Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Common Trigonometric Angle Measurements sin θ = cos θ = tan θ = csc θ = sec θ = cot θ = Hypotenuse = Angle in Degrees Angle in Radians 0 0 SIN 0 COS 1 TAN 0 CSC ND SEC 1 COT ND 30 π 6 1 2 √3 2 √3 3 2 45 π 4 √2 2 √2 2 1 60 π 3 √3 2 1 2 √3 √2 2√3 3 √3 √2 2√3 3 2 Provided by Tutoring Services 1 √3 3 90 π 2 1 0 ND 1 ND 0 120 2π 3 √3 2 -1 2 -√3 135 3π 4 √2 2 -√2 2 -1 2√3 3 -2 √2 -√3 3 -√2 -1 1 150 5π 6 1 2 -√3 2 -√3 3 2 180 π -2√3 3 -√3 -1 0 -1 0 ND ND 210 7π 6 -1 2 -√3 2 √3 3 -2 225 5π 4 -√2 2 -√2 2 1 240 4π 3 -√3 2 -1 2 √3 270 3π 2 -1 -√2 -1 -2√3 3 √3 -√2 -2√3 3 -2 1 √3 3 0 ND ND 0 300 5π 3 -√3 2 1 2 -√3 315 7π 4 -√2 2 √2 2 -1 -2√3 3 2 -√2 -√3 3 -1 √2 330 11π 6 -1 2 √3 2 -√3 3 -2 360 2π 2√3 3 -√3 1 0 1 0 ND ND Common Trigonometric Angle Measurements Reviewed July 2008 Angles sin and csc tan and cot cos and sec Q1 + + + Q2 + - Q3 + - Reference Angles θ΄ Q4 + If….. 0º θ ≤ 90 then….. θ΄ = θ 90º < θ ≤ 180 º θ΄ = 180º - θ 180º < θ ≤ 270º θ΄ = θ - 180º 270º < θ ≤ 360º θ΄ = 360º - θ To convert from Radians to Degrees…… Multiply by When using the unit circle: To convert from Degrees to Radians……. Multiply by Positive angles move counter clockwise. Start at 0° and then…. Negative angles move clockwise. Provided by Tutoring Services 2 Common Trigonometric Angle Measurements Fundamental Identities tan θ = cot θ = sin2 θ + cos2 θ = 1 csc θ = 1 + tan2 θ = sec2 θ sec θ = cot θ = 1 + cot2 θ = csc2 θ Sum and Difference Identities cos (α – β) = cos α cos β + sin α sin β tan (α – β) = cos (α + β) = cos α cos β – sin α sin β sin (α – β) = sin α cos β – cos α sin β tan (α + β) = sin (α + β) = sin α cos β + cos α sin β Double-Angle Identities sin 2α = 2 sin α cos α cos 2α = cos2α – sin2α = 1 – 2sin2α = 2cos2α – 1 tan 2α = Half-Angle Identities sin = ± cos Provided by Tutoring Services = ± tan = 3 = = Common Trigonometric Angle Measurements Even and Odd Identities sin (-α) = - sin α cos (-α) = cos α tan (-α) = - tan α csc (-α) = - csc α sec (-α) = sec α cot (-α) = - cot α Power-Reducing Identities sin2 α = cos2 α = tan2 α = Product-to-Sum Identities Sum-to-Product Identities For sums of the form a sin x + b cos x …….. Where , Provided by Tutoring Services , and 4 Common Trigonometric Angle Measurements Linear Speed (υ) Arc Length Formula s=rθ or θ = radians υ= s = length of the arc r = radius of the circle θ = non-negative radian measure of the central angle s = distance traveled t = time Angular Speed (ω) ω= θ = measure of angle in radians t = time Converting from Degrees to Minutes to Seconds 1° (degree) = 60´ (minutes) Linear Speed – Angular Speed Relationship 1´ (minute) = 60˝ (seconds) υ = rω 1° (degree) = 3,600˝ (seconds) Provided by Tutoring Services 5 υ = linear speed r = radius ω = angular speed Common Trigonometric Angle Measurements Law of Sines: used to solve triangles when two angles and a side are given or when two sides and an opposite angle are given. Law of Cosines: used to solve triangles when two sides and the included angle or three sides of the triangle are given. Area (K) using Heron’s Formula Area (K) Provided by Tutoring Services 6 Common Trigonometric Angle Measurements