Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Summary of general pharmacotherapeutic approaches in cardiology Jan Bultas, Debora Karetová 2013 Topics • • • • • • • heart rate and conduction intervention blood pressure intervention myocardial ischemia intervention myocardial contractility intervention fluid retention intervention hyperactivated hemostasis intervention dyslipidemia intervention Heart rate and conduction chronotropy dromotropy Heart rate intervention heart rate acceleration • sinus node: muscarine rec. inhibition (atropine) or β1 adrenergic receptor activation (xamoterol or isoprenaline) • cardiostimulation heart rate slowdown • β1 adrenergic receptor inhibition (betablockers) • sinus node specific iont channels inhibition (slowdown of sinus node pacemacker cells spontanneous depolarisation) Importance of heart rate slowdown • coronary flow rate improvement due to diastolic phase prolongation • metabolic myocardial demand reduction • correlation of heart rate and prognosis Sinus rhythm - rate control adrenergic 1 receptor parasympathetic muscarine rec. calcium T channel calcium L channel natrio-potassium channel If potassium channel Ik Sinus rhythm - rate control adrenergic 1 receptor parasysympath. muscarine rec. -blockers atropine calcium T channel calcium L channel CCB /verapamil/ natrio-potassium channel If potassium channel Ik bradins – If channel inhib. Relation of heart rate and total . and cardiovascular mortality in males and females in the course of 20 yrs of follow-up Benetos A et al. Hypertension 1999;33:44-52 Pharmacology of heart rate slowdown • β1 adrenergic stimulation inhib. (β blockers) - heart rate reduction by 10-20 beats/min • Na/K channel If inhibition (bradins, ivabradine) - heart rate reduction by 10-20 beats/min • calcium L type channel inhib. (verapamil) - heart rate reduction by only ≈5 beats/min Better is β blocker and bradin combination than β blocker and verapamil (due to negative AV conduction effect) Relation of mortality reduction and heart rate slowdown with -blocker therapy in secondary prevention mortality reduction (%) timolol metoprolol propanolol propanolol practolol oxprenolol pindolol heart rate slowdown (beats/min) CV mortality and hospitalisation due to heart failure(%) Relation of CV mortality to heart rate (in quintiles of heart rate) – chronic HF 250 % P<0,001 234% 200 P<0,001 180% 150 P=0,027 ns 100 133% 115% 100% 50 0 70 až <72 72 až <75 75 až <80 80 až <87 ≥87 heart rate SHIFT, Bohm M et al. Lancet 2010 Atrio-ventricular conduction deceleration • slowdown of ventricular rate in atrial fibrilation • tachyarrhytmia treatment Atrio-ventricular conduction deceleration strategy - β1 adrenerg. activity inhibition (β1 -blockers) - parasympatic activity stimulation (digoxin) - ion channel inhibition- Ca2+ (verapamil) - Na+ (propafenone,..) - K+ (amiodarone,…) I. cl. IV. cl. III. cl. digoxin I. cl. Antiarrhythmics in atrial fibrillation - sinus node rhythm restauration propafenone flecainide sotalol failure of other antiarhythmics or heart failure amiodarone contraindic. in left ventricle failure Antiarrhythmics in atrial fibrillation - reduction of ventricle rate by atrioventricular conduction deceleration • betablockers • verapamil, diltiazem • digoxin (vagus activation) combination of antiarrhytmics to reach the ventricle rate <90/min Antihypertensive therapy Blood pressure - arterial hypertension – common status (≈ 1/3 population), important risk factor of CV diseases (stroke, CHD,…) with negative prognostic effect - habitual arterial hypotension – rare status deteriorating life quality with no prognostic impact hypertension prevalence (%) Hypertension prevalence according to age 100 males females 80,3 80 71,2 60,3 61,3 60 44,8 42,0 40 32,6 23,3 21,2 20 14,4 6,2 0 2029 9,9 3039 4049 5059 6069 70 age Kearney et al. Lancet 2005;365:21723 CV mortality doubles with BP increase by 20/10 mmHg 8x risk 8 4x risk CV mortality 6 4 2 0 1x risk 115/75 2x risk 135/85 155/95 175/105 syst. BP/diast. BP (mmHg) *Individuals aged 40–69 years Lewington et al. Lancet 2002;360:1903–13 Strategy for the treatment of hypertension • blockade of hyperactivated regulatory mechanisms – ACE-I, ARBs, aldosterone rec. blockers, – - or α+-blockers • peripheral resistance decrease – calcium channel blockers, central + peripheral vazodilatators, ACE-I, ARBs, α-blockers • reduction of circulating fluid volum – diuretics • reduction of hyperkinetic circulation – - or α+-blockers BP normalisation / optimalisation - vascular wall damage risk reduction - bleeding risk reduction - endothelial dysfunction improvement - hypertrophy and remodelation of left ventricle and resistence arterial prevention - plaque destabilisation risk reduction - metabolic myocardial demand reduction - nephropathy risk reduction - retinopathy risk reduction resist. art. Adjustment of the hyperactivated regulatory mechanisms hyperactivation of RAAS, SA,…XX - atherogenesis acceleration - trombogenic effect - hypertension developement - apoptosis activation - arrhythmogenic effect - vasoconstriction - fluid retention - ischaemia of live saving organs Comparison of the decline of BP with different antihypertensives monotherapy (analysis of > 40 thousand hypertensives) diuretics beta-block. ACE-I ARBs CCB BP reduction in mm Hg 0 -4 -8 -12 Health Technology Assessment, 2003, 7, 31 No significant difference of antihypertensives on BP reduction Stroke incidence reduction in primary and secondary prevention sfroke incidence reduction (%) (analysis >200 st, >40 thousand hypertensives) -5 ACE-I ARBs CCB diuret. BB 31% 25% 22% 26% 18% -15 -25 -35 Health Technology Assessment, 2007 ACE-I are the most effective in stroke prevention CHD incidence reduction in primary and secondary prevention CHD incidence reduction (%) (analysis >200 st, >40 thousand hypertensives) -5 ACE-I sartans CCB diuret. BB 27% 21% 21% 23% 26% -15 -25 -35 Health Technology Assessment, 2007 ACE-I and BB are the most effective in CHD prevention Appropriate and inappropriate combination of antihypertensives ACE-I sartans AT1R inhib. -block. diuretics CCB CCB dihydropyridines non-dihydrop. Pulmonary hypertension therapy Pulmonary artery resistance control nitric oxide prostaglandins cGMP dilatation rec. I2 a E2 dilatation endothelins rec. ETA , ETB constriction Pulmonary hypertension pharmacotherapy • endotheline receptors antagonists - nonselective A + B rec. – bosentan, - selective rec. A – ambrisentan • prostaglandine rec. agonists - PGI2, PGE2 and analogs - iloprost (inhal.) - epoprostenol (iv.) • increase of cGMP availability - cGMP degradation inhibition by phosphodiesterase 5 blockers – sildenafil, tadalafil Treatment of Hypotension Hypotension treatment • asymptomatic habitual hypotension - does not require treatment, only life mode modification • symptomatic hypotension – after exclusion of secondary ethiology (drugs, bleeding,…), the circul. volume substitution, vasoconstrictive drug application is problematic • hypotension in critical circulation deterioration - specific therapy according to the mode of failure Myocardial ischaemia treatment / prevention Myocardial ischemia ethiology organic stenosis stable angina vasospasmus vasospastic angina thrombus unstable angina, MI Coronary circulation curiosity • left ventricle myocardial perfusion (in contrast to other organs) only in diastola • maximal arteriovenose difference – no reserve for oxygen coronary circulation extraction • minimal myocardial functional reserve – contractility failure even in mild ischemia • enormous perfusion difference at rest and during the effort Heart rate reduction importance • diastole prolongation → coronary perfusion improvement + metabolic demand reduction Vasodilatation in prevention of ischemia – perfusion improvement ( 70% of coronary stenoses are excentric) Dynamic coronary obstruction in coronary organic stenosis – CCB and nitrate effect intact coronary artery CCB+ stenotic coronary artery CCB+ CCB- CCB- MYOCARDIAL ISCHEMIA – IMBALANCE OF DELIVERY AND COMSUMPTION DELIVERY CONSUMPTION O2 coronary organic stenosis, spasm or thrombosis ↑ heart rate ↓ perfusion pressure (↓dTK) ↓ transport oxygen capacity ↑ heart rate ↑ contractility (catecholamines,…) ↑ left ventricle enddiastolic tension Myocardial ischaemia treatment / prevention strategy ↑ coronary perfusion - revascularisation - relaxation of the site of stenosis - diastole prolongation - optimal diastolic BP maintaining myocardial demand - optimal heart rate - optimal systolic BP (avoid ↑ BP) - heavy physical burden reduction metabolism optim. - preferential metabolism - glycolysis (shifting from fatty acid β-oxidation) Coronary perfusion improvement - relaxation at the site of stenosis • CCB (amlodipine, verapamil,…) • nitrates (molsidomine, ISMN, ISDN, GTN) CAVE – steal phenomenon – rapid arteriolodilatation → ↓ BP → ↑ catecholamine → heart rate and oxygen consumption ↑ - diastole prolongation (heart rate ↓) • -blockers (opt. cardioselect., long-acting – bisoprolol,…) • non dihydropyridine CCB (verapamil) • bradins (ivabradine) Myocardial demand reduction - heart rate slowdown -blockers (opt. cardioselective and prolonged ) CCB (verapamil) bradins (ivabradin) - contractility reduction ??? -blockers or non-dihydropyridine CCB (verapamil) CAVE – substantial contractility reduction – leads to LV dilatation, BP drop-out, catecholamine wash out and metabolic demand increases CCB or nitrates ? NITRATES CCB - rapid onset of action long acting (>24h) - effect concentrated to - no tolerance developement - positive prognostic effect - more reliable effect - antihypertensive effect - arteriolodilatation phenomenon induction) (steal epicardial part of coronary bed (no steal ef.) - short acting effect - tolerance developement - neutral prognostic effect Ischemic myocardium metabolism optimalisation • in mild ischemia, the glycolysis is used for ATP synthesis in the myocardium • in severe ischemia (with pH drop-out due to lactate tissue accumulation), the glycolysis is inhibited and less effective fatty acid ß-oxidation is preferably used for ATP production • conversion of FA ß-oxidation to glycolysis is possible to obtain ≈15% makroergic phosphate (ATP) in addition (trimetazidine effect) Improvement of effort tolerance with drugs combination % +18% 225 +41% 200 +57% 175 +44% 150 125 100 75 50 25 0 no therapy Boden WE et al., 2007 CCB nitrates CCB + -blocker + trimetazidine (triple therapy) Complex care - IHD patient • thrombotic occlussion prevention • plaque destabilisation and atherogenesis progression prevention • myocardial ischemia prophylaxis • left ventricle remodelation and heart failure prevention • arrhythmia occurence prevention Effect of complex strategy in chronic CHD – serious vascular events and mortality reduction mortality per year in % 15 10 + aspirin or clopidogrel -25% + -block. -27% + statin -31% 5 0 life mode modification life mode modification + aspirin life mode modification + aspirin +β-blocker + ACE-I -23% life mode modification + aspirin +β-blocker +statin Heart failure treatment Pharmacotherapy od heart failure • contractility (cardiotonics, sympatomimetics): quality of life improvement, no prognostic effect • fluid and electrolytes retention (diuretics): important quality of life improvement no data on prognostic effect • sympaticus activation (-block., +-block.): LV function, life quality and important prognosis improvement • RAAS activity (ACE-I, aldosterone rec. inhib.): LV function, life quality and prognosis improv. Mechanism of beta-blockade in heart failure 1) antiischemic effect (myocardial perfussion improvement) 2) antiarrhythmic effect (fibrilation threshold increase, ventricle arrhythmia reduction) 3) hyperactivated regulatory mechanism inhib. - sympatoadrenal inhibition - renin-angiotensin-aldosterone syst. inhib. 4) apoptosis inhibition (cardiomyocyte number and contractility decrease prevention) Mortality reduction in heart failure studies US Carvedilol St. CIBIS II MERIT HF 0 -10 total mortality -20 34% -30 34% -40 65% sudden death -50 -60 -70 pump failure -80 carvedilol bisoprolol metoprolol Mechanism of ACE-I in heart failure 1) peripheral vascular resistence reduction (direct and due to bradykinine stimul.) - life important organs perfusion improvement and LV metabol. demand reduction 2) diuretic and natriuretic effect (direct and indirect - ADH + aldosterone release inhibition - fluid retention 3) noradrenaline release - sympathetic activity 4) fibrinolysis – thrombosis risk 5) apoptosis inhibition – contractility improvement ACE-I effect on mortality reduction in heart failure (compared to placebo) MORTALITY INCREASE MORTALITY DECREASE SAVE kaptopril 19% TRACE trandolapril 22% AIRE ramipril 100% 27% N: 2 000 N: 2 000 N: 2 000 100% ARBs effect in heart failure • in comparison to ACE-I significantly less effective - on mortality/morbidity • ARBs in heart failure indicated only in ACE-I intolerance (or in combination with ACE-I) ACE-I and ARBs effect on mortality in heart failure (compared to placebo) MORTALITY INCREASE MORTALITY DECREASE 19% SAVE(kaptopril) ACE-I 22% TRACE (trandolapril) AIRE(ramipril) VAL-HEFT (valsartan) CHARM (candesartan) 27% 1% 9% ARBs 17% CV mortality 100% 100% Aldosterone rec. inhibitors - in different heart failure types RALES EPHESUS spironolactone serious chronic heart failure eplerenone acute LV insuf. EMPHASIS-HF REMINDER eplerenone mild chronic heart failure eplerenone post MI with preserved LV function Mortality (total and CV) reduction with aldosterone rec. inhibitors RALES spironolactone ↓ 27% serious chronic heart EPHESUS ↓ 15% eplerenone acute LV insuf. failure EMPHASIS-HF eplerenone ↓ 24% mild chronic heart failure REMINDER eplerenone post MI with preserved LV function Mortality reduction in heart failure (comparison with placebo) MORTALITY INCREASE MORTALITY DECREASE SAVE(kaptopril) 19% TRACE (trandolapril) 22% AIRE(ramipril) VAL-HEFT (valsartan) CHARM(cardesartan) added 27% 1% ARBs 9% 17% 27% RALES(sprironolactone) EPHESUS (eplerenone) EMPHASIS HF (eplerenone) CIBIS II (bisoprolol) MERIT HF (metoprolol) ACE-I aldost. antag. 15% 24% 34% -block. 34% 65% US CARVEDILOL (carvedilol) 100% 100% Beta-blocker, ACE-I and aldosterone rec. inhibitors combination in heart failure • beta-blockers – carvedilol (no bronchial obstruction, no hypotension) or bisoprolol, metoprolol, nebivolol – titration to target dose in stabilised patient • ACE-I – preferention of perindopril or ramipril – dose titration only in seniors or in hypotension • aldosterone rec. inhib.– spironolactone (cheaper), eplerenone (better tolerated) in low (subdiuretic) dose CAVE – real risk of hyperkalemia in combination of ACE-I with aldosterone rec. inhibitors (periodical K+ control) vasular events reduction (%) Mortality/morbidity reduction in chronic heart failure (analysis > 40 st., 36 000. pts.) -5 ACE-I ARBs ald.inh. 26% 3% 21% CCB diuret. 4% 23%? BB 34% -15 -25 Health Technology Assessment, 2007 -35 Optimal combination: ACE-I + BB + aldosterone rec. inhib., no prognostic data for diuretic therapy Diuretics in heart failure treatment metylxantiny manitol acetazolami manitol d thiazide diuretics loop diuretics potassium sparing diuret. aquaretic Diuretics in heart failure treatment • indication – fluid retention (pulmonary congest., oedema, ascites, hydrothorax) or hypertension • fluid and electrolyte retention (diuretics) or pure water retention (aquaretics – tolvaptam) • important quality of life improvement in heart failure, but no prognostic studiy available • preference of most potent loop diuretic (furosemide or torasemide) or loop and thiazide diuretic combination • in hypoosmolar fluid retention – aquaretics (rarely) Positive inotropic drugs in heart failure treatment a) contractility increase due to increase of calcium sarkoplasm concentration • cardiotonics (digoxin) • -sympatomimetics (dopamine, dobutamine, denopamine) – only in acute failure • PDE III inhibitors (amrinone, milrinone) - obsolent b) contractility stimulation without sarkoplasmatic calcium concentration increase • kalcium sensitisers (levosimendan,…) – in acute failure, increase affinity of Ca2+ to troponine C CARDIOTONICS (cardioglykosides) pharmacodynamic effect: - myocardium – contractility improvement • autonomic nerve system – vagal activation (negat. chrono- and dromotropic ef.) • important interindividual plasma level variation – blood level monitoring initially Increased mortality in elevated digoxine plasma level (above the therapeutic range) 45 40 placebo mortality (%) 35 30 25 digoxine <0,9 ng/ml 20 15 10 5 digoxine ≥0,9 ng/ml 0 total mortality heart failure mortality Heart failure therapy: • ACE-I opt. perindopril or ramipril (all) • -blocker carvedilol or selective -bl. (all) • aldosterone rec. inhib. (spironolactone or eplerenone - NYHA II-IV) • ARBs (only in ACE-I intolerant) • diuretics (in fluid retention) • digoxin (in symptomatic pts or AFib ) • anticoagulants (in AFib, …) annual mortality in HF pts - % Decrease of mortality in chronic heart failure – - combination therapy 40 + ACE-I -28% + spironolactone -27% + -blok. -34% 20 + resynchron. -36% 0 digoxin diuretics digoxin diuretics inhib. ACE study with ACE-I study RALES digoxin diuretics inhib. ACE spironolactone study -blok. digoxin diuretics inhib. ACE spironolactone -blocker study CARE-HF Thank you