Download Machine learning in neuroscience - Computational Intelligence Group

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Machine learning in neuroscience
Bojan Mihaljevic, Luis Rodriguez-Lujan
Computational Intelligence Group
School of Computer Science, Technical University of Madrid
2015 IEEE Iberian Student Branch Congress
April 24th , Madrid
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
1 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
2 / 48
Computational Intelligence Group
At Artificial Intelligence Department, School of Computer Science
Since 2008
2 full professors, 1 associate professor, 1 post-doc, and 11 PhD
students
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
3 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
4 / 48
A useful tool
http://en.wikipedia.org/wiki/File:No-spam.png http://commons.wikimedia.org/wiki/File:Logo_Youtube.svg
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
5 / 48
Data-driven
Learn from data what you cannot program (well) explicitly
Large amounts of data these days
Typically, we assume data comes as attribute values
X1
1.40
-0.31
-0.01
X2
A
B
B
X3
10003
2039
7383
X4
-24
21
70
X5
D
C
U
Goal: learn some function over X
Related terms: data mining, pattern recognition, data science...
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
6 / 48
Tasks
Classification (discrete target
variable)
Regression (real-valued target
variable)
Clustering (hidden discrete target
variable)
Others: collaborative filtering,
market basket analysis, etc.
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
http://commons.wikimedia.org/
wiki/File:Social_Red.jpg
Apr, 2015
7 / 48
Multiple models
Some of them:
P(x, c) = P(c)P(x1 |c)P(x2 |c)P(x3 |c)P(x4 |c)P(x5 |c)
Naive Bayes
k nearest neighbors
p(c | x, w) = Ber (y | sigm(xT x))
Logistic regression
Hastie, T., Tibshirani, R., Friedman, J., (2009).
The elements of statistical learning (Vol. 2, No.
1). New York: Springer
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Decision tree
Apr, 2015
8 / 48
Toolbox
Many different tools to extract models from data
Optimization (often heuristic)
I
I
Combinatorial
Continuous
Information theory
Probability theory and statistics
I
Inherent uncertainty (e.g., noise; prediction confidence)
...
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
9 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
10 / 48
Underpinning: conditional independence
Many random variables: intractable distributions
I
20 binary variables mean 220 − 1 parameters in the joint distribution
Fortunately, some variables are sometimes independent of others
I
E.g., if I know that it is very warm, then knowing that it is summer
might not make it more likely that many people will be on the beach
Factor a joint distribution into smaller local ones
P(X1 , X2 , X3 . . . , Xn ) = P(X1 )P(X2 | X1 )P(X3 , . . . , Xn | X1 , X2 )
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
11 / 48
Representation
Directed acyclic graph
I
I
Nodes = variables
Arcs encode
conditional
independencies
A local distribution for
each parents’ values
combination
P(x) =
Qn
i=1 P(xi
| pa(xi ))
Can greatly reduce number of parameters
http://commons.wikimedia.org/wiki/File:SimpleBayesNet.svg
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
12 / 48
Inference
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
13 / 48
Inference
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
14 / 48
Some research topics
Learning from data
I
I
I
NP-hard in the general case
Conditional-independence tests
Structure scoring (optimization)
Inference
I
I
I
NP-complete in the general case
Exact
Approximate
Classifiers
I
Specialized learning algorithms
”Non-standard” local probability distributions
I
I
I
Hybrid networks
Mixtures of polynomials
Directional variables
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
15 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
16 / 48
Directional statistics
Deal with directions, axes, rotations
Cannot be studied as regular real-valued variables. Periodicity
Real world data: Wind, animal behaviour, neuroscience, ...
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
17 / 48
Representation and methods
Different ways to represent directional data
Directional probability distributions
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
18 / 48
Research topics in CIG
Bayesian networks
I
I
I
I
I
Different local distributions
Multi-dimensional classifiers
Learning classifiers
Big Data
...
Heuristic optimization
I
I
Multi-objetive
Estimation of distribution algorithms (probabilistic evolutionary)
Applications
I
I
I
Neuroscience
Scientometrics
Bioinformatics
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
19 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
20 / 48
Projects and collaborations
Projects
Collaborations
Companies
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
21 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
22 / 48
The brain
Scientific study of the nervous system. Molecular and cellular
neuroscience
We do not study the brain at macro level (yet)...
... but on a micro scale: Neurons
100 billion neurons in the brain
180.000 kilometers of wiring (myelinated white fibers)
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
23 / 48
Neurons
Three main parts: Soma, dendrites and axon
Neurons communicate with each other using electro-chemical signals
Significant differences between neurons
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
24 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
25 / 48
’Gardener’ Classification
There is an accepted catalogue of neuron types and names
But lack of a consistent terminology
Every neuroanatomist has is own classification scheme
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
26 / 48
Towards a consensus in naming
Learning from the experts
Gather data from 42 experts
Learn a model (Bayesian network) for each expert
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
27 / 48
Towards a consensus in naming
Differences among experts
Six clusters of experts (Bayesian network clustering)
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
28 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
29 / 48
Morphological simulation
Denditric trees
Why so different denditric tree shapes?
Determine interconnectivity and functional roles
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
30 / 48
Morphological simulation
Variables
More than 40 variables
Evidence and construction variables
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
31 / 48
Morphological simulation
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
32 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
33 / 48
Soma spatial characterization
Descriptors based on the level curves of a level set function
Hybrid Gaussian and angular Bayesian network
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
34 / 48
Spines
Related with brain functions like learning and memory
3D active contours to repair fragmented spines
Hybrid spatial DBN
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
35 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
36 / 48
Main idea
Degree-constrained minimum spanning tree
Degree constraints
Restrict the role of the nodes in the tree to root, intermediate or
leaf node
Novel permutation-based representation to encode forests of
DRCMST
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
37 / 48
Example
20 points where we are interested in building a forest of three trees
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
38 / 48
Application to Neuroscience
Applied to optimal neuronal wiring
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
39 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
40 / 48
Medical applications
Medical decision support systems: Neonatal jaundice treatment
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
41 / 48
Other applications
DNA microarray analysis
Immunology
Alzheimer
Parkinson
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
42 / 48
Outline
1
Introduction
2
Methods
Machine learning
Bayesian networks
Directional statistics
3
Applications
Introduction to neuroscience
Neuron classification
Morphological simulation
Soma and spines
DRCMST
Other applications
4
Future work
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
43 / 48
Integration
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
44 / 48
BN & Big data
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
45 / 48
Big data in neuroscience
Functional Magnetic Resonance
Imaging (fMRI)
Single Photon Emission
Computed Tomography
(SPECT)
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
46 / 48
Contact us!
Summer School 2015
Computational Intelligence Group
[email protected]
[email protected]
http://cig.fi.upm.es
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
47 / 48
Machine learning in neuroscience
Bojan Mihaljevic, Luis Rodriguez-Lujan
Computational Intelligence Group
School of Computer Science, Technical University of Madrid
2015 IEEE Iberian Student Branch Congress
April 24th , Madrid
B. Mihaljevic, L. Rodriguez-Lujan (UPM)
Apr, 2015
48 / 48
Related documents