Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Energetic ions from next generation ultraintense ultrashort lasers: scaling laws for TNSA Matteo Passoni1,2,3, Maurizio Lontano3, Luca Bertagna1, Alessandro Zani1 1 Dipartimento di Energia, Politecnico di Milano 2 Istituto Nazionale di Fisica Nucleare (INFN) Milano 3 Istituto di Fisica del Plasma, CNR, Milano 2 Outline - Introduction • laser-driven ion acceleration physics • TNSA mechanism - Analytical models to describe TNSA • plasma expansion vs particle acceleration in quasi-static field - A 1D quasi-static analytical model based on “bound electrons” • Comparisons with experimental results • Predictions for future applications - Conclusions COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Laser-driven ion acceleration in solids targets 3 If an ultraintense and ultrashort laser pulse hits the surface of a thin solid film, intense and energetic (Multi-MeV) ion beams are effectively produced The accelerated ions possess unique properties! COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Ion acceleration mechanism(s!): general remarks 4 SOME CRUCIAL ISSUES: solid target pre-plasma (underdense) 1: laser pulse-front surface interaction - generation of relativistic e- population - role of pulse properties Light ion layer (intensity, energy, prepulse, polarization) - role of target properties (density, profile, thickness, mass) 2: electron propagation in the target - role of electron properties relativistic ecurrent Laser pulse return current 1 2 3 (max. energy, spectrum, temperature) - role of target properties - return current main pulse 3: effective charge separation - generation of intense electric fields - resulting ion acceleration COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni front surface pre-pulse rear surface Ion acceleration mechanism(s!): TNSA – RPA 5 IF THE e- POPULATION IS DOMINATED BY A THERMAL SPECTRUM… (quite “natural” experimentally…) …accelerating field due to strong charge separation between hot electrons expanding in vacuum and the bulk target Target Normal Sheath Acceleration mechanism (TNSA) IF THE THERMAL e- POPULATION IS “SUPPRESSED”… (is it “feasible” experimentally…?) …accelerating field due charge separation induced by the balance between radiation pressure and electrostatic force Radiation Pressure Acceleration mechanism (RPA) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Ion acceleration mechanism(s!): how to control their properties? 6 Various possibilities can be explored: - Laser pulse • different combinations of pulse energy, intensity, duration • linear polarization to have a thermal component (TNSA) • circular polarization + normal incidence to suppress it (RPA) - Target • ultrathin targets (with ultrahigh contrast!) can be used: • “enhanced TNSA” (“hotter” electrons) • “light sail” RPA (vs “hole boring” RPA with thick targets) • “partially trasmitted pulse” regimes • target density and structure can influence the process • multilayers (control of the ion spectrum and species) • mass limited (control of the accelerating field) • nanostructured (e.g. to change the density parameter) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni TNSA: still a number of open issues! 7 - which are the most effective laser absorption process at the target front surface? Dependence on pulse properties?? - role of pre-pulse/pre-plasma? - differences between front and rear acceleration? - role of target properties (thickness, density, structure…)? How to describe the acceleration process theoretically? - realization of suitable numerical simulations (Vlasov, PIC) - development of analytical models COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Theoretical description of TNSA 8 How to develop analytical models of the acceleration process in TNSA? …generally speaking, two approaches are possible: 1) consider ions and hot electrons as an expanding plasma described with fluid models 2) describe in detail the accelerating field as a quasi-static electric field set up by the hot electrons This is the approach of the present work! COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Hydrodynamic models for TNSA 9 These models (most popular from P. Mora) have been found very useful and are widely adopted to interpret experimental data. [P. Mora, Phys. Rev. Lett. 90, 185002 (2003) J. Fuchs, et al., Nature Phys. 2, 48 (2006)] Limits of this kind of description: - accelerated ions are a thin layer rather than a semi-infinite plasma - empirical acceleration time t 1.3 pulse can be unphysical in several regimes: - too short for very short pulses (tens fs), - too long for the most energetic part of the spectrum with long pulses (few ps) - divergent maximum ion energy (see below!!) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Quasi-static theoretical models for TNSA 10 The following physical picture can be assumed: - hot electrons create a non-neutral region, source of an electric field - light ions form a thin layer, the main target is made of heavier ions - during the characteristic acceleration time of the light ions hot electrons almost isothermal (cooling important at longer times), heavier ions almost immobile - until the number of accelerated light ions is much lower than the number of hot electrons, the field is not heavly affected the accelerating field can be assumed as quasy-static, light ions treated as test particles COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Hot electrons description: Boltzmann distribution/ infinite space 11 …i.e.: on the problem of maximum ion energy Ni N e N 0e e / Te x ne 0 as x as x regardless the dimensionality, final ion energy diverges !!! - isothermal models: introduce “truncation mechanisms” Y. Kishimoto, et al., Phys. Fluids 26, 2308 (1983) M.Passoni, M.Lontano, Laser Part. Beams 22, 171 (2004) M. Lontano, M. Passoni, Phys.Plasmas, 13,042102 (2006) M. Passoni, M. Lontano, Phys. Rev. Lett., 101, 115001 (2008) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Role of “bound” electrons – 1 12 How to build a more self-consistent description?? Kinetic approach - consider the electron distribution function f e f e r, p, Te , Ni e- (x) r, p mc2 e r only “trapped” ((r,p) < 0) e- are bound from the potential to the target; “passing” e- ((r,p) > 0) leave the system x e- Y. Kishimoto, et al., Phys. Fluids 26, 2308 (1983) lost at ∞ tot(x) COULOMB 09, Senigallia, 16.06.2009 “E.S. field distribution at the sharp interface between high density matter and vacuum” M. Lontano, M. Passoni, Phys.Plasmas, 13, 042102 (2006) Matteo Passoni Role of “bound” electrons – 2 13 Any experimental evidence of “passing” vs “bound” electrons? “Dynamic Control of Laser-Produced Proton Beams” S. Kar et al., Phys. Rev, Lett., 100, 105004 (2008) “… A small fraction of the hot electron population escapes and rapidly charges the target to a potential of the order of Up preventing the bulk of the hot electrons from escaping. …” “… All targets were mounted on 3 mm thick and 2 cm long plastic stalks in order to provide a highly resistive path to the current flowing from the target to ground. …” see also M. Borghesi’s talk!! and K. Quinn et al. PRL (2009) …then, in usual conditions a globally neutral target with only “bound” electrons develops COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 1D 1T trapped electron model – 1 14 x , p n~ f e x , p exp 2 Te mc 2mcK1 T only the density of “trapped” e- enters Poisson eq.; integrating over < 0 we get the trapped e- density ntr((r)) ntr r r ,p 0 2 Ntr f e r ,p d 3 p n e , N tr ~tr Te n r ,p 0 p pmaxr x , p mc2 1 e x 0 COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 2 e 2e 2 2 2 2 p pm ax m c 2 2 mc mc 1D 1T trapped electron model – 2 implicit analytical solution 15 Spatial extention of the electron cloud = x/D (D from n~ ) 0 0 [L. Bertagna, Master thesis, (2009) Politecnico di Milano ] COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 1D 1T trapped electron model – 3 16 [L. Romagnani, et al., P.R.L. 95, 195001 (2005) M. Borghesi, et al., Fus. Sc. & Techn. 49, 412 (2005)] proton imaging of rear field LULI interaction CPA1 I ≈ 3.51018 W/cm2 ≈ 1.5 ps 1 - 40 m, Al, Au bent foils experimental data best reproduced by PIC simulations assuming a field which becomes zero at a finite distance h ≈ 20 m from the rear surface t (ps) Te ≈ 500 keV int ≈ 6-7 MeV E ≈ 3 1010 V/m COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 1D 1T trapped electron model – 4 17 - determination of f from the knowledge of 0 - 0 related to the hot electron parameters inside the target as far as the front side (- w = - w/D < < 0) - ions and cold electrons form provide a positively charged background density ZNi - Ncold = NL laser 0 * in(x) (x) Thot -w 0 xf e 0 * e,max max value of the potential inside the target COULOMB 09, Senigallia, 16.06.2009 = Matteo Passoni max value of trapped electron energy x 1D 1T trapped electron model – 5 18 Analytical solution in the ultra-relativistic limit (appropriate near and inside the target for typical parameters) c p e x c UR ~ f e x, p n exp 2Te Te p mc 1 0 * 1e* 1 Z 0Thot i max e * ni i 1 0 0 e p 2 pm2 ax 2 c “Theory of Light-Ion Acceleration Driven by a Strong Charge Separation” M. Passoni, M. Lontano, Phys. Rev. Lett., 101, 115001 (2008) maximum ion energy H i 0 H i 0 2Z exp 1 Z Z COULOMB 09, Senigallia, 16.06.2009 12 Matteo Passoni 2 ion energy spectrum 1D 1T trapped electron model – 6 19 The maximum electron energy e,max = * as a scaling law How to obtain e,max = * ? Difficult both theoretically and experimentally… - Make use of proper numerical simulations of laser-target interaction - From the analysis of several published results (starting with observed proton energies and using the model to infer * ) we get the fitting (valid for the “ordinary” TNSA regime…) e,max K e,max Te A B ln EL J * A=4.8, B=0.8, where EL is the laser energy i max Z0 ( * )Thot ( I ) f ( Z , EL , I ) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Pulse energy – intensity plane: present day experiments [23] [1] [24] [25] [27] [27] [26] [28] [30] [29] …agreement within 10 % M. Passoni, M. Lontano, Phys. Rev. Lett., 101, 115001 (2008) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 20 Dependence on intensity: present day experiments 21 [ From M. Borghesi et al., Plasma Phys. Contr. Fus. 50, 024140 (2008)] There is a combined variation of pulse energy & intensity! COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 1T trapped electron model Comparison with experimental data 22 Experimental data from T. Ceccotti, Ph. Martin (CEA Saclay): fixed pulse duration (25 fs) and focal spot with UHC: BWD TNSA! BWD H+ [M. Passoni et al., AIP Conf. Proc. (in press)] COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Experiments with reduced wavelength and different spot size 23 Wavelength: 528 nm (2w) Pulse width: 400 fs Max intensity (I2): ~4.8*1018 Wcm-2m² Temporal contrast: >1010 1/5 spot 3m Spot size (FWHM) ~ 4.4m COULOMB 09, Senigallia, 16.06.2009 3m Spot size (FWHM) ~ 0.9m Matteo Passoni From J. Fuchs presentation at ULIS ’09 (2 weeks ago), and here yesterday! Experiments with reduced wavelength and different spot size [MeV] energy maximum Proton Proton maximum energy [MeV] 12 24 Need only ~ 1/10 energy to accelerate the protons. EPM 10 ∝ILaser 8 6 5.5 MeV protons Direct 4 Au 2m thick Al 2m thick Al 0.5m thick 2 0 0 Only 0.8 J 2 4 6 8 Energy on~target [J] 7J COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 10 12 From J. Fuchs presentation Experiments with reduced wavelength and different spot size 25 Preliminary theoretical interpretation of these experiments… - General trend well reproduced - Underling physics seems to be nicely captured COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 1T trapped electron model Comparison with experimental data Quasi-monoenergetic MeV carbon beams - our model 26 [B. M. Hegelich et al., Nature 439, 441 (2006)] EL 20 J I L 1019 W cm2 wt 20 μm L 0.8 ps C5+ ions estimated layer thickness: < 5 nm Use of Ultrahigh-Contrast Laser Pulses and thin targets - our model electron energy distribution (PIC) [T. Ceccotti et al, Phys. Rev. Lett. 99, 185002 (2007)] EL 0.65 J I L 5 1018 W cm 2 contrast 1010 wt 0.4 μm L 0.065 ps No fitting parameters used! COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni TNSA: dependence on laser parameters 27 Pulses with fixed duration (25 fs) and focal spot: prediction of max. ion energy vs. intensity In these conditions, combined variation of pulse energy & intensity Effective dependence on intensity changes with the “decades” COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Pulse energy – intensity plane: TNSA beyond 1021 W/cm2: ? 28 Example : 100 MeV protons with Ti:Sa (=800 nm); I = 4x1021 W/cm2; EL = 5 J COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Predictions for applications: hadrontherapy with TNSA? 29 Possible path to reach 250 MeV protons and 10 nA current with “usual” TNSA: Ti:Sa (=800 nm); I = 1x1022 W/cm2; EL = 50 J; = 15 fs (focal=4 µm) (3 PW system); Rep. rate 5 Hz (with 1010 protons/pulse in the selected energy interval) …these requirements could be even less demanding if “improved” schemes of TNSA can be adopted at these laser parameters COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Conclusions 30 - Quasi-static models give simple expressions for the TNSA maximum ion energy and for the energy spectrum others exist… B.J. Albright, et al., Phys. Rev. Lett. 97, 115002 (2006) J. Schreiber, et al. Phys. Rev. Lett. 97, 045005 (2006) M. Nishiuchi, et al., Phys. Lett. A 357, 339 (2006) A.P. Robinson, et al., Phys. Rev. Lett. 96, 035005 (2006) - hold for short time (in this sense, complementary to fluid models) - A 1D quasi-static model of TNSA has been developed: • experimental results in good agreement with the expectations • predictions for future applications are easily feasible - Further improvements in several directions are possible: magnetic fields, max e- energy, 2T, 3D, space charge effects, expanding target.. Work in progress… COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 31 THANK YOU FOR YOUR ATTENTION! And thanks to the co-workers! Maurizio Lontano, Luca Bertagna, Alessandro Zani for more details… [email protected] www.nanolab.polimi.it COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Experimental Results (Fuchs J.) 32 In following tables there are predictions using (1) nominal pulse energy in φ* scaling lawCOULOMB or (2) effective pulse energy: 09, Senigallia, 16.06.2009 Matteo Passoni Comparison between experimental point and UR model predictions (1) 33 Experiment al point I [1020 W/cm2] EL [J] Iλ2 [I/10 m2] fS [m] Emax,TEO [MeV] Emax,EXP [MeV] 1 2.50 2.45 6.85 0.9 (T.F.) 14.23 10.5 2 1.75 1.72 4.8 0.9 (T.F.) 10.9 9.5 3 3.25 3.2 8.9 0.9 (T.F.) 17.25 9.5 4 1.75 1.72 4.8 0.9 (T.F.) 10.9 9 5 0.8 0.8 2.2 0.9 (T.F.) 5.8 5.7 6 0.8 0.8 2.2 0.9 (T.F.) 5.8 5.9 7 0.8 0.8 2.2 0.9 (T.F.) 5.8 5.2 8 2.5 0.1 0.3 4.4 (Direct) 1.75 2 9 4.8 0.2 0.5 4.4 (Direct) 3.2 4 10 5.5 0.23 0.63 4.4 (Direct) 3.6 2 11 9 0.37 1 4.4 (Direct) 5.4 7 12 8.5 0.35 0.9 4.4 (Direct) 5.1 6 13 9.5 0.4 1 4.4 (Direct) 5.7 10 COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Comparison between experimental point and UR model predictions (2) 34 Experimenta l point I [1020 W/cm2] EL [J] Iλ2 [I/10 m2] fS [m] Emax,TEO [MeV] Emax,EXP [MeV] 1 2.50 2.45 6.85 0.9 (T.F.) 10.9 10.5 2 1.75 1.72 4.8 0.9 (T.F.) 8.15 9.5 3 3.25 3.2 8.9 0.9 (T.F.) 13.34 9.5 4 1.75 1.72 4.8 0.9 (T.F.) 8.15 9 5 0.8 0.8 2.2 0.9 (T.F.) 4.2 5.7 6 0.8 0.8 2.2 0.9 (T.F.) 4.2 5.9 7 0.8 0.8 2.2 0.9 (T.F.) 4.2 5.2 8 2.5 0.1 0.3 4.4 (Direct) 1.3 2 9 4.8 0.2 0.5 4.4 (Direct) 2.5 4 10 5.5 0.23 0.63 4.4 (Direct) 2.8 2 11 9 0.37 1 4.4 (Direct) 4.4 7 12 8.5 0.35 0.9 4.4 (Direct) 4.2 6 13 9.5 0.4 1 4.4 (Direct) 4.6 10 COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 35pulse energy) Expected results from UR model (scaling law for φ* with NOMINAL COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Comparison theoretical vs. experimental results (scaling law for φ* 36 with NOMINAL pulse energy) 2.3 COULOMB 09, Senigallia, 16.06.2009 6.9 Matteo Passoni 11 37 Expected results from UR model (scaling law for φ* with EFFECTIVE pulse energy) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Comparison theoretical vs. experimental results (scaling law for φ* with EFFECTIVE 38 pulse energy) 2.3 COULOMB 09, Senigallia, 16.06.2009 6.9 Matteo Passoni 11 From Ph. Martin’s talk…. 39 Linear scaling law Next decade ? Max proton Energy (MeV) BWD H+ 7 6 5 4 3 2 1 0 Wanna get 100 MeV ? Just build up a 1PW laser (but clean !) theory 0 5 10 15 20 25 30 35 Laser Power (TW) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 1T trapped electron model – 7 Comparison with experimental data 40 Proton spectra with different laser parameters D 2 R f L wt tan - model R=14m R=0,7m R=0,7m R=14m 0,05m 0,05m n 3 x10 cm 3 22 n 1,5 x10 22 cm 3 0,05m 0,05m n 1,5 x10 22 cm 3 n 3 x10 22 cm 3 [R.A. Snavely, et al., Phys. Rev. Lett., 85, 2945 (2000)] [M. Nishiuchi, et al., Phys. Lett. A, 357, 339 (2006)] EL 500 J EL 0.25 J I L 3 1020 W cm 2 I L 3 1018 W cm 2 wt 100 μm wt 3 μm L 0.5 ps L 70 fs COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Other quasi-static models… 41 “Theory of Laser Acceleration of Light-Ion Beams from Interaction of Ultrahigh-Intensity Lasers with Layered Targets ” B.J. Albright, et al., Phys. Rev. Lett. 97, 115002 (2006) - extention of the 2T model to describe layered targets “Analytical Model for Ion Acceleration by High-Intensity Laser Pulses “ J. Schreiber, et al. Phys. Rev. Lett. 97, 045005 (2006) - surface charge model exploiting radial symmetry for the electric field “The laser proton acceleration in the strong charge separation regime ” M. Nishiuchi, et al., Phys. Lett. A 357, 339 (2006) - approach analogous to the 1T model to interpret experiments “ Effect of Target Composition on Proton Energy Spectra in Ultraintense Laser-Solid Interactions “ A.P. Robinson, et al., Phys. Rev. Lett. 96, 035005 (2006) - study of the effects of a non negligible proton density in the target COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Further theoretical references… 42 …not exaustive list… “Ion acceleration in expanding multi-species plasmas” V. Yu. Bychenkov et al., Phys. Plasmas, 11, 3242 (2004) “Ion acceleration in short-laser-pulse interaction with solid foils “ V. T. Tikhonchuk, et al., Plasma Phys. Controlled Fusion 47, B869 2005. “Collisionless expansion of a Gaussian plasma into a vacuum” P. Mora, Phys. Plasmas 12, 112102 (2005) “Thin-foil expansion into a vacuum” P. Mora, Phys. Rev. E 72, 056401 (2005) “Test ion acceleration in a dynamic planar electron sheath ” M.M. Basko, Eur. Phys. J. D, 41, 641 (2007) “Nanocluster explosions and quasimonoenergetic spectra by homogeneously distributed impurity ions” M. Murakami & M. Tanaka, Phys. Plasmas 15, 082702 (2008) V. F. Kovalev, et al., JETP, 95, 226 (2002) S. Betti, et al., Pl. Phys. Contr. Fus. 47, 521 (2005) COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni Arguments for discussion 43 The field of laser-based ion acceleration is extraordinary active…some examples: - elimination of the pre-pulse to allow: - efficient TNSA front acceleration - more efficient electron heating - use of ultrathin targets (promising to increase ion properties) - production and control of a “true ion beam” - Achievement of monoenergetic collimated low-emittance ion beams - investigation of new accelation schemes (e.g. Radiation Pressure Acceleration, RPA, other kinds of targets) - construction of satisfactory theoretical descriptions of these issues - development of the possible applications COULOMB 09, Senigallia, 16.06.2009 Matteo Passoni 1T trapped electron model – 7 Comparison with experimental data 44 Proton spectra with different laser parameters D 2 R f L wt tan - model R=14m R=8m R=0,7m R=8m R=14m 0,05m 0,05m n 3 x10 cm 3 0,05m 22 n 1,5 x10 cm 22 3 0,05m 0,05m n 1,5 x10 22 cm 3 n 3 x10 22 cm 3 [R.A. Snavely, et al., Phys. Rev. Lett., 85, 2945 (2000)] neest,L 4.4 10 21 cm 3 EL 500 J I L 3 10 20 wt 100 μm L 0.5 ps W cm 2 Te 7 MeV K e ,m ax 61 MeV Eim,meaax 58 MeV Eim,modax 58.4 MeV [P. McKenna, et al., Phys. Rev. E, 70, 036405 (2004)] neest,L 3.6 10 21 cm 3 EL 400 J I L 2 10 W cm 20 2 wt 100 μm L 0.7 ps Te 5.7 MeV K e ,m ax 46.7 MeV Eim,meaax 44 MeV Eim,modax 45.9 MeV M. Passoni, M. Lontano, Phys. Rev, Lett., 101, 115001 (2008) COULOMB 09, Senigallia, 16.06.2009 n 1,5 x10 22 cm 3 Matteo Passoni [M. Nishiuchi, et al., Phys. Lett. A, 357, 339 (2006)] EL 0.25 J Te 0.26 MeV K e ,m2 ax 1 MeV I L 3 10 W cm 18 wt 3 μm L 70 fs Eim,meaax 0.88 MeV Eim,modax 0.92 MeV