Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Euclidean geometry and trigonometry Euclidean geometry means flat space sine and cosine y q Calculating 𝜋 x Trigonometric identities 𝛽 ACME 2𝜋 𝛼 1 Euclidean geometry (1) Line segment A B (2) Extend line segment into line D C F E (3) Use line segment to define circle (4) All right angles are equal (5) Parallel postulate 2 Euclidean geometry: Flat space Non-embeddable spaces (Cannot be drawn as rippled surfaces in higherdimensional flat spaces) Flat Curved (5) Parallel postulate 3 Euclidean geometry: Pythagorean theorem c b a 4 Euclidean geometry: Pythagorean theorem Want to show a2 + b2 = c2 c2 c b b2 a a2 5 Euclidean geometry: Pythagorean theorem Want to show c a2 + b2 = c2 b (a - b)2 + 4ab/2 = c2 a2 -2ab + b2 + 2ab = c2 ab/2 a ab/2 a2 + b2 = c2 a-b (a – b)2 b ab/2 ab/2 𝑐= 𝑎2 + 𝑏 2 6 Euclidean geometry and trigonometry Euclidean geometry means flat space sine and cosine y q Calculating 𝜋 x Trigonometric identities 𝛽 ACME 2𝜋 𝛼 7 Trigonometry: sine and cosine y 1 q q x 8 Trigonometry: sine and cosine y 1 y = sin(q) ACME q x = cos(q) x 2𝜋 9 Trigonometry: sine and cosine y sin 𝜃 1 3 2 2 2 1 x 2 cos 𝜃 0 𝜃 𝜋 𝜋 𝜋 6 4 3 𝜋 2 2𝜋 3𝜋 5𝜋 3 4 6 𝜋 7𝜋 5𝜋 4𝜋 6 4 3 3𝜋 2 5𝜋 7𝜋 11𝜋 2𝜋 3 4 6 −1 2 − 2 2 − 3 2 -1 10 Trigonometry: sine and cosine sin 𝜃 1 3 2 2 2 1 2 cos 𝜃 0 𝜃 𝜋 𝜋 𝜋 6 4 3 𝜋 2 2𝜋 3𝜋 5𝜋 3 4 6 𝜋 7𝜋 5𝜋 4𝜋 6 4 3 3𝜋 2 5𝜋 7𝜋 11𝜋 2𝜋 3 4 6 −1 2 − 2 2 − 3 2 -1 11 Euclidean geometry and trigonometry Euclidean geometry means flat space sine and cosine y q Calculating 𝜋 x Trigonometric identities 𝛽 ACME 2𝜋 𝛼 12 Trigonometry: 𝜋 Want to approximate 𝜋 1 𝜋 3 1 𝜋 3 𝜋 3 1 𝜋 3 1 1 𝜋 3 1 𝜋 3 𝜋 3 1 ACME 𝜋 3 𝜋 3 2𝜋 13 Trigonometry: 𝜋 Want to approximate 𝜋 𝜋 3 1 1 𝜋 3 𝜋 3 1 14 Trigonometry: 𝜋 Want to approximate 𝜋 1 2 𝜋 𝜋 𝜋 3 6 6 2 + 𝑥 2 = 12 𝑥2 = 1 − 𝑥= 1 x 3 2 1 4 3 3 = 4 2 1 𝜋 3 𝜋 3 1/2 1 1/2 15 Trigonometry: 𝜋 Want to approximate 𝜋 𝜋 6 1 2 𝜋 6 2 + 𝑥 2 = 12 𝑥2 = 1 − 𝑥= 1 x 3 2 1 4 3 3 = 4 2 1 1 1/2 𝜋 3 𝜋 3 𝜋 6 1/2 3 2 1/2 16 Trigonometry: 𝜋 Want to approximate 𝜋 1 2 2 + 𝑥 2 = 12 𝑥2 = 1 − 𝑥= 1 4 3 3 = 4 2 1 1/2 𝜋 6 3 2 17 Trigonometry: 𝜋 𝜋 6 1 1/2 y 1 2 2 3 + 1− 2 1 2− 3 + 4 2 STOP 𝜋 6 3 2 Want to approximate 𝜋 3 1− 2 2 = 𝑦2 2 = 𝑦2 2 − 3 = 𝑦2 𝑦= 2− 3 𝜋 ≳ 6 2− 3 𝜋 ≳6 2− 3 1 𝜋 ≳ 3.1058 18 Trigonometry: 𝜋 Cosine, ACME 2𝜋 3 . 1 4 1 5 9! 𝜋 ≳ 3.1058 19 Trigonometry: sine and cosine sin 𝜃 1 3 2 𝜋 1° ≔ 180 2 2 1 2 cos 𝜃 0 𝜃 𝜋 𝜋 𝜋 6 4 3 𝜋 2 2𝜋 3𝜋 5𝜋 3 4 6 𝜋 7𝜋 5𝜋 4𝜋 6 4 3 3𝜋 2 5𝜋 7𝜋 11𝜋 2𝜋 3 4 6 −1 2 − 2 2 − 3 2 -1 20 Euclidean geometry and trigonometry Euclidean geometry means flat space sine and cosine y q Calculating 𝜋 x Trigonometric identities 𝛽 ACME 2𝜋 𝛼 21 Trigonometry: sine and cosine in terms of right triangles y 1 y = sin(q) q x x = cos(q) 22 q r cos(q) sin(q) 1 q cos(q) R R sin(q) r r sin(q) Trigonometry: sine and cosine in terms of right triangles q R cos(q) 23 Proving identities: Pythagorean identity STOP cos2 𝜃 + sin2 𝜃 = ? cos2 𝜃 + sin2 𝜃 = 1 Pythagorean identity sin(q) 1 q cos(q) 24 Proving identities: Angle addition formula Want to show sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 𝛽 sin 𝛽 ℎ sin 𝛼 = 𝑥 ℎ cos 𝛼 sin 𝛼 + 𝛽 1 x 𝜋 −𝛼 2 𝛼 𝜋 −𝛽 2 𝛼+𝛽 h 25 Proving identities: Angle addition formula Want to show sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 cos 𝛼 sin 𝛽 + cos 𝛽 sin 𝛼 = sin 𝛼 + 𝛽 sin 𝛼 𝛽 sin 𝛼 + 𝛽 𝛼 26