Download Common Trigonometric Angle Measurements

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Common Trigonometric Angle Measurements
sin θ =
cos θ =
tan θ =
csc θ =
sec θ =
cot θ =
Hypotenuse =
Angle in Degrees
Angle in Radians
0
0
SIN
0
COS
1
TAN
0
CSC
ND
SEC
1
COT
ND
30
π
6
1
2
√3
2
√3
3
2
45
π
4
√2
2
√2
2
1
60
π
3
√3
2
1
2
√3
√2
2√3
3
√3
√2
2√3
3
2
Provided by Tutoring Services
1
√3
3
90
π
2
1
0
ND
1
ND
0
120
2π
3
√3
2
-1
2
-√3
135
3π
4
√2
2
-√2
2
-1
2√3
3
-2
√2
-√3
3
-√2
-1
1
150
5π
6
1
2
-√3
2
-√3
3
2
180
π
-2√3
3
-√3
-1
0
-1
0
ND
ND
210
7π
6
-1
2
-√3
2
√3
3
-2
225
5π
4
-√2
2
-√2
2
1
240
4π
3
-√3
2
-1
2
√3
270
3π
2
-1
-√2
-1
-2√3
3
√3
-√2
-2√3
3
-2
1
√3
3
0
ND
ND
0
300
5π
3
-√3
2
1
2
-√3
315
7π
4
-√2
2
√2
2
-1
-2√3
3
2
-√2
-√3
3
-1
√2
330
11π
6
-1
2
√3
2
-√3
3
-2
360
2π
2√3
3
-√3
1
0
1
0
ND
ND
Common Trigonometric Angle Measurements
Reviewed July 2008
Angles
sin and csc
tan and cot
cos and sec
Q1
+
+
+
Q2
+
-
Q3
+
-
Reference Angles θ΄
Q4
+
If…..
0º θ ≤ 90
then….. θ΄ = θ
90º < θ ≤ 180 º
θ΄ = 180º - θ
180º < θ ≤ 270º
θ΄ = θ - 180º
270º < θ ≤ 360º
θ΄ = 360º - θ
To convert from Radians to
Degrees……
Multiply by
When using the unit circle:
To convert from Degrees to
Radians…….
Multiply by
Positive angles move
counter clockwise.
Start at 0° and then….
Negative angles move
clockwise.
Provided by Tutoring Services
2
Common Trigonometric Angle Measurements
Fundamental Identities
tan θ =
cot θ =
sin2 θ + cos2 θ = 1
csc θ =
1 + tan2 θ = sec2 θ
sec θ =
cot θ =
1 + cot2 θ = csc2 θ
Sum and Difference Identities
cos (α – β) = cos α cos β + sin α sin β
tan (α – β) =
cos (α + β) = cos α cos β – sin α sin β
sin (α – β) = sin α cos β – cos α sin β
tan (α + β) =
sin (α + β) = sin α cos β + cos α sin β
Double-Angle Identities
sin 2α = 2 sin α cos α
cos 2α = cos2α – sin2α = 1 – 2sin2α = 2cos2α – 1
tan 2α =
Half-Angle Identities
sin
= ±
cos
Provided by Tutoring Services
= ±
tan
=
3
=
=
Common Trigonometric Angle Measurements
Even and Odd Identities
sin (-α) = - sin α
cos (-α) = cos α
tan (-α) = - tan α
csc (-α) = - csc α
sec (-α) = sec α
cot (-α) = - cot α
Power-Reducing Identities
sin2 α =
cos2 α =
tan2 α =
Product-to-Sum Identities
Sum-to-Product Identities
For sums of the form a sin x + b cos x ……..
Where
,
Provided by Tutoring Services
,
and
4
Common Trigonometric Angle Measurements
Linear Speed (υ)
Arc Length Formula
s=rθ
or
θ = radians
υ=
s = length of the arc
r = radius of the circle
θ = non-negative radian measure of the central angle
s = distance traveled
t = time
Angular Speed (ω)
ω=
θ = measure of angle in radians
t = time
Converting from Degrees to Minutes to Seconds
1° (degree) = 60´ (minutes)
Linear Speed – Angular Speed Relationship
1´ (minute) = 60˝ (seconds)
υ = rω
1° (degree) = 3,600˝ (seconds)
Provided by Tutoring Services
5
υ = linear speed
r = radius
ω = angular speed
Common Trigonometric Angle Measurements
Law of Sines: used to solve triangles when two angles and a side are given or when two sides and an opposite angle are given.
Law of Cosines: used to solve triangles when two sides and the included angle or three sides of the triangle are given.
Area (K) using Heron’s Formula
Area (K)
Provided by Tutoring Services
6
Common Trigonometric Angle Measurements
Related documents