 F
igure 11: Indices for all Caribou (Rangifer tarandus) populations, disaggregated into North American and European populations
22 Taxonomic Results
22 Overview
23 Figure 12: Index of ASTI species disaggregated by taxonomic class
23 Birds
23 F
igure 13: Index of all bird species disaggregated into indices of freshwater, marine and terrestrial birds
4
24 F
igure 14: Index of all terrestrial birds disaggregated into an index without goose species and an index of goose species alone
24 Box 3: Terrestrial birds
24 Migratory birds
25 F
igure 15: Index of all bird species disaggregated into indices of migrant
and non-migrant bird populations
26 ASTI in the Global Context
26 F
igure 16: Global Living Planet Index (LPI) disaggregated into temperate
and tropical indices and the Arctic Species Trend Index
Arctic Species Trend Index
27 Discussion
29 Acknowledgements
30 References
34 Appendix I: Technical Notes
34 Arctic Species Trend Index
34 Data tagging
34 Figure 17: Hierarchy of indices within the Arctic Species Trend Index
35 Appendix II: Species and Population Numbers in the ASTI Dataset
35 CAFF boundary
35 High/Low/Sub Arctic boundaries combined
36 High/Low/Sub Arctic disaggregated by class
36 High/Low/Sub Arctic disaggregated by system
36 Marine oceans by class
37 Regions (Greenland and North America)
35 Appendix III: Index and Confidence Interval Values for Each of the Indices
5
Foreword
ManypeopleviewtheArcticasavastandbarrenexpanse—an
intimidatingandhostileenvironmentdevoidof wildlifeandpeople.
Fortunatelythismythisbeingdispelledwiththegrowingvoiceof Arcticindigenouspeoplesandotherresidents,andthegrowingfocus
onsuchissuesasclimatechangeanditsdisproportionateimpacton
high-latituderegions.TheArcticnotonlyisahighlyproductivesystemthatplayshosttoavastarrayandabundanceof uniquewildlife,
butitactsasacriticalcomponentintheEarth’sphysical,chemical
andbiologicalregulatorysystem.Perturbationstothissystemare
expectedtonotonlyhaveconsequencesfortheArcticitself,butwill
befeltglobally.
tom barry
Arcticresidentsinparticular,butalsotheworldatlarge,have
beenincreasinglydemandingtimelyandaccurateinformationon
howtheArcticisrespondingtopressuressuchasclimatechange.
Untilnow,thesedemandshavelargelybeenmetwithsilence.To
date,wehavemostlyreliedonclimateinformationandsea-iceextent
asindicatorsof howtheArcticischanging.Butwhatofthewildlife
thatinhabitstheArctic?Howaretheyrespondingtothesepressures?
WiththeArcticSpeciesTrendIndex(ASTI)wecannowbeginto
trackhowtheArctic’secosystemsandthelivingresourcesdependent
uponthemarerespondingtochange.Almost1,000datasetsforthe
pastfourdecadesrepresenting35%of allknownArcticvertebrate
speciesarefoundintheASTI—asignificantaccomplishmentand
recognitionof thesustainedeffortanddedicationof Arcticresearchersandcommunitieswhohavebeentrackingwildlifepopulationsinaremoteandchallengingenvironment.
WhilethedatafoundintheASTIareimpressive,moreare
neededtounderstandhowtheArctic’secosystemsandtheliving
resourcestheysupportarerespondingandwillrespondtogrowing
andcumulativepressures.Informationoninvertebratesisparticularly
scarce,asisthetrackingof large-scalevegetationchanges.Agrowing
awarenessthatchangesareoccurringfasterthanmodelledpredictionsremindsusthatminimaldatasetscanhavelimitedvalue.An
enhancedeffortisneededfromallArcticcountriestofurtherinvest
inmonitoringandassociatedresearch.TheresultshavetobeeffectivelydeliveredtoArcticresidents,governmentsandtheworldin
ordertohelpusconservetheArctic’slivingresourcesandadaptto
changestotheseresourcesinachangingworld.
Dr.AevarPetersen
Chair,ArcticCouncilConservationof ArcticFloraandFauna
(CAFF)WorkingGroup
We can now begin to track how the Arctic’s ecosystems and the living resources dependent upon them are responding to change
6
Summary
Arctic Species Trend Index
joelle taillon
Thecontributionof Arcticwildlifetoglobalbiodiversityissubstantial.Theregionsupportsgloballysignificantpopulationsof birds,mammalsandfish.Forexample,overhalfoftheworld’s
shorebirdsand80%of theglobalgoosepopulationbreedinArctic
andSubArcticregions.Dramaticchanges(e.g.,sea-iceloss)inthe
Arctic’secosystemsarepredictedtooccuroverthenextcentury.
Arcticspeciesthathaveadaptedtotheseextremeenvironmentsare
expectedtobedisplacedbytheencroachmentof moresoutherly
(SubArctic)speciesandecosystems.Continued,rapidchangein
theArcticecosystemswillhaveglobalrepercussionsaffectingthe
planet’sbiodiversityasawhole.UnderstandinghowtheArctic’s
livingresources,includingitsvertebratespecies,arerespondingto
thesechangesisessentialinordertodevelopeffectiveconservation
andadaptationstrategies.
Inthisreport,vertebratepopulation-abundancedatawereused
toproduceanindicatorof thetrendsinArcticbiodiversityoverthe
past34years(1970asthebaseline1).Thisindextracks965populationsof 306species,representing35%of allknownvertebrate
speciesfoundintheArctic.VertebrateabundanceinHighArctic
speciesdeclined26%between1970and2004.LowandSubArctic
specieshavefaredbetteroverthistimeperiod:LowArcticspecies
experiencedincreasingabundanceandSubArcticspeciesshoweda
declinesincethemid-1980s,butnooverallchangeoverthe34-year
period.Theseobservedtrendsarelargelyconsistentwithcurrent
predictionsregardingtheresponseof Arcticwildlifetoclimate
changeandexpectedincreasesinpreviouslyover-harvestedspecies,
andsuggestthathuman-inducedchangesinArcticecosystemsare
alreadyresultinginwinnersandlosers.Dramaticgrowthofcertain
populationsof migratoryArctic-nestinggeesespecies,forinstance,
showsacontrastwithasteadydeclineinotherherbivorousspecies,
mostof whicharenotmigratory.
Whilethisreporthighlightstrendsseenover34years,further
workisneededtoproduceamorerobustindexthatadequatelyrepresentsalltaxa,biomesandregionsandtodevelopabetterunderstandingof howtheArctic’swildlifeisrespondingtobothnatural
andhuman-inducedchanges.Theremotenessof theregionmeans
certainspeciesandpopulations(e.g.,fishpopulationsandHigh
Arcticpopulations)havelimiteddatacoverage.Currentresearch
andmonitoringeffortsareinsufficient,limitingourabilitytodetect
andunderstandchangesinpopulationabundance.Betterdesigned,
morewidelydistributedandmoreintegratedresearchandmonitoringschemesneedtobeimplemented.Theresultinginformation
mustbedeliveredusingeffectiveformatstodecision-makersatall
levels(national,regionalandlocalauthorities)inordertofacilitate
moreeffectiveandtimelyconservationandadaptationresponsesin
arapidlychangingsystem.
1. 1970 was used as the baseline as pre-1970 data in the ASTI was limited making
trend results uncertain for years preceding 1970. Likewise, 2004 was used as the
cut-off year as sample size declined dramatically after 2004 due to recent, updated
datasets not yet being available.
7
Introduction
Monitoring Arctic biodiversity
Thisyear,allsignatorynationswillbereportingtotheConvention
onBiologicalDiversity(CBD)ontheirprogresstowardsthe2010
targetof reducingtherateof biodiversityloss.Biodiversityindicatorshavebeendevelopedtoassesswhetherornotthistargethas
beenmetandtodemonstratethechangingstateof natureovertime.
TotrackstatusandtrendsinArcticbiodiversityforthe2010target,
theCircumpolarBiodiversityMonitoringProgram(CBMP)has
identifiedanumberof indicesandindicators,oneof whichisthe
ArcticSpeciesTrendIndex(ASTI).Thisindex,liketheglobalLiving
PlanetIndex(LPI),illustratesoverallvertebratepopulationtrends
byintegratingvertebratepopulationtrenddataof anappropriate
standard[1]fromacrosstheArcticandoverthelast34years.An
increasingindexindicatesthat,overall,morevertebratepopulations
intheArcticareincreasingthandecreasing.Whereasadecreasing
index,indicatestheoppositesituation.Thisindexnotonlyallows
foracompositemeasureoftheoveralltrajectoryofArcticvertebrate
populations,butcanbedisaggregatedtodisplaytrendsbasedon
taxonomy,ecosystem,region,timeperiodandothercategories.
MeasuringchangeinArcticbiodiversityisallthemorepertinent
givenevidenceemergingof Arcticecosystemsalreadyresponding,in
somecasesquitedramatically,toclimaticchanges[2,3].Predictions
areof substantialshiftsinthisenvironmentinthenearfuture(e.g.,
encroachmentof moresoutherlyspeciesandecosystems)[4,5]and
recentchangesinphysicalelementssuchasseaicehaveoutpaced
predictedchanges[6].LimitedfunctionalredundancyinArctic
ecosystemsposesaparticularriskasthelossof asinglespecies
couldhavedramaticandcascadingeffectsonanecosystem’sstate
andfunction[3].Ourcurrent,mostly,single-speciesapproachto
monitoringwithabiastowardscharismaticspeciesoverfunctional
specieslimitsourabilitytodetectandunderstandcriticalchangesin
theArctic’secosystems.Abroaderandmoreintegratedapproachis
neededtofacilitateabetterunderstandingof howtheArctic’sliving
resources,includingitsvertebratespecies,arerespondingtoachangingArcticandhowthesechangesmightreflectorcounterglobal
biodiversitytrends.Thisinformationisessentialinordertodevelop
effectiveconservationandadaptationstrategies.
Resultspresentedinthisreportfromtheanalysisof ArcticvertebratepopulationdataareusedtoexamineoveralltrendsinpopulationabundanceinachangingArcticecosystem.AnoverallASTI
ispresentedasanindicatorof Arcticbiodiversityattheecosystem
level,followedbyanumberof species-andsystem-basedthemes
illustratedtorevealtrendsinabundanceatsmallerscales.ThesedisaggregationsidentifypatternsinArcticvertebratepopulationtrends,
carsten egevang
This information is essential in order to develop effective conservation and adaptation strategies. 8
therebyfacilitatingagreaterunderstandingof thepotentialdriversof thesetrends.Overtime,trackingthisindexwillhelpreveal
patternsinArcticwildliferesponsetogrowingpressures,thereby
facilitatingabetterpredictiveabilityonthetrajectoryofArctic
ecosystems.
Arctic Species Trend Index
carsten egevang
Figure 1: Arctic boundaries The Arctic as defined by the Conservation of Arctic Flora and Fauna [7] and the High, Low and Sub Arctic regions according to floristic boundaries [8]. The red dots represent vertebrate populations included in the ASTI data analysis.
9
Data Coverage
Thedelineationof theHigh,LowandSubArcticboundarieswas
usedtoclassifyArcticpopulations(Figure1)givingatotalof 965
timeseriesfor306speciesof birds,mammalsandfish.Thetotal
numberof speciesintheASTIrepresents35%of theknownArctic
vertebratespeciesandtheproportionof eachtaxonomicclassrepresentedisshowninFigure2.Representativecoveragewasgoodfor
birdspecies,moderateformammalsandpoorforfish.
peter e. steenstra/usfws
100%
80%
60%
40%
20%
0%
Birds
Mammals
Fishes
Taxonomic class
Figure 2: Data Coverage by Taxonomic Class. The coverage of species represented in the ASTI. Black bars represent proportion of Arctic species in each class for which there are population data available. White bars are the proportion of Arctic species with no available population-trend data.
DatawerecollatedfromacrosstheArcticrepresentingcontributionsfromvariousindividualsand
organizations(seeAcknowledgements)inalleightArcticnationsandfrommarine,terrestrialand
freshwatersystems(seeAppendixII).Afewexamplesofthecompositionof theASTIdatasetare
onthefollowingpages.Thetrendsinabundanceineachsubsetof datawereaveragedtoproducethe
resultsthatfollow.
Trends in sample populations of selected species
Thepopulationtrendsforthe10terrestrial,marineandfreshwaterspeciesshowninFigure3illustrate
thekindsof datathathavebeenusedtocalculatetheArcticSpeciesTrendIndex.Theexamplesetspans
arangeof classes,locationsandArcticregionstoillustratehowdifferentpopulationsarefaringacross
theArcticregion,butdoesnotnecessarilyrepresentthepictureforanentirespeciesorregion.
Somepopulationsareeitherstableorincreasing,representingconservationsuccessessuchasthe
AlaskanBowheadWhalepopulationthatisbenefittingfromtheremovalofhuntingpressure.GreenlandCodthatdeclinedtoaverylowlevelbytheearly1990sduetodeteriorationof theenvironmental
conditionsandhighfishingmortality,showsindicationsof improving,withinfluxof codfromIcelandicwatersasonecontributingfactor.
10
No. of Individuals
12000
ansgar walk
0
1970
1975
1980
1985
1990
1995
2000
2005
Bowhead Whale (Balaena mysticetus)
Spawning stock Biomass (T)
1200000
0
1970
1975
1980
susan daly
Pollock (Pollachius virens)
Figure 3: Sample Populations
1985
1990
1995
2000
2005
11
Thousand individuals
3
matthias hillebrand
0
1970
1975
1980
1985
1990
1995
1990
1995
2000
2005
Wolverine (Gulo gulo)
Tracks per km2
25
0
1970
1975
1980
1985
2000
2005
carsten egevang
Arctic Hare (Lepus timidus) 12
Est. no. of occupied nests
250
carsten egevang
0
1970
1975
1980
1985
1990
1995
2000
2005
1995
2000
2005
Atlantic Puffin (Fratercula artica)
No. of Fish
400000
ruth foster
0
1970
1975
1980
1985
1990
Chum Salmon (Oncorhynchus keta)
Continued ... Figure 3: Sample Populations
13
Breeding pairs
80
0
1970
mike brown
1975
1980
1985
1990
1995
2000
2005
2000
2005
White-Tailed Eagle (Haliaeetus albicilla) Spawning stock Biomass (T)
500000
0
1970
1975
1980
1985
Greenland Cod (Gadus morhua)
1990
1995
hans-petter fjeld/wikipedia
14
Thousand individuals
8
malene thyssen/wikipedia
0
1970
1975
1980
1985
1990
1995
2000
1990
1995
2000
2005
Brown Bear (Ursus arctos) Individuals pr 100m2
80
peter e. steenstra/usfws
0
1970
1975
1980
1985
Atlantic Salmon (Salmo salar)
Continued ... Figure 3: Sample Populations
2005
15
Arctic Species Trend Index (ASTI)
Theaveragetrendin965populationsof 306Arcticvertebratespecies
indicatesanincreaseinabundancefrom1970until1984,thentheindexremainsrelativelystableupto2004(Figure4).Overall,theindex
hasincreasedby16%overthetimeperiod(1970-2004).Theconfidenceintervals2 showthattheoverallincreaseinvertebrateabundance
wasbetween2and32%.Thenumberof Arcticpopulationscontributingtotheindexoverthe34yearsrangedfrom266to666timeseries
forasingleyear.Thenumberof populationshasincreasedsteadilyup
until1998indicatingthatdataavailabilityhasimprovedeitherasa
resultof moremonitoringschemes,orbydatabecomingmorewidely
available,orboth.Declinesinsamplesizeinrecentyearsisthoughtto
beduetonewdatanotyetbeingavailable,ratherthanrepresentingareductioninmonitoringeffort.
PopulationtrendswithintheArcticboundaryasdefinedbyCAFF(seeFigure1)werealmostidentical
tothoseof theArcticboundariesusedinthisanalysis.AlthoughtheCAFFdatasetcontains133fewer
populations,therewasonlyonespeciesdifferencebetweenthetwoindices,sotheyarequalitativelyvery
similar(seeAppendixIIandIII).
usfws
AlthoughtheoverallASTIisincreasing,thefollowingsub-indicesrevealthatthesametrendisnot
consistentamongallregions,systemsorgroupsof species.2
2
700
1.8
500
1.4
1.2
400
1
300
0.8
0.6
0.4
Number of populations
Index value (mean annual rate of change)
600
1.6
200
Arctic Species Trend
Index
N Values
100
0.2
0
1970
0
1975
1980
1985
1990
1995
2000
2005
Year
Figure 4: Arctic Species Trend Index (with 95% confidence intervals) for all species within the Arctic boundaries and total population (N) values for that year, for the period 1970-2004. (ASTI, n=306 species, 965 populations).
2. Confidence intervals were generated for each index and the values are found in Appendix III of this report. They
are not displayed in most figures in order to maintain the clarity of the graphs.
16
Regional results: Arctic boundaries
PopulationsintheHigh,LowandSubArcticboundariesshow
markedlydifferenttrends(Figure5).HighArcticspeciesshow
anoveralldeclineinabundanceof26%withpopulationslevelling
offinthemid-1990s.Similarly,afteraninitialgrowthperiod,
SubArcticspeciesappeartohavedeclinedinabundancefrom
aroundthemid1980s(overalldeclineof 3%).LowArcticspecies
ontheotherhandhaveincreasedbyanaverageof46%overthe
sametimeperiod.
usfws
2
Index Value (mean annual rate of change)
1.8
1.6
1.4
1.2
1
0.8
0.6
High Arctic
Low Arctic
0.4
0.2
0
1970
Sub Arctic
ASTI
1975
1980
1985
1990
1995
2000
2005
Year
Figure 5: Arctic Species Trend Index for all Arctic species (black line) disaggregated into High Arctic species, Low Arctic species and Sub Arctic species for the period 19702005. (All species, n =306 species, 965 populations; High Arctic, n =47 species, 114 populations; Low Arctic, n=194 species, 545 populations; Sub Arctic n=155 species, 306 populations.)
TheHighArcticindexcombinestrendsin47speciesandincludessea-ice-associatedspecies,such
asnarwhalandpolarbear.Thisregionof theArctichasexperiencedthelargestincreaseintemperature
changetodate[5]andhasalreadyexperienceddramaticreductionsinsea-iceextent(Figure6)withfurthercontractionof seaicepredictedinthenearfuture[9].Reductioninsea-iceextentlimitsthehabitat
availableformanysea-icedependentHighArcticspeciesandthesespeciesareexpectedtodeclinewith
decliningsea-icecover[10].However,weareunabletoascertaintheextenttowhichsea-iceassociated
species,suchaspolarbear,havealreadybeenaffectedbythesechanges.ThetrenddataformostHigh
Arcticspeciesareavailableforonlyafewselectedpopulations(seeBox1)andthereareotherfactors
influencingspeciesabundance(e.g.,naturalcycles)thatneedtobeconsidered.Forexample,someterrestrialmammalpopulationsareknowntocyclenaturallyandsomeof thesepopulationshaverecently
beenexperiencingaperiodof decline(e.g.,BrownandCollaredLemmingpopulationsinGreenland
andCanada;CariboupopulationsfromthenorthernterritoriesinCanada).Theserecentdeclinesare
thoughttobepartofanaturalcycleandarecontributingtothedecreasingHighArcticindex.
17
TheSubArcticareapredominantlycoversterrestrialandfreshwatersystemswithveryfewcoastalandnomarinepopulations.This
isthemostaccessibleregionintheArctic,andconsequentlyhumanimpactandland-usechangehavebeengreaterthanintheHigh
Arctic,althoughstillrelativelylowcomparedtonon-Arcticregions.
Withclimatechangeandincreasedresourcedevelopmentcoupled
withinvasivespecies,contaminantsandpossibleoverharvesting,
theSubArcticmayfaceincreasing,cumulativepressuresthatresult
innegativeimpactsonwildlifepopulations.However,itisunclear
atthistimewhatmightbedrivingthesteadydeclineinvertebrate
abundancesince1986.
TheindexofLowArcticspeciesispredominantlyareflectionof themarineenvironmentandshowsanaverageincreaseinabundanceoverthetimeperiod.Thespecies
includedinthisdatasetareprimarilymarinefish,someofwhich(suchasPollock)changeinabundance
inaccordancewithsea-temperaturefluctuations[11],andmarinemammalspecies(manyofwhichhave
shownrecoveriesfrompreviouslyhighlevelsof exploitation[12]).Theseincreasesarelargelyfoundin
thePacificwatersof theLowArcticintheEasternBeringSea,thusdemonstratingtheneedforcareful interpretationof theLowArcticindex.Theyalsorevealtheshortcomingsthatarestrictedtimeline
of biodiversitychangepresents.If populationshadbeenmonitoredsincetheearly1900s,thesmall
recoveryinsomeof thelargemarine-mammalspeciesoverthepastfewdecadeswouldbedwarfedby
theextensivedeclinesthatmarkedthedecadespreceding1970.
Figure 6: Trends in Arctic summer sea-ice extent. Comparison between 1979 to 2000 average, 2007 and 2009 (up to August 31). Source: National Snow and Ice Data Center. Digital media. usfws
18
Arcticsummersea-iceextentreachedarecordminimum(seeFigure6)in2007(39%belowthe
1979to2000average)and2008wasthesecond-lowestrecord(reaching34%belowaverage).In
conjunctionwiththesesurprisinglossesinsea-iceextentisthelossof multi-yearicewhichmakesthe
currentthinner,single-yearicemuchmorevulnerabletofurtherreductionsinextent.Itiswellestablishedthatfurtherlossesinsea-iceextentaretobeexpectedoverthecomingdecades[9].Howthis
lossof seaicewillimpactmarinespeciesislessclear.NotallHighArcticspeciesareequallyreliant
onthisrapidlychanginghabitat,sothestrengthof thisrelationshipandtheplasticityof thespecies
willdictatetheabilityof anygivenspeciestoadapttofuturechangesinthedistributionof seaice
[10].Theicerepresentsahabitatthatmanyspeciesdependon,fromPolarBearstoRingedSeals,seabirdstofish,andevenalgaeandinvertebratesdirectlyassociatedwithmulti-yearice.Speciessuchas
thePolarBear,NarwhalandRingedSealarehighlyadaptedtothishabitatforforaging,birthingor
predatorevasion[13].PolarBears,forexample,relyalmostentirelyonthemarinesea-iceenvironment
fortheirsurvival,thereforelarge-scalechangesintheirhabitatareexpectedtohavedramaticimpacts
onpopulationsizes[14].Inthecaseof theWesternHudsonBayPolarBearpopulation,theincreasinglylongice-freeseasonisdirectlycorrelatedwithreducedbodyconditionof PolarBearsinthis
population,therebyinitiatingtheobservedpopulationdeclines[14,15].However,thelackof alinear
relationshipbetweenthischanginghabitatandpopulationabundancemakesitdifficulttopredictexacteffects.Theextenttowhichthemajorityof speciescanadapttothelossof seaiceandassociated
preyspeciesremainslargelyunclear[10].Thereisgreatuncertaintyinhowspeciesinteractionswill
beaffectedbythesedramaticchangesandevenbaselinedataonpopulationsizeinsea-ice-dependent
speciesislargelylacking.
1400
1200
1000
Individuals
Arctic Species Trend Index
Box 1: Sea-ice-associated species
800
600
400
200
0
1970
1975
1980
1985
1990
1995
Figure 7: Trends in the Western Hudson Bay Polar Bear (Ursus maritimus)
populations [15].
2000
2005
19
System Results
Overview
Divergentpatternsarealsoobservedbetweenthedifferentsystems
(marine,freshwaterandterrestrial).Whereasthefreshwaterand
marineindicesincreaseoverthetimeperiod(52%and53%respectively),theterrestrialindexshowsanoveralldeclineof 10%,despite
increasinginthelate1970stomid-1980s(Figure8).However,the
databehindthefreshwaterindexiscurrentlytoosparse(51species;
132populations)tofullyreflectthecircumpolarfreshwatersituation.Themarineindexisrobust(107species;390populations),but
hannes grobe/awi/wikipedia
itislargelydriven,asistheLowArcticindex,byanoverweightingof populationdatafromtheeasternBeringSea.Morerobustandbalanceddatasets
areneededforthesesystems.Theterrestrialindex,however,doeshaverelativelybalancedanddecent
dataanditcomprisesthelargestdatasetwith46%of thetotalnumberof ASTIpopulationscompared
tomarine(40%)andfreshwaterwithonly14%.
Figure 8: Index of terrestrial species disaggregated by Arctic boundary for the period 1970-2004 (High Arctic, n=25 species, 73 populations; Low Arctic, n=66 species, 166 populations; Sub Arctic, n=102 species, 204 populations.)
Theterrestrialindexisfairlystableuntiltheearly1990s,afterwhichthereisasteadydecline,despitean
overalldramaticincreaseingoosepopulationsoverthesametimeperiod(Figure8).Theoverallmoderate
declineintheterrestrialindexislargelyareflectionof declines(-28%)interrestrialHighArcticpopulations(mostlyherbivores,e.g.,caribou,lemmings),whereasterrestrialLowArcticpopulations(e.g.,Lesser
SnowGeese[16])haveincreasedby7%andSubArcticpopulationshavedeclined(-5%)slightly(Figure
8).TheincreaseintheLowArcticis,inpart,duetothestrongincreaseof goosepopulations.Itcould
alsoreflectecologicalresponsestoclimaticchangeswherebyspecieswithmoresoutherlydistributionshave
movednorthandarenowthriving,whilethenorthernmosttypicalHighArcticspecieshavenowhereto
moveto.However,evidenceforthisisnotconclusiveandcumulativefactorsmightbeinvolved.
20
Index value (mean annual rate of change)
Arctic Species Trend Index
2.5
2
1.5
1
0.5
Marine
Pacific ocean
0
1970
1975
1980
1985
1990
1995
2000
2005
Year
Figure 9: Overall index of marine species and index of north Pacific Ocean species for the period 1970-2004. (Marine, n=107 species, 390 populations; Pacific, n=69 species, 176 populations.)
Asmentioned,themarineindexwasoverweightedbypopulationdatafromtheeasternBeringSea.
TheincreasingtrendfoundinFigure9forPacificmarinepopulations,islargelydrivenbymammaland
fishpopulations.Thisdramaticallyincreasingtrendislargelydrivingtheoverallmarineindex.Many
marinevertebratepopulations(e.g.,marinemammals)intheBeringSeaarerecoveringfromhistorical
overharvesting[17],aswellasfromrecentchangesinenvironmentalconditions(e.g.,BeringSeaPollock
[18])resultingindramaticincreasesinsomespecies’populations.
Furtheranalysiswasconductedfortheterrestrialsystemduetothelargerdatacollections.These
smallerscaleindicesthatresultrevealintriguingunderlyingtrendswithintheterrestrialsystem.
Trophic Level
AllspeciesintheASTIwereassignedacategoryaccordingtotheirtrophiclevel:primaryconsumer
(herbivores),secondaryconsumer(carnivorespreyingoninvertebrates,fish,smallbirdsand/ormammals)ortertiaryconsumers(toppredators).Figure10illustratesthetrendsinabundancefortheprimaryconsumers,85%of whichareterrestrial.Substantialincreasesinsomepopulationsof theAnatidae
family(geese,ducksandswans)havebeenobserved[19],sotrendsinprimaryconsumerswereanalysed
withandwithoutspeciesfromtheAnatidaefamily.Whileherbivoresasawholeincreasedslowlyin
abundancefrom1970to1990,mostof theincreasewasduetolargeincreasesinAnatidaepopulations.
Byremovingtheducks,geeseandswansitcanbeseenthattherewasanoveralldownwardtrendinother
primaryconsumersby30%between1984and2004.Thereasonsforthisdeclinearenotknownand
maybedue,inpart,tothecyclicalnatureofsomespeciesandpopulations(e.g.,BarrenGroundCaribou).Itmay,however,bealsoattributedtochangingconditionsintundravegetationandmorevariable
springweatherconditions.InmanypartsoftheArctic,shrubshaveincreasedinabundanceandcover
intundrasystemsastheclimatehaswarmedandtheadjacentsea-icecoverhasdeclined[20][21][22].
Experimentalwarmingof vegetationplotsintundrasystemshasshownthesameeffectwithacorre-
21
spondingdecreaseinlichenandbryophytebiomass[23].Thesechangesareexpectedtobeunfavourable
formanyexistingtundraherbivorousspeciessuchasBarrenGroundCaribou[24].Also,theincidence
of icingeventsduetospringrainfallorincreasedfreeze-thawcyclesarethoughttobeontheriseand
representanegativeimpactonArcticherbivoresastheicemakesitmoredifficultforgrazerstoaccess
foragewithpotentiallycatastrophicresults.Forexample,duringtwowintersinthe1990s,thePeary
CariboupopulationinthewesternQueenElizabethIslandswasreducedbymorethan95%.Thiswas
duetoheavysnowconditionsandthepresenceof icelayersinthesnowthatmadeitdifficultforthe
Cariboutoreachgroundforage[25].
2
Index value (mean annual rate of change)
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
Herbivores
Herbivores (minus Anatidae)
0.2
0
1970
1975
1980
1985
1990
1995
2000
2005
Year
Figure 10: Indices of all herbivore species and all herbivores excluding the waterbird species (ducks, geese and swans) for the period 1970-2004. (All herbivores, n=66 species, 220 populations; herbivores minus waterbird species, n=55 species, 182 populations.)
Box 2: Caribou/reindeer HumanshavehadarelationshipwithCariboustretchingbacktoUpperPalaeolithictimes,asthe
20,000-year-oldcavepaintingsinCantabria,northernSpain,testify.Europewasinthegripof thelast
glacialperiod,thelandscapeof northernSpainandsouthernFrancewasborealtundra,Mammothsand
WoollyRhinoceroswereabundant,andReindeerwereamongthemostimportantfoodspeciesforthe
Cro-Magnonhunter-gathererpeoplewholivedthere.TodaythatrelationshipcontinuesintheArctic
andSubArcticregions,whereindigenouspeoplessuchastheSaamiof ScandinaviaandtheInuitin
Canadadependondomesticatedandwildherdsformeat,milkandhides.
Figure11showsaveragetrendsin25NorthAmericanand21EurasianCaribou/Reindeerpopulations,andtheaveragetrendacrossall46populations.Thetotalpopulationof wildherdspeakedat
about5.6millionintheearly1990sand2000s,andsincethendeclinedbyaboutathirdoverall[26].
ThelargestherdinRussia,theTaimyr,peakedataroundonemillionanimalsin2000.Althoughrecent
declinesarepartof anaturalcycle,thereisgrowingconcernaboutthecurrentimpactsofglobalchange
onRangiferpopulations[27].Threefactorsdifferentiatetherecentperiodof lowabundancefrom
previousdeclinesinpopulations:climatechange,increasedindustrialdevelopmentandmoreefficient
harvesting.Geographicallyvariableclimate-changetrendsandcharacteristicextremesinweatherpatternshavedirectimpacts,bothpositiveandnegative,onbirthandsurvivalrates,andultimatelyonherd
22
productivity.IncreasedindustrialdevelopmentintheNorthalters
activityanddistributionpatterns.Greateraccesstocaribouand
improvedmobilityof huntersresultsinconsistentlyhighharvests
evenwhenpopulationnumbersarelow.Allthreefactorshavethe
potentialtoaffectcurrentdeclinesandprolongrecoverytimes.It
willbeimportanttounderstandwhatdriversareresponsiblefor
populationdeclinesandtomonitortheoutcomeof recoverystrategies[27].
2
1.8
Index value (mean annual rate of change)
Arctic Species Trend Index
joelle taillon
ThepopulationtrendsshowninFigure11areclearlycyclicalandalsoshowstrikingsimilaritiesbetweenEurasiaandNorth
America,suggestingthattheremaybecircumpolarfactorsunderlyingthesetrends.Althoughthecyclicalpatternshavebeen
attributedtoclimaticpatternsinsomepopulations[28],therelationshipbetweenclimateandRangifer
abundanceiscomplex.Ratherthanhavingadirectcausaleffect,decadalvariationinclimateislikely
tohaveacumulativeinfluenceonabundancethroughsuccessivegenerationsbyaffectingextrinsicand
intrinsicfactorssuchasforageavailabilityandfecundity[29].Recentadvancesinestimatinglong-term
trendsinBarrenGroundCaribouabundance[30]mayhelptoshedsomemorelightonthesecomplex
interactions.
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1970
Caribou - all
Caribou - North America (25 pops)
Caribou - Scandinavia and Russia (21 pops)
1975
1980
1985
1990
1995
2000
2005
Year
Figure 11: Indices for all Caribou (Rangifer tarandus) populations, disaggregated into North American and European populations. (All Caribou populations=46, North America=25, Scandinavia and Russia=21).
Taxonomic Results
Overview
Likethesystems,theanalysisof theASTIbytaxonomicclassalsorevealscontrastingtrendsbetween
eachspeciesgroup.Birdscomprise52%of theASTIpopulationsandshowaflattrendoverallwith
aslightdeclineinlateryears,until2004.Mammalpopulationsincreased,onaverage,overthe34-year
period.Thefluctuationsduringthemid-1980sareduetorapidchangesinabundanceof asmallsetof marine-mammalpopulationsintheArcticOcean(Killer,Sperm,FinandHumpbackwhales).Thisis
mostlyareflectionof alimitednumberof datasetswithlimitedtime-seriesdataratherthananaccuratedepictionaslarge-bodiedmarinemammalsgenerallydon’texhibitsuchmarkedannualchangesin
populationsize.Thefishindexisnotshownasitisheavilyskewedbymarinefishpopulationsfromthe
BeringSea,aneffectwhichhasbeendiscussedinthesystemssection(p.19)of thisreport.
23
Index value (mean annual rate of change)
2.5
2
1.5
1
0.5
Birds
Mammals
0
1970
1975
1980
1985
1990
1995
2000
2005
Year
Figure 12: Index of ASTI species disaggregated by taxonomic class for the period 19702004. (Birds, n=190 species, 503 populations; mammals, n=53 species, 275 populations.)
Birdsarethebeststudiedof thetaxonomicclasses,coveringalargenumberof species,populations
andgeographicareasoverrelativelylongtimeperiods,thusallowingformoredetailedanalysestobe
conducted.
Birds
2
Index value (mean annual rate of change)
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
Birds
Freshwater birds
Marine birds
0.2
0
1970
Terrestrial birds
1975
1980
1985
1990
1995
2000
2005
Year
Figure 13: Index of all bird species disaggregated into indices of freshwater, marine and terrestrial birds for the period 1970-2004. (All birds, n=190 species, 503 populations; freshwater, n=35 species, 54 populations; marine, n=37 species, 214 populations; terrestrial, n=118 species, 235 populations.)
24
Ananalysisof Arcticbirdtrendsbybiome(Figure13)showsthattherelativelystablepatternis
somewhatconsistentinbothmarine-andterrestrial-birdpopulationstherebyreinforcingthetrendseen
intheoverallArcticbirdindex.Freshwater-birdpopulationshaveincreasedoverallbetween1970and
2004.Thispositivetrendinabundanceinmanyofthefreshwater-birdpopulations,andparticularly
inthecaseof someduckspecies,couldreflecttheimplementationof stricterhuntingregulationsand
more-abundantwintering-groundfoodsourcesthathaveallowedthesespeciestoincreaseinnumber
[19].
Index Value (mean annual rate of change)
Arctic Species Trend Index
2.5
2
1.5
1
0.5
Geese
All other birds
Terrestrial birds
0
1970
1975
1980
1985
1990
1995
2000
2005
Year
Figure 14: Index of all terrestrial birds disaggregated into an index without goose species and an index of goose species alone. (All terrestrial birds, n=122 species, 236 populations; Anatidae only, n=13 species, 46 populations; non-Anatidae, n=109 species, 190.)
Box 3: Terrestrial birds Figure 14 shows trends in geese compared to other terrestrial birds. Many goose populations
have benefited from both a reduction in the level of hunting and also land-use changes on overwintering sites which has provided better forage.
These sometimes rapidly increasing populations are driving the goose index in Figure 14.
However, this is not a uniform trend across all species of geese. A recent synthesis of Arcticbreeding geese monitoring suggests that 23% of these populations are actually in decline [19].
Migratory birds
Millionsof birdsmigratefromaroundtheEarthtobreedintheArcticeachyear.Atotalof over450
birdspeciesareknowntobreedinArcticandSubArcticareas.Of these,395speciesregularlymigrate
outsidetheArcticandSubArctic,linkingtheseregionswithalmostallareasof theplanet(exceptinlandAntarctica)viatheirmigratoryroute.Fourspeciesmigratewithintheregion[31].Morethanhalf of theworld’sshorebirdsandalmost80%of theworld’sgeesebreedintheArcticandSubArctic[32]
[19].Theindicesabove(Figure15)indicateanoverallincreaseinnon-migrantpopulations,whereas
migratorypopulationsslightlydecreased(-6%).Butthereisnosignificantdifferencebetweenthe
trendsinthetwogroups(seeAppendixIII).Thedeclineinmigratorybirdpopulationswouldbemore
25
pronouncedif theincreasinggeeseshowninFigure14arenotincluded.
Aswell,long-termmonitoringof Arcticmigrantstakesplaceacross
theEarthatwinteringandstagingsites.Althoughthemigratoryindex
involves170speciescomprising424populations,manyshorebirddata
frommonitoringstationsoutsidetheArctic(themajorityof whichare
declining[33])havenotyetbeenincluded.
Unlikeresidentspecies,populationsizesof migratoryspeciescanbe
influencedbyconditionsatanystageof migrationwithimpactsonly
becomingapparentaftermonitoringatsubsequentstages[34].Many
wadersorshorebirdsareindecline,butthereasonsarenotfullyunderstood([35][36][33]).AlthoughchangesintheArctic,suchassnow
cover,humidityandincreasingshrubcovermayimpactshorebirds[37],
donna dewhurst/usfws
therearemanyotherfactorsinside(e.g.,changingdistributionandextent
of tundrawetlands)andoutsidetheArctictoconsiderinexplainingthe
trends.Forexample,pre-nestingandegg-layingperiodsaremajorenergeticbottlenecksacrosstheentire
Arcticregion[38].Warmertemperaturesinspringandsummeroverlargepartsof theArctictundra
canbelargelybeneficialforshorebirdpopulations,however,therecentobserveddeclinesaremostly
attributedtothreatsoutsidetheArcticregion.Changesinhabitatandfoodavailabilityonkeystopover
sitesarecrucialforthesurvivalof shorebirdpopulations.
2
Index Value (mean annual rate of change)
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
Migrant birds
Nonmigrant birds
0.2
0
1970
1975
1980
1985
1990
1995
2000
2005
Year
Figure 15: Index of all bird species disaggregated into indices of migrant and non-migrant bird populations for the period 1970-2004. (All birds, n=190 species, 503 populations; migrants, n=170 species, 424 populations; non-migrants, n=29 species, 79 populations.)
26
ASTI in the Global Context 2
1.8
1.6
1.4
Index Value
Arctic Species Trend Index
usfws
TheLivingPlanetIndex(LPI),whichprovidesameasureof the
trendsinvertebrateabundanceacrosstheglobe,hasbeensteadily
decliningsincetheearly1980s.ThedifferencebetweentheGlobal
LPIandtheASTIislargelyduetorecentdeclinesinthetropics.
ThetemperateLPIshowsaverysimilartrendtotheArcticSpecies
TrendIndexwithanoverallincreaseof almost20%since1970.
Thesevaryingregionaltrajectoriesarethoughttobeareflection
ofrecenthuman-useanddevelopmentpatterns.Tropicalregions
priorto1970experiencedrelativelylittledevelopmentpressures.
Sincetheearly1960s,thisregionhasexperiencedrapidlyincreasingdevelopmentpressureslargelyresultinginlarge-scalehabitat
conversionandloss.Incontrast,themajorityof large-scalehabitatlossandconversionintemperate
regionstookplacepriorto1950,withconversiontoagricultureamongthemaindrivers.Theincreasing
trendinthetemperateLPIislikelytoreflectrecoveryofsometemperatevertebratespeciesfromthese
historicalpressuresandincreasingabundanceof speciesbenefittingfromtheseland-usechanges.While
mostof theArctichasnotexperiencedlarge-scalehabitatconversionorloss,theincreaseintheASTI
isthoughttobepartlyduetotherecoveryofsomevertebratepopulations(e.g.,marinemammalsand
geese)fromhistoricaloverharvesting,aswellasincreasesinsomefishpopulations,particularlyinthe
BeringSea.ThedeclineintheHighArcticindex,wheredevelopmentandharvestingpressuresarevirtuallynon-existentisaconcernandcouldbeanearlyindicationof theresponseof HighArcticvertebrate
populationstoachangingclimateanditsconsequentchanges,suchasinthephysicalstructureofHigh
Arctichabitats(e.g.,seaice).
1.2
1
0.8
0.6
0.4
Arctic Species Trend Index
Global LPI
Temperate LPI
Tropical LPI
0.2
0
1970
1975
1980
1985
1990
1995
2000
Year
Figure 16: Global Living Planet Index (LPI) disaggregated into temperate and tropical indices and the Arctic Species Trend Index for the period 1970-2004. (Global LPI, n=2093 species, 6,433 populations; temperate LPI, n=1,329 species, 4,638 populations; tropical LPI, n=858 species, 1,795 populations; ASTI, n=306 species, 965 populations.)
27
Discussion
Thisreportdescribestheaveragetrendsin965populationsof 306
vertebratespeciestogiveaninitialindicatorof changesinArctic
biodiversityover34years.Therewasameanoverallincreasein
abundancebetween1970and2004.Thisincreasingtrend,however,
isnotconsistentacrossallspecies,systemsorregions.Declineswere
evidentintheHighArcticamongterrestrialpopulationsandherbivores(excludingwaterbirds).
Thetaxonomicspreadof dataintheASTI(formammalsand
birds)setsaverygoodbaselinewithpopulationsfrom35%of all
knownArcticvertebratespeciesrepresented.However,spatialand
temporalcoveragevarieswidelyandamorecomprehensivedataset
isneededinordertoreducebiasandtoallowforfiner-scaleanalysis.Wherethereisanimbalancein
coverageinasubsetof data,theresultingtrendsmaybedrivenbythedominantregionorspecies.For
example,theincreaseinthemarineindexisskewedtowardstrendsfromAlaskanwaterswheremonitoringeffortshaveyieldedfarmoredatathaninotherArcticseas.Therefore,cautiousinterpretationof theresultsisrequired.Itisanticipatedthat,withgreaterdatacontributions,futureASTIreportswillbe
abletoprovideamorerobustandaccuratedepictionof overallandregionaltrends.
Theseinitialresultssuggestthatimpactsof changinglanduse,climatechange,invasivespeciesand
exploitationhavenotnegativelyimpactedoverallvertebrateabundanceintheArcticduringthepast34
years.However,theoverallincreaseinvertebrateabundancemasksunderlyingtrendswheresomespecies
andpopulationsduringthisperiodhavethrivedorremainedrelativelyflatwhileothershavedeclined,
possiblyinresponsetohuman-inducedchanges.Inparticular,theHighArcticandterrestrialtrends
areof concernastheymayreflectearlyresponsetoexpectedchangesintheseecosystems.Indeed,the
observeddecliningtrendsinthesesystemsarebroadlyconsistentwithpredictedecosystemandwildlife
responsetoclimatechange.Thesepredictionsincludereductionsinabundanceof HighArcticspecies
dependentonseaice,reductionsinextentof HighArcticterrestrialecosystems(e.g.,tundra)andincreasedoverallabundanceof SubArcticwildlifeasmoresoutherlydistributedspeciesmovenorthwards
[5].Futureanalysesmustpaycloseattentiontothesesystems.Despitethisoveralltrend,accelerating
changesintheArctic’sphysicalsystemlargelyattributedtoclimatechangeareexpectedtocausefundamentalchangestotheArctic’secosystemsandthebiodiversitythesesupport.Increasingandacceleratingpressureshighlighttheimportanceof enhancingcurrentmonitoringprograms,integratingthese
programstoresearchandexpandingcoveragetolesswell-coveredspeciesandregions.Certainregions,
suchastheHighArctic,areshowingpopulationsalreadyindecline.Climaticchangesalreadyoccurring
intheArcticarelikelytobeoneof theprocessesbehindthesedeclines,butfurtherresearchisneeded
toestablishtheprecisemechanismormechanismsinforceandtheirrelativeinfluenceonthesedeclining
trends.MonitoringspeciesabundanceintheremoteArcticenvironmentpresentsanumberof logisticalobstaclesthatneedtobeovercome.Thisiscriticalforgroupssuchassea-ice-associatedspecies,for
whichobtainingregularpopulation-trenddatawillbeof paramountimportanceastheregionwarms
[39].
TheArcticisanenvironmentwherepronounced,prolongedandoftensynchronouspopulationcyclesareanaturalphenomena—insomecasesassociatedwithnaturalclimatefluctuations[28].Thiscan
makedirectinterpretationdifficultwhenlookingattrendsamonggroupsof speciesandoveralimited
time-frame(34years).Butwithacomprehensivedatasetthatisbroadintaxonomic,geographicand
temporalscope,theindexcanbedisaggregatedtohelpelucidatepatternsoutsideof naturalvariation.
Thesepatternscanshedlightuponpossiblecasualmechanismsandtheirrelativeinfluence.Thisreport
hasillustratedmanyofthesepatternsandhighlightstheopportunitiesforenhancedunderstandingthat
futureanalysiscanprovide.
usfws
28
AswithotherArcticenvironmentalindices(e.g.,sea-icecover),theASTIrepresentsanimportant
indicatorof thestateof theArctic.Withincreasingdatacoverage,itisexpectedtoprovideanearly
warningsystemfortheworldwithregardtotheimpactsof climatechangeandotherhumanstressorsonbiodiversity.ArobustASTIwillbeabletodepictatanearlystagesystemresponses,ecological
regimeshiftsandsubtlechangesintheArcticenvironmentthatwouldotherwisenotbenoticed.Its
abilitytoserveasanearlywarningsystemverymuchdependsonthenumberof participatingmonitoringnetworksandadequatedatacoverage.
29
Acknowledgements
WewouldliketothankForeignAffairsandInternationalTradeCanadaandEnvironmentCanadafor
providingthefundingforthisproject.We’dalsoliketothankallCAFFcountryrepresentativesfortheir
helpinfacilitatingthedeliveryofdatatomaketheArcticSpeciesTrendIndexmorerobust.Inparticularwe’dliketothankTomBarryfromtheCAFFsecretariat,AevarPetersen(Iceland)andSuneSohlberg
(Sweden)fortheiractiveroleinprovidingdatafortheASTI.Thisreportandtheindexwouldnothave
beenpossibletocompilewithoutnumerouscontributors.Weareextremelygratefultothefollowing
organizationsandindividualsthathelpedandcontributedwithpublishedandunpublisheddataandin
manycasescommentsonthedraftreport.
UnitedStates:SueMoore,TimRagen,ScottSchliebe,SimonTokumine,VernonByrd,JenniferBoldt,
DonDragoo,DavidIronsandRichardLanctot
Canada:VillyChristensen,KathyDickson,GillesGauthier,GrantGilchrist,AnneGunn,TrishHayes,
CharlesKrebs,GuyMorrison,DaveMossop,JimReist,DonRussell,RickWardandDirkZeller
Russia:AlexanderKondratiev,ElenaLappo,MikhailSolovievandVassilySpiridonov
Greenland:JannikHansen,FlemmingMerkelandHansMeltofte
Norway:PerArneberg,SteinNilsen,KnutSunnanaaandDagVongraven
Sweden:JohanBodegardandRobertFranzen
Finland:JaakoErkinaro
Germany:HelmutKruckenberg
30
References
1. Collen,B.,J.Loh,S.Whitmee,L.McRae,R.Amin,andJ.E.M.Baillie.“Monitoring
changeinvertebrateabundance:theLivingPlanetIndex”.ConservationBiology23(2)
2009:p.317-327.
2. Hinzman,L.D.,NeilD.Bettez,W.RobertBolton,F.StuartChapin,MarkB.Dyurgerov,
ChrisL.Fastie,BradGriffith,RobertD.Hollister,AllenHope,HenryP.Huntington,
AnneM.Jensen,GensuoJ.Jia,TorreJorgenson,DouglasL.Kane,DavidR.Klein,Gary
Kofinas,AmandaH.Lynch,AndreaH.Lloyd,A.DavidMcguire,FrederickE.Nelson,
WalterC.Oechel,ThomasE.Osterkamp,CharlesH.Racine,VladimirE.Romanovsky,
RobertS.Stone,DouglasA.Stow,MatthewSturm,CraigE.Tweedie,GeorgeL.Vourlitis,
MarilynD.Walker,DonaldA.Walker,PatrickJ.Webber,J.M.Welker,K.S.Winker,andK.
Yoshikawa.“EvidenceAndImplicationsOf RecentClimateChangeInNorthernAlaska
AndOtherArcticRegions”.ClimateChange722005:p.251-298.
3. Post,E.,M.C.Forchhammer,M.S.Bret-Harte,T.V.Callaghan,T.R.Christensen,B.Elberling,A.D.Fox,O.Gilg,D.S.Hik,T.T.Hoye,R.A.Ims,E.Jeppesen,D.R.Klein,J.Madsen,A.D.McGuire,S.Rysgaard,D.E.Schindler,I.Stirling,M.P.Tamstorf,N.J.C.Tyler,R.
vanderWal,J.Welker,P.A.Wookey,N.M.Schmidt,andP.Aastrup.“Ecologicaldynamics
acrosstheArcticassociatedwithrecentclimatechange”.Science3252009:p.13551358.
4. IPCC.CambridgeUniversityPress,Ed.“FourthAssessmentReportof theIntergovernmentalPanelonClimateChange,IPCC(WGI&II)”.Cambridge:CambridgeUniversity
Press,2007.
5. ACIA.ArcticClimateImpactAssessment.Cambridge,UK:CambridgeUniversityPress:,
2005.Page1042.
6. Stroeve,J.,M.M.Holland,W.Meier,T.Scambos,andM.Serreze,“ArcticSeaIceDecline:
Fasterthan forecast”.GeophysicalResearchLetters34(L09501)2007.
7. CAFFInternationalSecretariat.“ArcticFloraandFauna:StatusandConservation”in
Chapter9StatusandTrendsinSpeciesandPopulations.2005.
8. AMAP.“AMAPAssessmentReport:ArcticPollutionIssues”.ArcticMonitoringandAssessmentProgramme(AMAP):Oslo,Norway.1998.Pages.Xii+859.
9. Holland,M.M.,C.M.Bitz,andB.Tremblay.“FutureAbruptReductionsintheSummer
ArcticSeaIce”.GeophysicalResearchLetters33(L23503)2006.
10. Moore,S.E.andH.P.Huntington.“ArcticMarineMammalsandClimateChange:ImpactsandResilience”.EcologicalApplications.200818(sp2).PagesS157-S165.
11. NPFMC.“NorthPacificFisheryManagementCounci,EcosystemConsiderationsfor
2009”.JointInstitutefortheStudyoftheAtmosphereandOcean(JISAO)andthe
Schoolof AquaticandFishery2008.Pages77-80.
12. Reeves,R.R.,B.D.Smith,E.A.Crespo,andG.NotarbartolodiSciara.I.S.C.S.Group,ed.
Dolphins,WhalesandPorpoises:2002–2010ConservationActionPlanfortheWorld’s
Cetaceans.Gland,Switzerland&Cambridge,UK,2003.Pagesix+139.
13. Laidre,K.L.,I.Stirling,L.F.Lowry,O.Wiig,M.P.Heide-Jorgensen,andS.H.Ferguson,
“QuantifyingTheSensitivityofArcticMarineMammalstoClimate-InducedHabitat
Change”.EcologicalApplications.18.2(2008):S97-S125.
31
14. Stirling,I.,N.J.Lunn,andJ.Iacozza,“Long-TermTrendsinthePopulationEcologyof
PolarBearsinWesternHudsonBayinRelationtoClimaticChange”.Arctic,1999.52(3):
p.294-306.
15. Aars,J.,N.J.Lunn,andA.E.Derocher.“PolarBears:Proceedingsof the14thWorking
Meetingof theIUCN/SSCPolarBearSpecialistGroup”.2005.Seattle,Washington,
USA:IUCN,Gland,SwitzerlandandCambridge,UK.
16. Abraham,K.F.andR.L.Jefferies.1997.“HighGoosePopulations:Causes,Impactsand
Implications”.Batt,B.(Ed.),“ArcticEcosystemsinPeril:Reportof theArcticGoose
HabitatWorkingGroup”,ArcticGooseJointVentureSpecialPublication,U.S.Fishand
WildlifeService,WashingtonDCandCanadianWildlifeService,Ottawa,Ontario,pp.
7–72.
17. George,J.C.,J.Zeh,R.Suydam,andC.Clark.“AbundanceandPopulationTrendof
WesternArcticBowheadWhalesSurveyedNearBarrow,Alaska”.2006.MarineMammal
Science.20(4):p.755-773.
18. Overland,J.2008.“FisheriesintheBeringSea”.InJ.Richter-Menge,J.Overland,M.
Svoboda,J.Box,M.J.J.E.Loonen,A.Proshutinsky,V.Romanovsky,D.Russell,C.D.
Sawatzky,M.Simpkins,R.Armstrong,I.Ashik,L.-S.Bai,D.Bromwich,J.Cappelen,E.
Carmack,J.Comiso,B.Ebbinge,I.Frolov,J.C.Gascard,M.Itoh,G.J.Jia,R.Krishfield,
F.McLaughlin,W.Meier,N.Mikkelsen,J.Morison,T.Mote,S.Nghiem,D.Perovich,I.
Polyakov,J.D.Reist,B.Rudels,U.Schauer,A.Shiklomanov,K.Shimada,V.Sokolov,M.
Steele,M.-L.Timmermans,J.Toole,B.Veenhuis,D.Walker,J.Walsh,M.Wang,A.Weidick,C.Zöckler(2008).“ArcticReportCard2008”.
19. Zöckler,C.,“TheRoleof theGooseSpecialistGroupintheCircumpolarBiodiversity
MonitoringProgramme(CBMP)”.Vogelwelt,2008.129:p.127-130.
20. Lantz,T.C.andS.V.Kokelj,“IncreasingRatesof RetrogressiveThawSlumpActivityin
theMackenzieDeltaRegion,NWT,Canada”.GeophysicalResearchLetters,2008.35.
21. Sturm,M.,CharlesRacine,andK.Tape,“ClimateChange:IncreasingShrubAbundance
intheArctic”.Nature,2001.411:p.546-547.
22. Wahren,C.-H.A.,M.D.Walker,andM.S.Bret-Harte,VegetationResponsesinAlaskan
ArcticTundraAfter8Yearsof aSummerWarmingandWinterSnowManipulationExperiment.GlobalChangeBiology,2005.11:p.537–552.
23. Arft,A.M.,M.D.Walker,J.Gurevitch,J.M.Alatalo,M.S.Bret-Harte,M.Dale,M.Diemer,F.Gugerli,G.H.R.Henry,M.H.Jones,R.D.Hollister,I.S.Jonsdottir,K.Laine,E.
Levesque,G.M.Marion,U.Molau,P.Molgaard,U.Nordenhall,V.Raszhivin,C.H.Robinson,G.Starr,A.Stenstrom,M.Stenstrom,O.Totland,P.L.Turner,L.J.Walker,P.J.Webber,J.M.Welker,andP.A.Wookey,Responsesof TundraPlantstoExperimentalWarming:
Meta-AnalysisoftheInternationalTundraExperiment.EcologicalMonographs,1999.
69(4):p.491-511.
24. Rees,W.G.,F.M.Stammler,F.S.Danks,andP.Vitebsky,Vulnerabilityof EuropeanReindeerHusbandrytoGlobalChange.ClimateChange,2007.87(1-2):p.199-217.
25. Miller,F.L.andA.Gunn,“CatastrophicDie-offofPearyCaribouontheWesternQueen
ElizabethIslands,CanadianHighArctic”.Arctic,2003.56:p.686-702.
26. Russell,D.andA.Gunn,“2010BiodiversityIndicator—WildReindeerandCaribou.
2009:CoordinatorCircumArcticRangiferMonitoringandAssessmentNetwork(CARMA)”,NorthernResearchInstitute,YukonCollege,Yukon,Canada.
32
27. Gunn,A.,DonRussell,RobertG.WhiteandGaryKofinas.2009.“Facingafutureof change:Wildmigratorycaribouandreindeer”.Arctic.Vol.62,No.3(September2009)P.
iii–vi.
28. Aanes,R.,B.-E.Saether,F.M.Smith,E.J.Cooper,P.A.Wookey,andN.A.Oritsland,“The
ArcticOscillationPredictsEffectsofClimateChangeinTwoTrophicLevelsinaHigh
ArcticEcosystem”.EcologyLetters,2002.5(3):p.445-453.
29. Gunn,A.,“Voles,LemmingsandCaribou—PopulationCyclesRevisited?”Rangifer,
2003.14:p.105-111.
30. Zalatan,R.,A.Gunn,andG.H.R.Henry,“Long-TermAbundancePatternsof BarrenGroundCaribouUsingTramplingScarsonRootsof PiceaMarianaintheNorthwest
Territories,Canada”.Arctic,AntArctic,andAlpineResearch,2006.38(4):p.624-630.
31. Scott,D.,“GlobalOverviewof theConservationof MigratoryArcticBreedingBirds
OutsidetheArctic”,in“CAFFTechRep.No.4”.1998.p.133p.
32. Delany,S.andD.Scott,WaterbirdPopulationEstimatesFourthEdition.2006:Wetlands
International,Wageningen.239p.
33. Stroud,D.A.,A.Baker,D.E.Blanco,N.C.Davidson,S.Delany,B.Ganter,R.Gill,P.
González,L.Haanstra,R.I.G.Morrison,T.Piersma,D.A.Scott,O.Thorup,R.West,J.
Wilson,andC.Zöckler,“TheConservationandPopulationStatusof theWorld’sWad ersattheTurnof theMillennium”,inWaterbirdsAroundtheWorld,G.C.Boere,C.A.
Galbraith,andD.A.Stroud,Editors.2006,TheStationeryOffice,Edinburgh,UK.p.pp.
643-648.
34. Newton,I.,“PopulationLimitationinMigrants”.Ibis,2004.146:p.197-226.
35. Morrison,G.R.I.,Y.Aubry,R.W.Butler,G.W.Beyresbergen,G.M.Donaldson,C.L.
Gratto-Trevor,P.W.Hicklin,V.H.Johnston,andR.K.Ross,“DeclinesinNorthAmerican
ShorebirdPopulations”.“WaderStudyGroupBulletin”,2001.94:p.34-38.
36. Zöckler,C.,S.Delany,andW.Hagemeijer,“WaderPopulationsAreDeclining—How
WillWeElucidatetheReasons?”.“WaderStudyGroupBulletin”,2003.100:p.202211.
37. Johnson,J.A.,R.B.Lanctot,B.A.Andres,J.R.Bart,S.C.Brown,S.J.Kendall,andD.C.
Payer,“Distributionof BreedingShorebirdsontheArcticCoastalPlainof Alaska”.Arctic,2007.60(3):p.277-293.
38. Meltofte,H.,T.Piersma,H.Boyd,B.Mccaffery,B.Ganter,V.V.Golovnyuk,K.Graham,
T.Gratto-,C.L,R.I.G.Morrison,E.Nol,H.-U.Rösner,D.Schamel,H.Schekkerman,
M.Y.Soloviev,P.S.Tomkovich,D.M.Tracy,I.Tulp,andL.Wennerberg,“EffectsofClimateVariationintheBreedingEcologyofArcticShorebirds”.MoGBioscience,2007.59:
p.48p.
39. Simpkins,M.,K.M.Kovacs,K.Laidre,andL.Lowry,“AFrameworkforMonitoring
ArcticMarineMammals—Findingsof aWorkshopSponsoredbytheU.S.MarineMammalCommissionandU.S.FishandWildlifeService”,Valencia,March2007,in“CAFF
CBMPReportNo.16”.2007,CAFFInternationalSecretariat.
40. Loh,J.,R.E.Green,T.Ricketts,J.F.Lamoreux,M.Jenkins,V.Kapos,andJ.Randers,“The
LivingPlanetIndex:UsingSpeciesPopulationTimeSeriesToTrackTrendsinBiodiversity”.PhilosophicalTransactionsof theRoyalSocietyof LondonB,2005.360:p.289295.
33
41. InternationalHydrographicOrganisation,Limitsof theOceansandSeas,3rdEdition,in
SpecialPublicationno.23.1953,InternationalHydrographicorganization:Monte-Carlo.
p.1-42.
42. FisheriesCentre,“SeaAroundUs,2009.Aglobaldatabaseonmarinefisheriesandecosystems”.2009,FisheriesCentre,Universityof BritishColumbia,Vancouver.
34
Appendix I: Technical Notes
Arctic Species Trend Index
ThespeciespopulationdatausedtocalculatetheArcticindicesaregatheredfromavarietyof sources
primarilypublishedinscientificjournals,butalsofromgreyliteraturewherestudiesmeettheappropriatestandard[1].Alldatausedinconstructingtheindicesaretimeseriesof eitherpopulationsize,density,abundanceoraproxyof abundance.Theperiodcoveredbythedatarunsbetween1950and2004.
Annualdatapointswereinterpolatedfortimeserieswithsixormoredatapointsusingageneralized
additivemodellingframeworkorbyassumingaconstantannualrateof changefortimeserieswithless
thansixdatapoints[1][40].Theaveragerateofchangeineachyearacrossallspecieswascalculated.
Theaverageannualratesof changeinsuccessiveyearswerechainedtogethertomakeanindex,withthe
indexvaluein1970setto1.Weusedabootstrapre-samplingtechniquetogenerateconfidencelimits
aroundtheindexvalues;thesearenotshowntoavoidover-complicatingthefigure.Theindiceswere
aggregatedaccordingtothehierarchyofindicesshowninFigure17.Methodsaredescribedindetailed
inCollenetal.(2009)[1]andLohetal.(2005)[40].
Data tagging
Arcticlocation
Each species population was assigned to a division of the Arctic system depending on its geographic location. The Arctic system was classified into two divisions: CAFF boundary and Arctic
boundaries (see Figure 1). The Arctic region was subdivided into three further divisions of High,
Low and Sub Arctic based on floristic boundaries [8]. A species population could be assigned to
a single division or both, i.e., a species population may be present within an Arctic boundary and
the CAFF boundary or in one or the other. Arctic division indices were calculated giving equal
weight to each species.
System
Each species population was classified as being terrestrial, freshwater or marine, according to
which system it is most dependent on for survival and reproduction. Populations were divided by
the ocean basin (Arctic, Atlantic, Pacific) they inhabit for the marine analysis. The divisions for
these were based on the boundary of the Arctic Ocean [41].
Trophic level
Each species was assigned to a trophic level: primary consumers, secondary consumers and tertiary consumers. Marine fish species were categorised based on the trophic level assigned for the
Marine Trophic Index [42].
Arctic Species Trend Index
Species 1
Population 1
Species 2
Species 3
Population 2
Figure 17: Hierarchy of indices within the Arctic Species Trend Index. Each
population carries equal weight within each species and each species carries equal weight within the Arctic Species Trend Index.
35
Appendix II:
Species and Population Numbers in the ASTI Dataset
CAFF boundary
1. Populations
FRESHWATER
MARINE
TERRESTRIAL
TOTAL
FISH
60
94
AMPHIBIAN
3
BIRD
MAMMAL
TOTAL
57
3
123
188
54
336
233
140
373
478
197
832
FRESHWATER
MARINE
TERRESTRIAL
TOTAL
13
2
34
1
50
48
118
30
148
61
2
189
53
305
TERRESTRIAL
TOTAL
154
3
2. Species
FISH
AMPHIBIAN
BIRD
MAMMAL
TOTAL
37
22
107
High/Low/Sub Arctic boundaries combined
3. Populations
FISH
AMPHIBIAN
BIRD
MAMMAL
TOTAL
FRESHWATER
MARINE
72
3
54
3
132
112
214
64
390
235
208
443
184
3
503
275
965
FRESHWATER
MARINE
TERRESTRIAL
TOTAL
13
2
35
1
51
48
118
30
148
61
2
190
53
306
4. Species
FISH
AMPHIBIAN
BIRD
MAMMAL
TOTAL
37
22
107
36
High/Low/Sub Arctic disaggregated by class
5. Populations
FISH
AMPHIBIAN
BIRD
MAMMAL
TOTAL
HIGH ARCTIC
LOW ARCTIC
SUB ARCTIC
3
81
30
114
158
1
243
143
545
23
2
179
102
306
HIGH ARCTIC
LOW ARCTIC
SUB ARCTIC
3
58
1
88
47
194
10
1
122
22
155
6. Species
FISH
AMPHIBIAN
BIRD
MAMMAL
TOTAL
36
8
47
High/Low/Sub Arctic disaggregated by system
7. Populations
FRESHWATER
MARINE
TERRESTRIAL
TOTAL
HIGH ARCTIC
LOW ARCTIC
SUB ARCTIC
8
33
73
114
68
311
166
545
56
46
204
306
HIGH ARCTIC
LOW ARCTIC
SUB ARCTIC
6
16
25
47
27
101
66
194
35
18
102
155
8. Species
FRESHWATER
MARINE
TERRESTRIAL
TOTAL
37
Marine oceans by class 9. Populations
FISH
BIRD
MAMMAL
TOTAL
ARCTIC
ATLANTIC
PACIFIC
TOTAL
18
112
29
159
21
31
3
55
73
71
32
176
112
214
64
390
ARCTIC
ATLANTIC
PACIFIC
TOTAL
11
28
16
55
7
13
2
22
37
18
14
69
55
59
32
146
10. Species
FISH
BIRD
MAMMAL
TOTAL
Regions (Greenland and North America)
11. Populations
NORTH AMERICA EUROPE/ASIA
HIGH ARCTIC
LOW ARCTIC
SUB ARCTIC
TOTAL
98
282
112
492
16
263
194
473
NORTH AMERICA
EUROPE/ASIA
45
118
88
251
10
117
72
199
12. Species
HIGH ARCTIC
LOW ARCTIC
SUB ARCTIC
TOTAL
38
Appendix III:
Index and Confidence Interval Values for Each of the Indices
Index
ASTI
CAFF Boundary
High Arctic
Low Arctic
Sub Arctic
Marine
Terrestrial
Freshwater
Birds
Fishes
Mammals
Arctic Ocean
Atlantic Ocean
Pacific Ocean
Terrestrial Birds
Terrestrial Mammals
Terrestrial High Arctic
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
1970
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1975
1.04
0.98
1.11
1.04
0.98
1.11
0.91
0.80
1.01
1.04
0.93
1.17
1.04
0.98
1.13
1.06
0.94
1.20
1.00
0.94
1.07
1.19
0.91
1.60
1.00
0.96
1.05
1.16
0.87
1.59
1.05
0.84
1.28
1.10
0.99
1.23
1.22
0.85
1.83
0.93
0.79
1.10
1.00
0.94
1.07
1.00
0.75
1.30
1980
1.13
1.05
1.22
1.13
1.05
1.21
0.87
0.76
0.98
1.18
1.03
1.35
1.11
1.02
1.22
1.23
1.06
1.45
1.05
0.97
1.14
1.28
0.95
1.76
1.06
1.00
1.13
1.35
0.99
1.89
1.18
0.90
1.53
1.07
0.91
1.23
1.15
0.77
1.83
1.24
1.01
1.54
1.07
0.99
1.15
0.96
0.69
1.31
1985
1.20
1.10
1.31
1.18
1.08
1.29
0.77
0.65
0.89
1.31
1.11
1.53
1.17
1.06
1.29
1.45
1.21
1.75
1.06
0.96
1.17
1.31
0.96
1.81
1.08
0.99
1.18
1.70
1.20
2.44
1.29
0.96
1.71
0.94
0.77
1.13
1.13
0.74
1.81
1.77
1.39
2.26
1.05
0.96
1.17
1.09
0.76
1.52
1990
1.20
1.08
1.33
1.18
1.06
1.31
0.74
0.60
0.90
1.35
1.12
1.62
1.12
1.00
1.25
1.50
1.23
1.86
1.03
0.92
1.15
1.31
0.95
1.85
1.07
0.96
1.17
1.88
1.30
2.77
1.23
0.87
1.74
0.89
0.67
1.16
1.04
0.67
1.66
2.01
1.53
2.63
1.02
0.91
1.17
1.08
0.75
1.51
1995
1.20
1.07
1.35
1.19
1.07
1.34
0.72
0.58
0.91
1.45
1.16
1.78
1.05
0.93
1.18
1.60
1.27
2.00
0.97
0.85
1.11
1.43
1.02
2.07
1.04
0.93
1.17
1.93
1.32
2.86
1.33
0.93
1.92
1.03
0.76
1.39
1.00
0.64
1.62
1.98
1.50
2.65
0.98
0.84
1.14
0.94
0.65
1.33
2000
1.14
1.01
1.28
1.14
1.01
1.29
0.73
0.57
0.94
1.33
1.07
1.66
1.00
0.89
1.14
1.51
1.19
1.89
0.93
0.81
1.08
1.25
0.87
1.83
0.99
0.88
1.12
1.68
1.12
2.56
1.31
0.90
1.90
1.07
0.78
1.47
0.97
0.61
1.59
1.67
1.24
2.30
0.94
0.80
1.11
0.94
0.64
1.38
2004
1.16
1.02
1.32
1.17
1.03
1.33
0.74
0.57
0.96
1.46
1.15
1.83
0.97
0.85
1.11
1.53
1.19
1.96
0.90
0.78
1.05
1.52
1.03
2.26
0.98
0.86
1.11
1.96
1.28
3.01
1.33
0.91
1.93
1.07
0.77
1.48
0.96
0.60
1.58
1.66
1.19
2.30
0.90
0.76
1.07
0.98
0.66
1.44
Index
Lower C.L.
Upper C.L.
1.00
1.00
1.00
0.93
0.80
1.02
0.91
0.79
1.02
0.91
0.78
1.02
0.91
0.77
1.04
0.79
0.66
0.93
0.73
0.60
0.88
0.72
0.58
0.87
39
Terrestrial Low Arctic
Terrestrial Sub Arctic
Herbivores
Herbivores (Minus Anatidae)
Freshwater Birds
Marine Birds
Terrestrial Birds
Terrestrial Geese
Terrestrial Birds
(Minus Geese)
Migrant Birds
Non-Migrant Birds
Caribou
Nearctic Caribou
Palearctic Caribou
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.94
0.78
1.14
1.04
0.97
1.11
1.03
0.94
1.12
1.00
0.79
1.28
1.08
0.99
1.17
1.11
1.02
1.23
1.02
0.72
1.44
1.10
1.00
1.20
1.17
1.06
1.32
1.03
0.66
1.62
1.07
0.96
1.18
1.17
1.04
1.33
1.09
0.64
1.86
0.99
0.89
1.10
1.08
0.94
1.25
1.01
0.57
1.76
1.01
0.89
1.14
1.08
0.93
1.27
1.07
0.59
1.87
0.95
0.84
1.09
1.08
0.92
1.28
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.03
0.95
1.12
1.03
0.81
1.33
0.99
0.92
1.06
1.00
0.94
1.07
0.87
0.60
1.19
1.02
0.93
1.13
1.07
0.82
1.39
1.04
0.94
1.15
1.07
0.99
1.15
1.24
0.82
1.78
1.04
0.94
1.17
1.13
0.84
1.55
1.15
1.00
1.32
1.05
0.96
1.17
1.49
0.99
2.11
0.97
0.85
1.10
1.23
0.91
1.71
1.09
0.93
1.32
1.02
0.91
1.17
1.80
1.15
2.66
0.83
0.72
0.97
1.28
0.93
1.80
1.11
0.88
1.40
0.98
0.84
1.14
1.92
1.26
2.92
0.78
0.66
0.92
1.22
0.88
1.72
1.03
0.81
1.34
0.94
0.80
1.11
2.47
1.55
4.02
0.75
0.63
0.90
1.43
0.99
2.06
0.96
0.72
1.27
0.90
0.76
1.07
2.12
1.30
3.53
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
Index
Lower C.L.
Upper C.L.
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.02
0.97
1.07
0.98
0.93
1.04
1.08
1.01
1.15
0.71
1.05
0.99
1.12
1.04
0.97
1.12
1.14
1.06
1.23
0.91
1.02
0.92
1.13
1.06
0.97
1.16
1.19
1.09
1.30
1.37
0.97
0.86
1.10
1.02
0.92
1.14
1.30
1.16
1.47
1.64
0.93
0.79
1.09
0.98
0.86
1.12
1.34
1.11
1.64
1.56
0.87
0.74
1.03
0.94
0.82
1.08
1.25
1.03
1.56
1.29
0.85
0.71
1.01
0.94
0.81
1.09
1.20
0.96
1.51
0.90
1.00
0.63
0.80
1.25
1.52
1.48
1.05
0.68
1.00
0.82
1.05
1.51
1.75
1.59
1.66
1.20