Download PPTX slides

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Euclidean geometry and trigonometry
Euclidean geometry means flat space
sine and cosine
y
q
Calculating 𝜋
x
Trigonometric identities
𝛽
ACME
2𝜋
𝛼
1
Euclidean geometry
(1) Line segment
A
B
(2) Extend line
segment into line
D
C
F
E
(3) Use line segment
to define circle
(4) All right
angles are equal
(5) Parallel postulate
2
Euclidean geometry: Flat space
Non-embeddable spaces
(Cannot be drawn as
rippled surfaces in higherdimensional flat spaces)
Flat
Curved
(5) Parallel postulate
3
Euclidean geometry: Pythagorean theorem
c
b
a
4
Euclidean geometry: Pythagorean theorem
Want to show
a2 + b2 = c2
c2
c
b
b2
a
a2
5
Euclidean geometry: Pythagorean theorem
Want to show
c
a2 + b2 = c2
b
(a - b)2 + 4ab/2 = c2
a2 -2ab + b2 + 2ab = c2
ab/2
a
ab/2
a2 + b2 = c2
a-b
(a – b)2
b
ab/2
ab/2
𝑐=
𝑎2 + 𝑏 2
6
Euclidean geometry and trigonometry
Euclidean geometry means flat space
sine and cosine
y
q
Calculating 𝜋
x
Trigonometric identities
𝛽
ACME
2𝜋
𝛼
7
Trigonometry: sine and cosine
y
1
q
q
x
8
Trigonometry: sine and cosine
y
1
y = sin(q)
ACME
q
x = cos(q)
x
2𝜋
9
Trigonometry: sine and cosine
y
sin 𝜃
1
3 2
2 2
1
x
2
cos 𝜃
0
𝜃
𝜋 𝜋 𝜋
6 4 3
𝜋
2
2𝜋 3𝜋 5𝜋
3 4 6
𝜋
7𝜋 5𝜋 4𝜋
6 4 3
3𝜋
2
5𝜋 7𝜋 11𝜋
2𝜋
3 4 6
−1 2
− 2 2
− 3 2
-1
10
Trigonometry: sine and cosine
sin 𝜃
1
3 2
2 2
1
2
cos 𝜃
0
𝜃
𝜋 𝜋 𝜋
6 4 3
𝜋
2
2𝜋 3𝜋 5𝜋
3 4 6
𝜋
7𝜋 5𝜋 4𝜋
6 4 3
3𝜋
2
5𝜋 7𝜋 11𝜋
2𝜋
3 4 6
−1 2
− 2 2
− 3 2
-1
11
Euclidean geometry and trigonometry
Euclidean geometry means flat space
sine and cosine
y
q
Calculating 𝜋
x
Trigonometric identities
𝛽
ACME
2𝜋
𝛼
12
Trigonometry: 𝜋
Want to approximate 𝜋
1
𝜋
3
1
𝜋
3
𝜋
3
1
𝜋
3
1
1
𝜋
3
1
𝜋
3
𝜋
3
1
ACME
𝜋
3
𝜋
3
2𝜋
13
Trigonometry: 𝜋
Want to approximate 𝜋
𝜋
3
1
1
𝜋
3
𝜋
3
1
14
Trigonometry: 𝜋
Want to approximate 𝜋
1
2
𝜋
𝜋 𝜋
3
6 6
2
+ 𝑥 2 = 12
𝑥2 = 1 −
𝑥=
1
x
3
2
1
4
3
3
=
4
2
1
𝜋
3
𝜋
3
1/2
1
1/2
15
Trigonometry: 𝜋
Want to approximate 𝜋
𝜋
6
1
2
𝜋
6
2
+ 𝑥 2 = 12
𝑥2 = 1 −
𝑥=
1
x
3
2
1
4
3
3
=
4
2
1
1
1/2
𝜋
3
𝜋
3
𝜋
6
1/2
3
2
1/2
16
Trigonometry: 𝜋
Want to approximate 𝜋
1
2
2
+ 𝑥 2 = 12
𝑥2 = 1 −
𝑥=
1
4
3
3
=
4
2
1
1/2
𝜋
6
3
2
17
Trigonometry: 𝜋
𝜋
6
1
1/2
y
1
2
2
3
+ 1−
2
1
2− 3
+
4
2
STOP
𝜋
6
3
2
Want to approximate 𝜋
3
1−
2
2
= 𝑦2
2
= 𝑦2
2 − 3 = 𝑦2
𝑦=
2− 3
𝜋
≳
6
2− 3
𝜋 ≳6 2− 3
1
𝜋 ≳ 3.1058
18
Trigonometry: 𝜋
Cosine,
ACME
2𝜋
3 . 1 4 1 5 9!
𝜋 ≳ 3.1058
19
Trigonometry: sine and cosine
sin 𝜃
1
3 2
𝜋
1° ≔
180
2 2
1
2
cos 𝜃
0
𝜃
𝜋 𝜋 𝜋
6 4 3
𝜋
2
2𝜋 3𝜋 5𝜋
3 4 6
𝜋
7𝜋 5𝜋 4𝜋
6 4 3
3𝜋
2
5𝜋 7𝜋 11𝜋
2𝜋
3 4 6
−1 2
− 2 2
− 3 2
-1
20
Euclidean geometry and trigonometry
Euclidean geometry means flat space
sine and cosine
y
q
Calculating 𝜋
x
Trigonometric identities
𝛽
ACME
2𝜋
𝛼
21
Trigonometry: sine and cosine in terms of right triangles
y
1
y = sin(q)
q
x
x = cos(q)
22
q
r cos(q)
sin(q)
1
q
cos(q)
R
R sin(q)
r
r sin(q)
Trigonometry: sine and cosine in terms of right triangles
q
R cos(q)
23
Proving identities: Pythagorean identity
STOP
cos2 𝜃 + sin2 𝜃 = ?
cos2 𝜃 + sin2 𝜃 = 1
Pythagorean identity
sin(q)
1
q
cos(q)
24
Proving identities: Angle addition formula
Want to show
sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
𝛽
sin 𝛽
ℎ sin 𝛼
=
𝑥
ℎ cos 𝛼
sin 𝛼 + 𝛽
1
x
𝜋
−𝛼
2
𝛼
𝜋
−𝛽
2
𝛼+𝛽
h
25
Proving identities: Angle addition formula
Want to show
sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
cos 𝛼
sin 𝛽
+ cos 𝛽 sin 𝛼 = sin 𝛼 + 𝛽
sin 𝛼
𝛽
sin 𝛼 + 𝛽
𝛼
26
Related documents